en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王滢(1983—),女,四川南充人,工程师,硕士,从事页岩气勘探开发综合地质研究工作。E-mail:wangy_dyy@cnpc.com.cn。

中图分类号:TE122

文献标识码:A

文章编号:1009-9603(2022)03-0053-09

DOI:10.13673/j.cnki.cn37-1359/te.202104014

参考文献 1
张奥博,汤达祯,陶树,等.中美典型含油气页岩地质特征及开发现状[J].油气地质与采收率,2019,26(1):37-45.ZHANG Aobo,TANG Dazhen,TAO Shu,et al.Analysis of geologi⁃ cal background and development situation of typical oil/gas-bear⁃ ing shales in China and America[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(1):37-45.
参考文献 2
钟城,秦启荣,胡东风,等.川东南丁山地区五峰组—龙马溪组页岩气藏“六性”特征[J].油气地质与采收率,2019,26(2):14-23,31.ZHONG Cheng,QIN Qirong,HU Dongfeng,et al.Experimental study on“six properties”of shale gas reservoirs in the Wufeng-Longmaxi Formation in Dingshan area,southeastern Sichuan Ba⁃ sin[J].Petroleum Geology and Recovery Efficiency,2019,26(2):14-23,31.
参考文献 3
何顺,秦启荣,范存辉,等.川东南丁山地区页岩气保存条件分析[J].油气地质与采收率,2019,26(2):24-31.HE Shun,QIN Qirong,FAN Cunhui,et al.Shale gas preservation conditions in Dingshan area,Southeastern Sichuan[J].Petroleum Geology and Recovery Efficiency,2019,26(2):24-31.
参考文献 4
马新华,谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发,2018,45(1):161-169.MA Xinhua,XIE Jun.The progress and prospects of shale gas ex⁃ ploration and exploitation in southern Sichuan Basin,NW China [J].Petroleum Exploration and Development,2018,45(1):161-169.
参考文献 5
王鹏万,邹辰,李娴静,等.昭通示范区页岩气富集高产的地质主控因素[J].石油学报,2018,39(7):744-753.WANG Pengwan,ZOU Chen,LI Xianjing,et al.Main geological controlling factors of shale gas enrichment and high yield in Zhao⁃ tong demonstration area[J].Acta Petrolei Sinica,2018,39(7):744-753.
参考文献 6
金之钧,白振瑞,高波,等.中国迎来页岩油气革命了吗?[J].石油与天然气地质,2019,40(3):451-458.JIN Zhijun,BAI Zhenrui,GAO Bo,et al.Has China ushered in the shale oil and gas revolution?[J].Oil & Gas Geology,2019,40(3):451-458.
参考文献 7
梁兴,徐政语,张朝,等.昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J].石油勘探与开发,2020,47(1):11-28.LIANG Xing,XU Zhengyu,ZHANG Zhao,et al.Breakthrough of shallow shale gas exploration in Taiyang anticline area and its sig⁃ nificance for resource development in Zhaotong,Yunnan prov⁃ ince,China[J].Petroleum Exploration and Development,2020,47(1):11-28.
参考文献 8
谢军.长宁-威远国家级页岩气示范区建设实践与成效[J].天然气工业,2018,38(2):1-7.XIE Jun.Practices and achievements of the Changning-Weiyuan shale gas national demonstration project construction[J].Natural Gas Indasty,2018,38(2):1-7.
参考文献 9
蒋珊,王玉满,王书彦,等.四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J].天然气工业,2018,38(10):19-27.JIANG Shan,WANG Yuman,WANG Shuyan,et al.Distribution prediction of graphitized organic matter areas in the Lower Cam⁃ brian Qiongzhusi shale in the Central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J].Natural Gas Industry,2018,38(10):19-27.
参考文献 10
王玉满,董大忠,程相志,等.海相页岩有机质碳化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例[J].天然气工业,2014,34(8):1-7.WANG Yuman,DONG Dazhong,CHENG Xiangzhi,et al.Electric property evidences of the carbonification of organic matters in ma⁃ rine shales and its geologic significance:A case of the Lower Cam⁃ brian Qiongzhusi Shale in southern Sichuan Basin[J].Natural Gas Industry,2014,34(8):1-7.
参考文献 11
董大忠,王玉满,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.DONG Dazhong,WANG Yuman,LI Xinjing,et al.Breakthrough and prospect of shale gas exploration and development in China [J].Natural Gas Industry,2016,36(1):19-32.
参考文献 12
王淑芳,张子亚,董大忠,等.四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J].天然气地球科学,2016,27(9):1 619-1 628.WANG Shufang,ZHANG Ziya,DONG Dazhong,et al.Microscop⁃ ic pore structure and reasons making reservoir property weaker of Lower Cambrian Qiongzhusi shale,Sichuan Basin,China[J].Nat⁃ ural Gas Geoscience,2016,27(9):1 619-1 628.
参考文献 13
高和群,丁安徐,蔡潇,等.中上扬子海相页岩电阻率异常成因分析[J].断块油气田,2016,23(5):578-582.GAO Hequn,DING Anxu,CAI Xiao,et al.Genetic analysis of ab⁃ normal resistivity of Middle-Upper Yangtze marine shales[J].Fault-Block Oil and Gas Field,2016,23(5):578-582.
参考文献 14
杨小兵,张树东,张志刚,等.低阻页岩气储层的测井解释评价 [J].成都理工大学学报:自然科学版,2015,42(6):692-699.YANG Xiaobing,ZHANG Shudong,ZHANG Zhigang,et al.Log⁃ ging interpretation and evaluation of low resistivity shale gas res⁃ ervoirs[J].Journal of Chengdu University of Technology:Science & Technology Edition,2015,42(6):692-699.
参考文献 15
谢小国,罗兵,尹亮先,等.低阻页岩气储层影响因素分析[J].四川地质学报,2017,37(3):433-437.XIE Xiaoguo,LUO Bing,YIN Liangxian,et al.Influence factors of low resistivity shale gas reservoir[J].Acta Geologica Sichuan,2017,37(3):433-437.
参考文献 16
王赞军,王宏超,董娣,等.华蓥山断裂带的物探成果综述[J].四川地震,2018,168(3):6-12.WANG Zanjun,WANG Hongchao,DONG Di,et al.Review of geo⁃ physical results of Huayingshan fault zone[J].Earthquake Re⁃ search in Sichuan,2018,168(3):6-12.
参考文献 17
ZENG Lianbo,LIU Wenya,LI Jian,et al.Natural fractures and their influence on shale gas enrichment in Sichuan Basin,China [J].Journal of Natural Gas Science and Engineering,2016,30:1-9.
参考文献 18
页岩气地质与勘探开发实践丛书编委会.北美地区页岩气勘探开发新进展[M].北京:石油工业出版社,2009:164-180.The Editorial Board of A Collection of Shale Gas Geology and E & P Practices.Exploration and development pro-press of shale gas in North America[M].Beijing:Petroleum Industry Press,2009:164-180.
参考文献 19
梁霄,徐剑良,王滢,等.川南地区渐变型盆—山边界条件下龙马溪组页岩气(藏)富集主控因素:构造—沉积分异与差异性演化[J].地质科学,2021,56(1):60-81.LIANG Xiao,XU Jianliang,WANG Ying,et al.The shale gas en⁃ richment factors of Longmaxi Formation under gradient ba⁃ sin⁃mountain boundary in South Sichuan Basin:Tectono⁃deposi⁃ tional differentiation and discrepant evolution[J].Chinese Journal of Geology,2021,56(1):60-81.
目录contents

    摘要

    在长宁地区龙马溪组相继钻遇低电阻率井,这些井含气性出现不同程度的破坏。基于低电阻率页岩储层特征、地震、构造及断层期次、测井、岩心实验等,对长宁地区页岩储层低电阻率成因和主要影响因素进行了研究。结果表明:长宁地区低电阻率页岩储层产气特征为电阻率大于5 Ω·m,全烃含量大于2%,孔隙度大于4.2%,含气量大于2.0 m3 /t,含气饱和度大于60%。龙马溪组页岩储层低电阻率成因与断层有关,断层挤压破坏了储层含气性,表征为电阻率相对较低,断层下盘对电阻率的影响大于上盘,断层下盘页岩储层易出现低电阻率,断层上盘电阻率正常。龙马溪组页岩储层低电阻率成因与断层形成的期次有关,建武向斜所有低电阻率井均受加里东期形成的断层影响,下盘井部分天然气运移至上盘,地层水进入断层产生的裂缝中,水在近距离向构造低部位聚集,造成构造低部位的开发井呈低电阻特征,产量受损,而上盘天然气富集,高产井众多。天宫堂背斜、双龙-罗场向斜、建武向斜以西所有低电阻率井均受喜马拉雅中晚期形成的北东向的断层影响。长宁地区部分井存在低电阻率原因是断层附近的页岩储层含水饱和度增高引起电阻率的降低。

    Abstract

    Low resistivity wells were drilled successively in Longmaxi Formation of Changning area,and the gas-bearing properties of these wells were damaged to varying degrees. Based on the characteristics of low-resistivity shale reservoirs, seismic survey,structural and fault stages,logging,and core experiments,the research was performed on the causes and main influencing factors of low-resistivity shale gas reservoirs in Changning area. The results reveal that the daily gas pro- duction of low-resistivity shale reservoirs in Changning area show resistivity >5 Ω·m,total hydrocarbon display >2%,po- rosity >4.2%,gas content >2.0 m3 /t,and gas saturation >60%. The low resistivity wells in Longmaxi Formation shale reser- voirs of Changning area are mainly affected by faults. The compression by faults destroys the gas-bearing properties of res- ervoirs,which is characterized by relatively low resistivity,and the footwall exerts a greater influence on resistivity than the hanging wall;the shale reservoirs in the footwall are prone to low resistivity,while those in the hanging wall tend to be nor- mal. In addition,the low resistivity wells in the study area are mainly related to the faulting stages. All the low resistivity wells in Jianwu syncline are controlled by the faults during the Caledonian. The natural gas in the footwall wells partially migrates to the hanging wall,and formation water enters the fractures induced by faults. Water accumulates in the structural low in a short distance,resulting in the low resistivity wells with a lower output. However,the natural gas in the hanging wall is enriched,leading to many high-yield wells. The low resistivity wells in Tiangongtang anticline and Shuanglong-Luo-chang syncline as well as to the west of Jianwu syncline are controlled by NE-trending faults in the middle and late Himala- yan.Moreover,some low resistivity wells in Changning area are due to the decrease in resistivity caused by the higher water saturation of shale reservoirs near the fault.

  • 中国页岩气资源已逐步进入大规模开发阶段,四川盆地发育多套富有机质黑色页岩,其下古生界沉积环境好、分布稳定、厚度大、范围广,品质与北美具有可比性[1],具有较大的勘探开发潜力。其中龙马溪组页岩气在威远-长宁、昭通、涪陵礁石坝等地区形成了规模化产能[2-7]。四川盆地南部长宁地区龙马溪组页岩气资源十分丰富、地质条件良好, 2012年被确定为国家级页岩气示范区,长宁地区页岩气勘探开发历经了评层选区、先导试验、示范区建设、深化评价与规模上产阶段 4个阶段[8],实现了页岩气规模效益开发。目前,长宁地区在已普遍获得较高含气量的井区逐渐出现了含气量微弱甚至不含气的新完钻评价井,研究发现这些微弱气量的钻井在龙马溪组底部均存在低电阻率特征。电阻率间接反映了页岩储层的含气性。最早低电阻率页岩大规模出现在筇竹寺组,很多井的页岩层段出现超低电阻率(<2 Ω·m)特征。目前对页岩储层低电阻率成因的研究比较薄弱,中国还处于起步和探索阶段。蒋珊等认为有机质石墨化是造成筇竹寺组页岩超低电阻率的主要原因[9-12]。高和群等认为页岩层低电阻率的主要影响因素包括高黄铁矿含量和高黏土矿物含量、高页岩成熟度、高地层水矿化度、高页岩页理(层间裂缝)发育程度等,这几种影响因素大多同时存在并相互叠加[13-15]。笔者在前人的研究基础上,基于长宁地区低电阻率页岩特征,结合地震、构造及断层期次、测井、岩心实验等,对长宁地区页岩储层低电阻率成因和主要影响因素进行了分析和探讨。

  • 1 区域地质概况

  • 长宁地区处在不同构造带相互叠加、影响的区域,构造变形异常复杂。研究区构造存在两大构造带:一是北西西走向的构造带,以长宁背斜及其东部区域以及北西区域的天宫堂背斜为代表;二是北东走向的构造带,主要分布在长宁页岩气勘探区块的中部罗场向斜、双龙向斜,为华蓥山褶皱带西倾伏段的延伸,平面上呈线状分布,前后翼倾角较大。

  • 在长宁地区南部,向北西方向的挤压仍然存在,源自大娄山的北西向挤压造成山前多条逆冲断层的发育,断层由基底高角度向上往北西方向逆冲,在长宁背斜南侧的建武向斜北西、南东两侧形成了北东向背斜变形,北东向与北西向双侧挤压作用的综合结果,形成了现今短轴状的建武向斜。在建武向斜的北西前陆方向,滑脱断层依次出现逆冲或反冲过程,导致推覆褶皱带的出现,形成了楼东背斜(图1)。

  • 图1 长宁地区低电阻率评价井分布(构造)

  • Fig.1 Distribution of low-resistivity evaluation wells in Changning area(structure)

  • 龙马溪组是长宁地区页岩气勘探开发的主要目的层。龙马溪组划分为龙二段和龙一段共上下两段。在龙一段内部,自下而上可划分出龙一1亚段和龙一2亚段。在龙一1亚段内部,根据电性特征自下而上划分出龙一1 1、龙一1 2、龙一1 3、龙一1 4 4个小层(表1)。长宁地区商业页岩气井的主力产气层段为龙一1亚段。

  • 2 低电阻率页岩储层特征

  • 研究区低阻 4 井、低阻 2 井在龙马溪组底部相继钻遇页岩,低阻4井电阻率为10 Ω·m左右,低阻2 井自龙一1 3 开始电阻率低于 1 Ω·m,含气性受到极大破坏,低阻 2井封井,低阻 4井日产气量为 19×104 m3 /d。随后又相继钻了低阻 3、低阻 H11-5、低阻 H9-1等低电阻率井,其中低阻H11-5井和低阻H9-1井试油为干层。在研究区建武向斜开发井也存在部分水平段低电阻率的现象,日产气量受影响(均小于 25×104 m3 /d)。低电阻率井的出现严重阻碍了页岩气的勘探开发。笔者将研究区龙马溪组底部储层电阻率为 2~20 Ω·m的定义为低电阻率,底部储层电阻率低于 2 Ω·m的定义为超低电阻率,有机质石墨化是造成页岩储层超低电阻率的主要原因。本次研究主要针对长宁地区页岩储层低电阻率的成因进行分析。

  • 表1 长宁地区龙马溪组地层划分

  • Table1 Stratigraphic division of Longmaxi Formation in Changning area

  • 2.1 分布特征

  • 研究区页岩储层出现低电阻率的评价井主要分布在天宫堂背斜、双龙-罗场向斜、建武向斜以西 (图1,表2),建武向斜 31 口水平井呈局部水平段 (平均长度为 630 m)低电阻率的特征,日产气量平均为19×104 m3 /d。

  • 2.2 电性特征

  • 研究区龙二段电阻率正常,均大于 20 Ω·m,从龙一段开始,电阻率逐步降低,自龙一1 3 开始,电阻率呈现大幅度降低,均小于 20 Ω·m。其中低阻 2、低阻 3、低阻 9 井自龙一1 3 开始电阻率极低,均为 2 Ω·m 左右,甚至更低(表3)。电阻率极低的低阻 2 井测井电阻率曲线呈显著的“细脖子型”特征,龙一2 电阻率平均为12.82 Ω·m,龙一1 4 电阻率平均为2.59 Ω·m,龙一1 3 至龙一1 1 电阻率基本小于 0.3 Ω·m,呈箱状低阻,电阻率与总有机碳含量(TOC)呈负相关 (图2)。

  • 据数据统计,页岩储层龙1 3 —龙1 1 电阻率平均为 2 Ω·m 以下的井,均不产气,龙1 3 —龙1 1 电阻率平均为 5 Ω·m 以上的井,具产气能力(图3)。其中低阻 10 井电阻率高于 5 Ω·m,但孔隙度低,含水饱和度高,储层含气性差,导致产微气且产水。

  • 表2 长宁地区页岩储层低电阻率评价井龙1 3 —龙1 1 平均电阻率及日产气量统计

  • Table2 Average resistivity and daily gas production of Long1 3-Long1 1 Sublayers shale reservoirs in low resistivity evaluation wells in Changning area

  • 2.3 物性特征

  • 2.3.1 孔隙度和含气性

  • 由评价井平均孔隙度、含气量和含气饱和度 (表4,图4—图6)可知,电阻率与含气饱和度正相关,相关系数达 0.76,说明储层含气性影响电阻率。孔隙度低于 4.2%,含气量低于 2.0 m3 /t,含气饱和度低于 60% 的低电阻率井,含气性被破坏,均不具产气能力;孔隙度高于4.2%,含气量高于2.0 m3 /t,含气饱和度高于60%的低电阻率井,含气性受影响但未被破坏,具产气能力。

  • 表3 长宁地区龙马溪组页岩储层低电阻率评价井平均电阻率

  • Table3 Resistivity of Longmaxi Formation shale reservoirs in low resistivity wells in Changning area

  • 图2 低阻2井龙1 3 —龙1 1 电阻率与TOC关系

  • Fig.2 Relationship between resistivity and average TOC of cores of Long1 3 -Long1 1 Sublayers in low resistivity Well2

  • 图3 长宁地区龙1 3 —龙1 1 平均电阻率柱状图

  • Fig.3 Histogram of average resistivity of Long1 3 -Long1 1 Sublayers in Changning area

  • 2.3.2 录井全烃含量

  • 长宁地区不具产气能力的低电阻率井的全烃含量均低于2%,变化范围为0.19%~1.62%,平均为 0.78%。具产气能力的低电阻率井全烃含量高于 2%,变化范围为 2.36%~13.9%,平均为 6.58%。具产气能力的正常电阻率井全烃含量高于 2%,变化范围为2.11%~16.08%,平均为7.388%(图7)。

  • 表4 长宁地区评价井物性参数

  • Table4 Physical parameters of evaluation wells in Changning area

  • 图4 长宁地区龙1 3 —龙1 1 电阻率与岩心平均孔隙度柱状图

  • Fig.4 Histogram of resistivity and average porosity of cores from Long1 3 -Long1 1 Sublayers in Changning area

  • 图5 长宁地区龙1 3 —龙1 1 电阻率与岩心平均含气量柱状图

  • Fig.5 Histogram of resistivity and average gas content of cores from Long1 3-Long1 1 Sublayers in Changning area

  • 图6 长宁地区龙1 3 —龙1 1 电阻率与岩心平均含气饱和度散点图

  • Fig.6 Scatter plot of resistivity and average gas

  • 图7 长宁地区龙1 3 —龙1 1 平均全烃含量散点图

  • Fig.7 Scatter plot of average total hydrocarbon ofsaturation of cores from Long1 3 -Long1 1 Sublayers in Changning area Long1 3 -Long1 1 Sublayers in Changning area

  • 3 低电阻率成因分析

  • 3.1 与距断层距离有关

  • 研究区已钻水平井显示,水平段越靠近断层,电阻率有下降的趋势(图8),断层是引起电阻率降低的主要因素。常 9H16-4 井位于宁 39 号断层下盘,在宁 39 号断层消失处,断距较小,为 25 m,为正常电阻率井,水平段电阻率由65 Ω·m降低至31 Ω· m,平均为 51 Ω·m,越靠近断层,电阻率越低,相关系数为0.929 5。常H28-2井位于宁39号断层下盘,在宁 39 号断层中部,断距较大,为 110 m,水平段电阻率由 50 Ω·m 降低至 13 Ω·m,平均为 29 Ω·m,越靠近断层,电阻率越低,其中有350 m水平段电阻率低于 20 Ω·m,电阻率与井至断层距离呈明显正相关,相关系数为0.973 1。宁39号下盘水平井电阻率分布表明,越靠近断层,电阻率越低,断距影响电阻率基值和低电阻率波及范围,断距越大,电阻率基值越低,低电阻率波及范围越大。

  • 研究区断层下盘对电阻率的影响大于上盘,如罗场向斜与建武向斜之间,褶皱强烈,构造受断层控制,区内发育北东向断裂体系,多条断层断距大、延伸长。其中罗 7号断层最大断距为 510 m,宁 175 号断层最大断距为 200 m(图9)。罗 7 号、宁 175 号断层下盘受挤压应力集中,含气性破坏较严重,导致页岩储层低电阻率,下盘低阻 2 井岩心扫描电镜下有机孔不发育,孔隙度较低,为1.19%(图10)。罗 7号断层下盘低阻 3、低阻 4井岩心照片可见明显强应力作用下形成的擦痕及复杂网状缝等(图11),下盘低阻 3井距罗 7号断层断距 510 m处长度为 1 000 m,电阻率为 1.93 Ω·m,下盘低阻 H11-5 井距离宁 175 号断层断距 200 m 处长度为 800 m,电阻率为 1 Ω·m,试油均为干层;上盘受挤压有张力释放,受力相对较小,可能存在下盘天然气向上盘运移,电阻率相对更高。常 17 井位于宁 175 号、罗 7 号断层的上盘,电阻率为 22.63 Ω·m,为正常电阻率井,弱挤压作用,有利于原生孔隙保留,岩心扫描电镜下有机孔发育,岩心孔隙度为 4.2%(图12),测试日产气量为 11.12×104 m3 /d,自 2019 年 5 月投产以来,已累积产气量为6 165.21×104 m3,产气情况较好。

  • 由图1 和表4 可知,研究区所有低电阻率井多位于断层附近,由此认为页岩储层低电阻率原因与断层有关。大型断层强烈的破碎作用对页岩气保存条件具有明显的破坏作用,强烈的构造变形造成页岩气储层及顶板和底板裂缝发育,导致页岩气散失[16-19]。断层的挤压作用破坏储层含气性,导致电阻率相对较低。岩心扫描电镜显示,正常井常17井有机孔形态总体完整,未发生大规模压实、坍塌(图12),而在双龙-罗场低电阻率井低阻 2 井有机孔被断层挤压,出现孔隙被压实,发育大量扁平孔(图10),孔隙中气体散失、含水饱和度增高,导致低孔隙度,推测强构造运动对页岩气成藏有破坏作用,电阻率偏低。

  • 图8 低电阻率水平井的分布及电阻率与距断层距离关系

  • Fig.8 Relationship between resistivity and distance to faults

  • 图9 过罗7、宁175号断层地震剖面

  • Fig.9 Seismic profile of Luo7 and Ning175 faults

  • 3.2 与断层期次有关

  • 研究区五峰组沉积时期地层整体呈西南高、东北低的古地貌特征,后期经历加里东期、海西期、印支期、燕山期、喜马拉雅期等多次改造,五峰组-龙马溪组的断层非常发育,规模大小不等,断层走向也呈多组系展布。

  • 加里东期南北向挤压形成的近东西向断层影响页岩储层含气性但未造成破坏(图13)。研究区建武向斜所有低电阻率水平井均分布在加里东期形成的断层下盘,影响产气量,断层上盘页岩气富集,高产气井众多(图13,图14)。

  • 图10 低阻2井岩心扫描电镜下有机孔分布

  • Fig.10 SEM images of organic pores in low resistivity Well2

  • 图11 罗7号断层下盘低电阻率井岩心照片

  • Fig.11 Core photos of low resistivity wells in footwall of Luo7 fault

  • 图12 常17井岩心扫描电镜下有机孔分布

  • Fig.12 SEM images of organic pores in cores from Well Chang17

  • 图13 建武向斜断层活动期次

  • Fig.13 Faulting stages in Jianwu syncline

  • 图14 加里东期断层天然气运移模式

  • Fig.14 Natural gas migration model of Caledonian faults

  • 加里东期研究区建武向斜内断层下盘附近的页岩储层因受断层影响,部分天然气运移散失,地层水进入断层产生的裂缝中,水在近距离向构造低部位聚集,导致断层下盘附近页岩储层低电阻率,井产气量受损;断层上盘的页岩储层由于应力释放,在相对构造高部位形成大面积的构造裂缝带,不同级别的断层系统在空间上既可以构成复式输导通道,又可以形成大规模断缝储集体,断层下盘部分天然气沿着断层运移至上盘,有利于上盘天然气的富集,断层上盘附近实施井均获得高产气量。宁 56 号断层下盘附近低电阻率井测试日产气量平均为 20.2×104 m3 /d,上盘附近水平井测试日产气量为 33.6×104 m3 /d,通过低电阻率井段长度、电阻率、产能与相邻正常井对比分析,下盘低电阻率井电阻率小于 20 Ω·m 条件下每 100 m 水平段长度损失日产气量约为1.0×104 m3 /d,单井平均损失日产气量为 6.7×104 m3 /d,下盘损失的天然气运移至上盘,致使上盘附近水平井产气量高。研究区建武向斜所有低电阻率井均受加里东期形成的断层影响。

  • 喜马拉雅中晚期形成的北东向断层破坏页岩储层含气性,如双龙-罗场向斜的鹰 1、鹰 2、灯 1、灯 2、罗7等断层(图1),这些断层均发育在喜马拉雅中晚期,规模较大,基本都是一级断层。天宫堂背斜、双龙-罗场向斜、建武向斜以西所有低电阻率井均与喜马拉雅中晚期形成的北东向断层有关。

  • 低阻 10 井磷灰石裂变径迹测量和热演化史分析表明(图15),新生代早期距今 50~45 Ma 开始缓慢抬升,直至距今 30~25 Ma 以来逐渐发生中等速率抬升剥蚀,结合周边井断层分布情况认为宫 1 号断层可能在喜马拉雅早中期,尤其是距今 10 Ma 以来发生快速抬升剥蚀,总体导致地表抬升剥蚀量达 3 500~4 000 m。宫 1 号断层被鹰 1、鹰 2 号断层截断(图1),说明鹰1、鹰2号断层发育时期更晚,鹰1、鹰 2 号断层可能发生在喜马拉雅中晚期,破坏性更大。天宫堂背斜评价井距鹰2号断层距离与电阻率呈明显正比关系(图16),相关系数达 0.977 9,说明鹰2号断层影响天宫堂背斜页岩储层电阻率。因此天宫堂背斜、双龙-罗场向斜所有低电阻率井均受喜马拉雅中晚期形成的北东向的断层影响。

  • 图15 低阻10井热演化史分析(据文献[19]修改)

  • Fig.15 Thermal evolution history of low resistivity Well10 (Modified by Reference[19]

  • 图16 天宫堂背斜评价井距鹰2号断层距离与电阻率关系

  • Fig.16 Relationship between distance to Ying2 fault and resistivity of evaluation well in Tiangongtang anticline

  • 3.3 与断层附近含水饱和度增高有关

  • 对电阻率影响较大的还有一个因素是存在于页岩气储层中的地层水。建武向斜低电阻率井均分布在断层附近微裂缝发育处(图17)。断层附近的井钻遇的微裂缝较发育,页岩储层储存较多水分,增强导电能力,降低电阻率。从见气返排率和气量最高返排率(表5)可知,建武向斜低电阻率水平井返排率明显高于正常电阻率水平井。天宫堂背斜低阻 10井靠近宫 1号断层,岩心含水饱和度为 61.6%,返排率达103.11%,证实产水(折算日产水量为12.7 m3 /d)。由图6可知,储层含气饱和度与电阻率呈正比,含气饱和度越高,电阻率越高,低电阻率不产气井的含水饱和度高,证明了研究区部分井存在低电阻率原因是因为靠近断层附近的页岩储层含水饱和度增高引起电阻率降低。

  • 图17 建武向斜蚂蚁体裂缝预测

  • Fig.17 Ant-tracking based prediction of fractures in Jianwu syncline

  • 表5 建武向斜水平井见气返排率和气量最高返排率

  • Table5 Gas breakthrough flowback rate and maximum gas flowback rate of horizontal wells in Jianwu syncline

  • 4 结论

  • 长宁地区低电阻率评价井电阻率为 0.20~15.92 Ω•m,龙二段电阻率正常,均大于 20 Ω·m,从龙一段开始,电阻率逐步降低,自龙一1 3 开始,电阻率呈现大幅度降低,均小于20 Ω·m。测井电阻率曲线呈显著的“细脖子型”特征,电阻率与总有机碳含量呈负相关。研究区低电阻率页岩储层的产气能力特征为,电阻率相对较高(>5 Ω·m),全烃含量正常(>2%),孔隙度较高(>4.2%),含气量较高(>2.0 m3 /t),含气饱和度高(>60%)。龙马溪组页岩储层低电阻率成因与断层有关,断层的挤压破坏储层含气性,导致低电阻率,断层下盘对电阻率的影响大于上盘,断层下盘页岩储层易出现低电阻率,断层上盘电阻率正常。另外与断层期次有关,建武向斜低电阻率页岩储层受加里东期形成的断层影响,下盘储层部分天然气运移散失,地层水进入断层产生的裂缝中,水在近距离向构造低部位聚集,导致断层下盘附近页岩储层低电阻率,实施井产气量受损,而上盘储层天然气富集,实施井均获得高产气量。下盘低电阻率井电阻率小于 20 Ω·m 水平井段每 100 m 长度损失日产气量约为 1.0×104 m3 /d,单井平均损失日产气量为6.7×104 m3 /d,下盘损失的天然气运移至上盘,导致上盘附近水平井产气量高。天宫堂背斜、双龙-罗场向斜、建武向斜以西所有低电阻率井均受喜马拉雅中晚期形成的北东向断层影响。研究区部分井存在低电阻率原因是因为靠近断层附近的页岩储层含水饱和度增高引起电阻率降低。

  • 参考文献

    • [1] 张奥博,汤达祯,陶树,等.中美典型含油气页岩地质特征及开发现状[J].油气地质与采收率,2019,26(1):37-45.ZHANG Aobo,TANG Dazhen,TAO Shu,et al.Analysis of geologi⁃ cal background and development situation of typical oil/gas-bear⁃ ing shales in China and America[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(1):37-45.

    • [2] 钟城,秦启荣,胡东风,等.川东南丁山地区五峰组—龙马溪组页岩气藏“六性”特征[J].油气地质与采收率,2019,26(2):14-23,31.ZHONG Cheng,QIN Qirong,HU Dongfeng,et al.Experimental study on“six properties”of shale gas reservoirs in the Wufeng-Longmaxi Formation in Dingshan area,southeastern Sichuan Ba⁃ sin[J].Petroleum Geology and Recovery Efficiency,2019,26(2):14-23,31.

    • [3] 何顺,秦启荣,范存辉,等.川东南丁山地区页岩气保存条件分析[J].油气地质与采收率,2019,26(2):24-31.HE Shun,QIN Qirong,FAN Cunhui,et al.Shale gas preservation conditions in Dingshan area,Southeastern Sichuan[J].Petroleum Geology and Recovery Efficiency,2019,26(2):24-31.

    • [4] 马新华,谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发,2018,45(1):161-169.MA Xinhua,XIE Jun.The progress and prospects of shale gas ex⁃ ploration and exploitation in southern Sichuan Basin,NW China [J].Petroleum Exploration and Development,2018,45(1):161-169.

    • [5] 王鹏万,邹辰,李娴静,等.昭通示范区页岩气富集高产的地质主控因素[J].石油学报,2018,39(7):744-753.WANG Pengwan,ZOU Chen,LI Xianjing,et al.Main geological controlling factors of shale gas enrichment and high yield in Zhao⁃ tong demonstration area[J].Acta Petrolei Sinica,2018,39(7):744-753.

    • [6] 金之钧,白振瑞,高波,等.中国迎来页岩油气革命了吗?[J].石油与天然气地质,2019,40(3):451-458.JIN Zhijun,BAI Zhenrui,GAO Bo,et al.Has China ushered in the shale oil and gas revolution?[J].Oil & Gas Geology,2019,40(3):451-458.

    • [7] 梁兴,徐政语,张朝,等.昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J].石油勘探与开发,2020,47(1):11-28.LIANG Xing,XU Zhengyu,ZHANG Zhao,et al.Breakthrough of shallow shale gas exploration in Taiyang anticline area and its sig⁃ nificance for resource development in Zhaotong,Yunnan prov⁃ ince,China[J].Petroleum Exploration and Development,2020,47(1):11-28.

    • [8] 谢军.长宁-威远国家级页岩气示范区建设实践与成效[J].天然气工业,2018,38(2):1-7.XIE Jun.Practices and achievements of the Changning-Weiyuan shale gas national demonstration project construction[J].Natural Gas Indasty,2018,38(2):1-7.

    • [9] 蒋珊,王玉满,王书彦,等.四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J].天然气工业,2018,38(10):19-27.JIANG Shan,WANG Yuman,WANG Shuyan,et al.Distribution prediction of graphitized organic matter areas in the Lower Cam⁃ brian Qiongzhusi shale in the Central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J].Natural Gas Industry,2018,38(10):19-27.

    • [10] 王玉满,董大忠,程相志,等.海相页岩有机质碳化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例[J].天然气工业,2014,34(8):1-7.WANG Yuman,DONG Dazhong,CHENG Xiangzhi,et al.Electric property evidences of the carbonification of organic matters in ma⁃ rine shales and its geologic significance:A case of the Lower Cam⁃ brian Qiongzhusi Shale in southern Sichuan Basin[J].Natural Gas Industry,2014,34(8):1-7.

    • [11] 董大忠,王玉满,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.DONG Dazhong,WANG Yuman,LI Xinjing,et al.Breakthrough and prospect of shale gas exploration and development in China [J].Natural Gas Industry,2016,36(1):19-32.

    • [12] 王淑芳,张子亚,董大忠,等.四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J].天然气地球科学,2016,27(9):1 619-1 628.WANG Shufang,ZHANG Ziya,DONG Dazhong,et al.Microscop⁃ ic pore structure and reasons making reservoir property weaker of Lower Cambrian Qiongzhusi shale,Sichuan Basin,China[J].Nat⁃ ural Gas Geoscience,2016,27(9):1 619-1 628.

    • [13] 高和群,丁安徐,蔡潇,等.中上扬子海相页岩电阻率异常成因分析[J].断块油气田,2016,23(5):578-582.GAO Hequn,DING Anxu,CAI Xiao,et al.Genetic analysis of ab⁃ normal resistivity of Middle-Upper Yangtze marine shales[J].Fault-Block Oil and Gas Field,2016,23(5):578-582.

    • [14] 杨小兵,张树东,张志刚,等.低阻页岩气储层的测井解释评价 [J].成都理工大学学报:自然科学版,2015,42(6):692-699.YANG Xiaobing,ZHANG Shudong,ZHANG Zhigang,et al.Log⁃ ging interpretation and evaluation of low resistivity shale gas res⁃ ervoirs[J].Journal of Chengdu University of Technology:Science & Technology Edition,2015,42(6):692-699.

    • [15] 谢小国,罗兵,尹亮先,等.低阻页岩气储层影响因素分析[J].四川地质学报,2017,37(3):433-437.XIE Xiaoguo,LUO Bing,YIN Liangxian,et al.Influence factors of low resistivity shale gas reservoir[J].Acta Geologica Sichuan,2017,37(3):433-437.

    • [16] 王赞军,王宏超,董娣,等.华蓥山断裂带的物探成果综述[J].四川地震,2018,168(3):6-12.WANG Zanjun,WANG Hongchao,DONG Di,et al.Review of geo⁃ physical results of Huayingshan fault zone[J].Earthquake Re⁃ search in Sichuan,2018,168(3):6-12.

    • [17] ZENG Lianbo,LIU Wenya,LI Jian,et al.Natural fractures and their influence on shale gas enrichment in Sichuan Basin,China [J].Journal of Natural Gas Science and Engineering,2016,30:1-9.

    • [18] 页岩气地质与勘探开发实践丛书编委会.北美地区页岩气勘探开发新进展[M].北京:石油工业出版社,2009:164-180.The Editorial Board of A Collection of Shale Gas Geology and E & P Practices.Exploration and development pro-press of shale gas in North America[M].Beijing:Petroleum Industry Press,2009:164-180.

    • [19] 梁霄,徐剑良,王滢,等.川南地区渐变型盆—山边界条件下龙马溪组页岩气(藏)富集主控因素:构造—沉积分异与差异性演化[J].地质科学,2021,56(1):60-81.LIANG Xiao,XU Jianliang,WANG Ying,et al.The shale gas en⁃ richment factors of Longmaxi Formation under gradient ba⁃ sin⁃mountain boundary in South Sichuan Basin:Tectono⁃deposi⁃ tional differentiation and discrepant evolution[J].Chinese Journal of Geology,2021,56(1):60-81.

  • 参考文献

    • [1] 张奥博,汤达祯,陶树,等.中美典型含油气页岩地质特征及开发现状[J].油气地质与采收率,2019,26(1):37-45.ZHANG Aobo,TANG Dazhen,TAO Shu,et al.Analysis of geologi⁃ cal background and development situation of typical oil/gas-bear⁃ ing shales in China and America[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(1):37-45.

    • [2] 钟城,秦启荣,胡东风,等.川东南丁山地区五峰组—龙马溪组页岩气藏“六性”特征[J].油气地质与采收率,2019,26(2):14-23,31.ZHONG Cheng,QIN Qirong,HU Dongfeng,et al.Experimental study on“six properties”of shale gas reservoirs in the Wufeng-Longmaxi Formation in Dingshan area,southeastern Sichuan Ba⁃ sin[J].Petroleum Geology and Recovery Efficiency,2019,26(2):14-23,31.

    • [3] 何顺,秦启荣,范存辉,等.川东南丁山地区页岩气保存条件分析[J].油气地质与采收率,2019,26(2):24-31.HE Shun,QIN Qirong,FAN Cunhui,et al.Shale gas preservation conditions in Dingshan area,Southeastern Sichuan[J].Petroleum Geology and Recovery Efficiency,2019,26(2):24-31.

    • [4] 马新华,谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发,2018,45(1):161-169.MA Xinhua,XIE Jun.The progress and prospects of shale gas ex⁃ ploration and exploitation in southern Sichuan Basin,NW China [J].Petroleum Exploration and Development,2018,45(1):161-169.

    • [5] 王鹏万,邹辰,李娴静,等.昭通示范区页岩气富集高产的地质主控因素[J].石油学报,2018,39(7):744-753.WANG Pengwan,ZOU Chen,LI Xianjing,et al.Main geological controlling factors of shale gas enrichment and high yield in Zhao⁃ tong demonstration area[J].Acta Petrolei Sinica,2018,39(7):744-753.

    • [6] 金之钧,白振瑞,高波,等.中国迎来页岩油气革命了吗?[J].石油与天然气地质,2019,40(3):451-458.JIN Zhijun,BAI Zhenrui,GAO Bo,et al.Has China ushered in the shale oil and gas revolution?[J].Oil & Gas Geology,2019,40(3):451-458.

    • [7] 梁兴,徐政语,张朝,等.昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J].石油勘探与开发,2020,47(1):11-28.LIANG Xing,XU Zhengyu,ZHANG Zhao,et al.Breakthrough of shallow shale gas exploration in Taiyang anticline area and its sig⁃ nificance for resource development in Zhaotong,Yunnan prov⁃ ince,China[J].Petroleum Exploration and Development,2020,47(1):11-28.

    • [8] 谢军.长宁-威远国家级页岩气示范区建设实践与成效[J].天然气工业,2018,38(2):1-7.XIE Jun.Practices and achievements of the Changning-Weiyuan shale gas national demonstration project construction[J].Natural Gas Indasty,2018,38(2):1-7.

    • [9] 蒋珊,王玉满,王书彦,等.四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J].天然气工业,2018,38(10):19-27.JIANG Shan,WANG Yuman,WANG Shuyan,et al.Distribution prediction of graphitized organic matter areas in the Lower Cam⁃ brian Qiongzhusi shale in the Central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J].Natural Gas Industry,2018,38(10):19-27.

    • [10] 王玉满,董大忠,程相志,等.海相页岩有机质碳化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例[J].天然气工业,2014,34(8):1-7.WANG Yuman,DONG Dazhong,CHENG Xiangzhi,et al.Electric property evidences of the carbonification of organic matters in ma⁃ rine shales and its geologic significance:A case of the Lower Cam⁃ brian Qiongzhusi Shale in southern Sichuan Basin[J].Natural Gas Industry,2014,34(8):1-7.

    • [11] 董大忠,王玉满,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.DONG Dazhong,WANG Yuman,LI Xinjing,et al.Breakthrough and prospect of shale gas exploration and development in China [J].Natural Gas Industry,2016,36(1):19-32.

    • [12] 王淑芳,张子亚,董大忠,等.四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J].天然气地球科学,2016,27(9):1 619-1 628.WANG Shufang,ZHANG Ziya,DONG Dazhong,et al.Microscop⁃ ic pore structure and reasons making reservoir property weaker of Lower Cambrian Qiongzhusi shale,Sichuan Basin,China[J].Nat⁃ ural Gas Geoscience,2016,27(9):1 619-1 628.

    • [13] 高和群,丁安徐,蔡潇,等.中上扬子海相页岩电阻率异常成因分析[J].断块油气田,2016,23(5):578-582.GAO Hequn,DING Anxu,CAI Xiao,et al.Genetic analysis of ab⁃ normal resistivity of Middle-Upper Yangtze marine shales[J].Fault-Block Oil and Gas Field,2016,23(5):578-582.

    • [14] 杨小兵,张树东,张志刚,等.低阻页岩气储层的测井解释评价 [J].成都理工大学学报:自然科学版,2015,42(6):692-699.YANG Xiaobing,ZHANG Shudong,ZHANG Zhigang,et al.Log⁃ ging interpretation and evaluation of low resistivity shale gas res⁃ ervoirs[J].Journal of Chengdu University of Technology:Science & Technology Edition,2015,42(6):692-699.

    • [15] 谢小国,罗兵,尹亮先,等.低阻页岩气储层影响因素分析[J].四川地质学报,2017,37(3):433-437.XIE Xiaoguo,LUO Bing,YIN Liangxian,et al.Influence factors of low resistivity shale gas reservoir[J].Acta Geologica Sichuan,2017,37(3):433-437.

    • [16] 王赞军,王宏超,董娣,等.华蓥山断裂带的物探成果综述[J].四川地震,2018,168(3):6-12.WANG Zanjun,WANG Hongchao,DONG Di,et al.Review of geo⁃ physical results of Huayingshan fault zone[J].Earthquake Re⁃ search in Sichuan,2018,168(3):6-12.

    • [17] ZENG Lianbo,LIU Wenya,LI Jian,et al.Natural fractures and their influence on shale gas enrichment in Sichuan Basin,China [J].Journal of Natural Gas Science and Engineering,2016,30:1-9.

    • [18] 页岩气地质与勘探开发实践丛书编委会.北美地区页岩气勘探开发新进展[M].北京:石油工业出版社,2009:164-180.The Editorial Board of A Collection of Shale Gas Geology and E & P Practices.Exploration and development pro-press of shale gas in North America[M].Beijing:Petroleum Industry Press,2009:164-180.

    • [19] 梁霄,徐剑良,王滢,等.川南地区渐变型盆—山边界条件下龙马溪组页岩气(藏)富集主控因素:构造—沉积分异与差异性演化[J].地质科学,2021,56(1):60-81.LIANG Xiao,XU Jianliang,WANG Ying,et al.The shale gas en⁃ richment factors of Longmaxi Formation under gradient ba⁃ sin⁃mountain boundary in South Sichuan Basin:Tectono⁃deposi⁃ tional differentiation and discrepant evolution[J].Chinese Journal of Geology,2021,56(1):60-81.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告