en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

崔传智(1970—),男,山东青州人,教授,博士,从事油气渗流理论、油气田开发技术研究工作。E-mail:ccz2008@126.com。

中图分类号:TE341

文献标识码:A

文章编号:1009-9603(2022)03-0085-07

DOI:10.13673/j.cnki.cn37-1359/te.202107010

参考文献 1
周义博,刘卫东,孙灵辉,等.致密油藏水驱可动用性研究[J].断块油气田,2019,26(2):244-247.ZHOU Yibo,LIU Weidong,SUN Linghui,et al.Research on avail⁃ ability of water flooding in tight oil reservoir[J].Fault-Block Oil and Gas Field,2019,26(2):244-247.
参考文献 2
陈德坡,方惠京,王军,等.坨11井区南沙二段8砂组河口坝砂体岩相组合识别及对储层的控制作用[J].油气地质与采收率,2019,26(2):51-59.CHEN Depo,FANG Huijing,WANG Jun,et al.Lithofacies combi⁃ nation recognition and its impact on the reservoir in No.8 sand group of the second member of Shahejie Formation in the south of Tuo11 area[J].Petroleum Geology and Recovery Efficiency,2019,26(2):51-59.
参考文献 3
刘博,张荣达,张伊琳,等.双河油田高耗水条带影响因素及治理对策可行性研究[J].油气藏评价与开发,2020,10(6):96-102.LIU Bo,ZHANG Rongda,ZHANG Yilin,et al.Influencing factors and countermeasures feasibility of high water consumption strip in Shuanghe Oilfield[J].Reservoir Evaluation and Development,2020,10(6):96-102.
参考文献 4
闫坤,韩培慧,曹瑞波,等.聚驱后优势渗流通道流线数值模拟识别方法的建立及应用[J].油气藏评价与开发,2019,9(2):33-37.YAN Kun,HAN Peihui,CAO Ruibo,et al.Establishment and ap⁃ plication of numerical simulation identification method for domi⁃ nant seepage channels after polymer flooding[J].Reservoir Evalu⁃ ation and Development,2019,9(2):33-37.
参考文献 5
刘志宏,朱奇,冯其红,等.高耗水层带的级别划分方法[J].特种油气藏,2018,25(6):114-119.LIU Zhihong,ZHU Qi,FENG Qihong,et al.Level division for high water consumption zone[J].Special Oil & Gas Reservoirs,2018,25(6):114-119.
参考文献 6
YU Xiaocong,WANG Yushu,YANG Yongfei,et al.Effect of parti⁃ cle content on relative permeabilities in water flooding[J].Journal of Petroleum Science and Engineering,2021,205:108856.
参考文献 7
WANG Chunrui.Study on water injection effect of new reservoir for petroleum energy development[J].IOP Conference Series:Earth and Environmental Science,2021,770(1):012040.
参考文献 8
朱丽红,王海涛,魏丽影,等.基于容量阻力模型的低效无效循环场定量识别[J].大庆石油地质与开发,2019,38(5):239-245.ZHU Lihong,WANG Haitao,WEI Liying,et al.Quantitative iden⁃ tification of the low and no-efficiency cycle fields based on CRM [J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):239-245.
参考文献 9
李振泉,郭长春,王军,等.特高含水期油藏剩余油分布新认识——以孤岛油田中一区Ng3砂组为例[J].油气地质与采收率,2019,26(6):19-27.LI Zhenquan,GUO Changchun,WANG Jun,et al.New under⁃ standing of remaining oil distribution in oil reservoirs at extrahigh water-cut stage:A case of Upper Ng3 sand group in Zhongyi area,Gudao Oilfield[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(6):19-27.
参考文献 10
康永梅,李明,王联国,等.鄂尔多斯盆地演武油田S1区块延8油层组微观水驱渗流特征[J].油气地质与采收率,2019,26(5):48-57.KANG Yongmei,LI Ming,WANG Lianguo,et al.Microscopic wa⁃ terflooding percolation characteristics of Yan8 Formation in Block S1,Yanwu Oilfield,Ordos Basin[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(5):48-57.
参考文献 11
刘晓彤,轩玲玲,朱春艳,等.中高渗透稠油油藏大孔道动态评价[J].现代地质,2021,35(2):388-395.LIU Xiaotong,XUAN Lingling,ZHU Chunyan,et al.Dynamic evaluation of high-capacity channel in heavy oil reservoirs with medium-high permeability[J].Geoscience,2021,35(2):388-395.
参考文献 12
罗超,曾凤凰,尹楠鑫,等.高含水油田大孔道特征及控制机理分析——以陇东地区延9油组为例[J].西北大学学报:自然科学版,2019,49(3):428-436.LUO Chao,ZENG Fenghuang,YIN Nanxin,et al.Characteristics and controlling mechanisms of high capacity channels in high wa⁃ ter cut oilfield:A case of Yan9 formation in Longdong district[J].Journal of Northwest University:Natural Science Edition,2019,49(3):428-436.
参考文献 13
WANG Liping.Study on reservoir heterogeneity in block S[J].IOP Conference Series:Earth and Environmental Science,2021,770(1):012020.
参考文献 14
吴忠维,崔传智,杨勇,等.高含水期大孔道渗流特征及定量描述方法[J].石油与天然气地质,2018,39(4):839-844.WU Zhongwei,CUI Chuanzhi,YANG Yong,et al.Seepage charac⁃ teristics and quantitative description of large pore pathways at high water cut stage[J].Oil & Gas Geology,2018,39(4):839-844.
参考文献 15
HENG Yuanqiu,ZE Yuli.The study of high capacity channels gen⁃ esis and formation conditions in Block M Liaohe Oilfield[J].Ap⁃ plied Mechanics and Materials,2015,3830(733):23-26.
参考文献 16
崔传智,杨勇,曹刚,等.疏松砂岩油藏大孔道中高速非达西渗流对产能的影响分析[J].石油天然气学报,2009,31(3):122-125,129.CUI Chuanzhi,YANG Yong,CAO Gang,et al.Effect of high veloc⁃ ity non-Darcy flow on productivity in wormhole of unconsolidated sandstone reservoirs[J].Journal of Oil and Gas Technology,2009,31(3):122-125,129.
参考文献 17
濮孟蕾.高含水后期“低效、无效循环”形成条件的数值模拟分析[J].化工管理,2020,(9):217-218.PU Menglei.Numerical simulation analysis of formation condi⁃ tions of“inefficient and ineffective cycles”in late stage of high water cut[J].Chemical Enterprise Management,2020,(9):217-218.
参考文献 18
王东琪,殷代印.水驱油藏相对渗透率曲线经验公式研究[J].岩性油气藏,2017,29(3):159-164.WANG Dongqi,YIN Daiyin.Empirical formulas of relative perme⁃ ability curve of water drive reservoirs[J].Lithologic Reservoirs,2017,29(3):159-164.
参考文献 19
崔传智,耿正玲,王延忠,等.水驱油藏高含水期渗透率的动态分布计算模型及应用[J].中国石油大学学报:自然科学版,2012,36(4):118-122.CUI Chuanzhi,GENG Zhengling,WANG Yanzhong,et al.Calcu⁃ lation model of dynamic permeability distribution and its applica⁃ tion to water drive reservoir at high water cut stage[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(4):118-122.
目录contents

    摘要

    水驱油藏易发育不同程度的耗水条带,从而降低油藏开发效果,因此研究耗水条带表征、定量分级及其分布特征对进一步挖潜水驱油藏具有重要意义。为此,建立考虑储层渗透率、原油黏度及含水饱和度的耗水条带定量表征指标,再从技术(渗流能力)、经济等角度,建立耗水条带分级方法,并将其运用于某油田实际区块。研究发现,随着原油黏度降低,高耗水条带和极端耗水条带形成时对应的拟耗水率变小,发育加快;随着储层渗透率的降低,经济高耗水条带消失且出现非经济低耗水条带。胜利油区孤岛油田 A区 Ng3-4单元目前的极端耗水条带主要分布于水井附近,发育面积较小;非经济高耗水条带包裹极端耗水条带,发育面积其次;经济高耗水条带包裹非经济高耗水条带,且发育面积较大;经济低耗水条带分布于驱替效率较低区域,发育面积较大。

    Abstract

    Waterflooding oil reservoirs are prone to develop different degrees of water-consumption zones,which thereby re- duces the effect of reservoir development. Therefore,it is of great significance to study the characterization,quantitative grading,and distribution characteristics of water-consumption zones for further potential exploration of waterflooding oil reservoirs. This paper first established the quantitative characterization indexes of water-consumption zones considering reservoir permeability,crude oil viscosity and water saturation. Then,a grading method was developed for water-consump- tion zones from the perspectives of technology(seepage capacity)and economy,and it was applied to actual blocks in an oil- field. It is found that as the viscosity of crude oil decreases,the high water-consumption zones and extreme water-consump- tion zones develops rapidly and the corresponding pseudo-water-consumption rate drops when they are formed;as the per- meability declines,the economic high water-consumption zones disappear,and non-economic low water-consumption zones appear. The current extreme water-consumption zones in Unit Ng3-4,Area A of Shengli Oilfield are mainly distribut- ed near water wells,with a small development area;non-economic high water-consumption zones surround the extreme wa-ter-consumption zones,with a medium development area;economic high water-consumption zones surround non-economic high water-consumption zones,with a large development area;economic low-water consumption zones are distributed in ar- eas with low displacement efficiency and have a large development area.

  • 水驱油藏储层非均质性导致驱替不均衡[1],从而形成高耗水条带[2-4]。高耗水条带是指经过长期注水开发,由于渗透率和含水饱和度大幅提高、油水流动能力差异不断增大而形成的吸水能力明显高于临近区域、注入水循环效率低下的区域[5-10]。中国关于高耗水条带的研究可追溯至 20世纪 80年代,包括高渗透通道、大孔道等研究。刘晓彤等在综合考虑油水井多种生产动态调整措施对大孔道评价影响的基础上,运用模糊综合评判方法建立了一套大孔道动态评价方法[11]。罗超等研究了鄂尔多斯盆地陇东地区延9油组注水开发前后储层的特征,分析了注水开发后大孔道发育情况,从层内、平面、微观和层间非均质性等4个方面,厘清了储层非均质性对大孔道发育的控制机理[12]。WANG 以岩心分析测试和测井解释资料为基础,研究了储层层间非均质性和平面非均质性发育特征,明晰了耗水条带形成的物性基础[13]。吴忠维等在分析大孔道内高速非达西渗流特征基础上,依据高速非达西渗流识别标准,建立了大孔道识别标准,并在考虑注水开发过程中渗透率随冲刷孔隙体积倍数变化的基础上,建立了用于定量描述大孔道的油藏数值模拟方法[14]。HENG等依据生产过程中不同时期取心井资料和生产井动、静态资料等,分析了高渗透通道形成的原因和条件,得出岩体松散、石油黏度高、注水强度高是高渗透通道形成的主要原因,并指出高渗透通道形成的关键条件是储层非均质性[15]。崔传智等分析矿场示踪剂资料,认为大孔道中流体流动为高速非达西渗流,并在此基础上建立存在大孔道的储层渗流模型,研究了大孔道对产能的影响[16]。濮孟蕾运用数值模拟方法探索了高含水期油田发生的低效无效循环现象的原因[17]。以上研究主要包括耗水条带、大孔道、高渗透通道等的表征方法、形成机理、形成时机以及基于统计的发育程度评价等方面的研究,但在耗水条带的表征指标方面存在参数难以获得和矿场难以应用的问题。

  • 为此,笔者从耗水条带的定义出发,提出了基于油藏数值模拟结果易获得的储层渗透率、原油黏度、含水饱和度的耗水条带表征指标,从技术(渗流能力)、经济等角度出发,建立了耗水条带发育程度分级方法,后将其运用于某油田实际区块,认识了该区块耗水条带分级及分布特征,该研究为水驱油藏进一步制定开发对策提供有力支撑。

  • 1 耗水条带表征指标

  • 从高耗水条带定义可知:高耗水条带的核心是油水流动能力差异变大,外在表现为吸水能力明显高于临近区域、注入水循环效率低下的条带。为了定量研究耗水条带的发育程度,提出拟耗水率的概念即生产单位原油所需的注入水量。

  • 根据拟耗水率的定义,在注采平衡的条件下,结合达西公式可得:

  • H=QiQo=Qo+QwQo=1+QwQo=1+KrwμoKroμw
    (1)
  • 根据(1)式可知,拟耗水率与油水两相渗透率及油水黏度有关,结合 Willhite 相对渗透率曲线表征公式[18]

  • Kro=1-Sor-Sw1-Swc-Sorm
    (2)
  • Krw=KrwiSorSw-Swc1-Swc-Sorn
    (3)
  • 将(2)式和(3)式代入(1)式,可得:

  • H=1+QwQo=1+KrwiSorμoμw×Sw-Swc1-Sw-Sor n×1-Sor -Sw1-Swc-Sor-m
    (4)
  • 根据崔传智等的研究成果[19],对于胜利油区河流相沉积的中高渗透油藏,(4)式中的相应系数(束缚水饱和度和残余油饱和度、水相相对渗透率端点值、水相指数及油相指数)与储层渗透率的关系分别为:

  • Swc=0.3236-0.0327lnK
    (5)
  • Sor =-0.0131lnK+0.1946
    (6)
  • n=-0.0056K+0.19146
    (7)
  • m=-0.2479lnK+2.8019
    (8)
  • Krwi=-0.038lnK+0.2594
    (9)
  • 从(4)式至(9)式可知,拟耗水率与储层渗透率、油水黏度、含水饱和度有关,其反映了油水流动能力差异,且参数易于获取,极易运用于实际矿场。

  • 2 耗水条带分级方法

  • 2.1 技术角度的耗水条带发育程度分级方法

  • 取某油田实际区块,其参数主要包括:渗透率为 548 mD,原油黏度为 36.49 mPa · s,水黏度为 0.576 3 mPa·s,运用(4)式,可得拟耗水率与含水饱和度的关系(图1)。从图1a 中可知,当含水饱和度大于 0.72 时,拟耗水率呈指数增加,水相渗流能力急剧变强、油相渗流能力急剧变弱,认为此时形成了极端耗水条带(拟耗水率大于 30 568 m³/m³)。从拟耗水率与含水饱和度半对数坐标上的关系(图1b)可知,拟耗水率随含水饱和度的增加先呈线性增加,再偏离直线上翘,且上翘程度随着含水饱和度的增加而增加;当拟耗水率偏离直线段时(含水饱和度大于 0.58),油水渗流能力发生相对变化,认为此时形成高耗水条带(拟耗水率大于150 m³/m³)。

  • 图1 拟耗水率与含水饱和度的关系

  • Fig.1 Relationship between pseudo-water-consumption rate and water saturation

  • 为进一步揭示高耗水条带形成时机的内在原因,运用(2)式与(3)式可得水油相相对渗透率比与含水饱和度在半对数坐标上的关系(图2)。从图2 可知,水油相相对渗透率比随含水饱和度的增加,先呈线性降低,再偏离直线向下翘,且向下翘趋势越来越大;偏离直线段时的含水饱和度为0.58,即水油相相对渗透率比拐点所对应的拟耗水率偏离直线段时刻,也就是表示油水流动能力变化导致拟耗水率偏离直线。

  • 图2 水油相相对渗透率比与含水饱和度的关系

  • Fig.2 Relationship between relative permeability ratio of water-oil phase and water saturation

  • 从以上分析可知,基于研究区块油藏的物性参数,在技术角度(渗流能力),拟耗水率小于 150 m³/ m³时为低耗水条带,拟耗水率为 150~30 568 m³/m³ 时为高耗水条带,拟耗水率大于30 568 m³/m³时为极端耗水条带。由于拟耗水率与储层渗透率、油水黏度有关,因此高耗水条带、极端耗水条带的具体界限随储层渗透率、油水黏度的变化而变化。

  • 2.2 经济角度的耗水条带发育程度分级方法

  • 基于拟耗水率定义(产出单位原油所需的注入水量),在经济平衡条件下,产出单位原油时,收益 (综合收益率与油价乘积)等于支出(注入水量与水费用乘积,其中水费用包括工业用水价格与水处理费用),因此可得等式:

  • IPw+Pi+Ps=αPo
    (10)
  • 根据油田生产成本的各项经济指标,当税率为 0.95时,工业用水价格为4元/t,水处理成本为40元/ t时,结合(10)式可得不同油价时对应的经济极限耗水率(图3)。从图3可知,随着原油价格增加,经济极限耗水率呈线性增加;当原油价格为2 500元/t时所对应的经济极限耗水率为54 m3 /m3。从以上分析可知,从经济角度可将耗水条带分为经济与非经济 2级,其中经济极限耗水率小于54 m3 /m3 为经济耗水条带,大于54 m3 /m3 为非经济耗水条带。

  • 2.3 耗水条带发育程度分级影响因素分析

  • 运用表1中的参数及建立的耗水条带发育程度综合分级方法,开展其影响因素分析。基于表1 中的类型Ⅰ数据,运用(2)式和(3)式可计算得到储层的相对渗透率,再将该相对渗透率代入拟耗水率计算(1)式中,可得到拟耗水率随含水饱和度的变化关系,从而获得技术角度的耗水条带发育程度分级,结合经济角度的耗水条带发育程度分级,最终可获得耗水条带发育程度综合分级结果(图4)。从图4 可知,类型Ⅰ对应油藏的耗水条带可分为 4 个等级:拟耗水率大于 175 438 m3 /m3 时形成极端耗水条带;拟耗水率大于54 m3 /m3 小于175 438 m3 /m3 时,为非经济高耗水条带;拟耗水率大于 51 m3 /m3 小于 54 m3 /m3 时,为经济高耗水条带;拟耗水率小于 51 m3 /m3 时,为经济低耗水条带。同理可得,类型Ⅱ与类型Ⅲ所对应油藏耗水条带发育程度综合分级结果(表2)。

  • 图3 不同油价所对应的经济极限耗水率

  • Fig.3 Economic limit water consumption rate corresponding to different oil prices

  • 表1 不同类型油藏物性参数

  • Table1 Physical property parameters of different types of reservoirs

  • 从表2 可知,对于类型Ⅰ与类型Ⅱ对应油藏的耗水条带可分为经济低耗水条带、经济高耗水条带、非经济高耗水条带及极端耗水条带 4 级。对类型Ⅲ对应油藏,由于技术方法计算获得的拟耗水率小于 60 m3 /m3 时为低耗水条带,而在当前油价下的经济极限耗水率为 54 m3 /m3,因此该类型耗水条带为经济低耗水条带、非经济低耗水条带、非经济高耗水条带及极端耗水条带4级。

  • 基于这3种不同的油藏,分析储层渗透率、原油黏度因素对耗水条带形成的影响。对比类型Ⅰ与类型Ⅱ可知,保持其他条件不变时,随着原油黏度的降低,极端耗水条带形成时所对应的拟耗水率变小,发育加快。对比类型Ⅰ与类型Ⅲ可知,在其他物性参数相同时,随着渗透率的降低,经济高耗水条带消失,同时出现非经济低耗水条带,高耗水条带形成时所对应的拟耗水率变大,但极端耗水条带形成时所对应的拟耗水率变小。

  • 图4 类型I对应油藏的耗水条带发育程度综合分级结果

  • Fig.4 Comprehensive grading results of development degree of water-consumption zones corresponding to type I reservoirs

  • 表2 不同类型油藏耗水条带发育程度综合分级结果

  • Table2 Comprehensive grading results of development degree of water-consumption zones in different types of reservoirs

  • 3 实例应用

  • 以胜利油区孤岛油田 A 区 Ng3-4 单元为例,开展耗水条带划分与演化规律研究。研究区位于孤岛油田披覆背斜构造西翼,为高孔、高渗透、常温、常压油藏,构造平缓,地层倾角为1.5°~2°。研究区面积为 3.26 km2,地质储量为 1 074×104 t,孔隙度为 32.7%~35.6%,渗透率为 544~1 830 mD,原油黏度为 500~2 500 mPa·s,原始地层压力为 12.35 MPa,原油饱和压力为 9.25 MPa,地层压力为 10.7 MPa。生产井网为 200 m×230 m,北东向行列正对井网。从 1976年 3月投入生产,截至目前油藏综合含水率为98.1%,采出程度为52.3%。基于研究区的物性及井网,建立数值模拟模型。模拟水驱开发过程,获得含水率随采出程度的变化关系(图5)。由图5可知,数值模拟中,综合含水率为 98.47% 时的采出程度为 53.2%,与该单元实际综合含水率为 98.1% 时的采出程度为 52.2% 相近,说明所建立的数值模拟模型能够较好地反映该单元的实际开发状况。

  • 图5 含水率随采出程度的变化关系

  • Fig.5 Variation curve of water cut with recovery

  • 依据研究区物性参数与建立的耗水条带发育程度综合分级方法,获得耗水条带发育程度综合分级结果:拟耗水率大于30 771 m3 /m3 时为极端耗水条带;拟耗水率为54~30 771 m3 /m3 时为非经济高耗水条带;拟耗水率为 39~54 m3 /m3 时为经济高耗水条带;拟耗水率小于 39 m3 /m3 时为经济低耗水条带。再基于研究区油藏数值模拟结果,运用各网格的物性参数,计算出各网格的拟耗水率;最后依据研究区耗水条带发育程度综合分级结果,对研究区目前 (综合含水率98.1%时)耗水条带发育程度进行综合分级。从图6 可知,极端耗水条带主要分布于水井附近,发育面积较小;非经济高耗水条带包裹极端耗水条带,发育面积其次;经济高耗水条带包裹非经济高耗水条带,且发育面积较大;经济低耗水条带分布于驱替效率较低区域,发育面积较大。

  • 图6 井网耗水条带发育程度分布(综合含水率为98.1%时)

  • Fig.6 Distribution of development degree of water-consumption zones in current well pattern (with a water cut of 98.1%)

  • 从耗水条带发育程度演化规律(图7)可知,随着开发的进行(综合含水率从 90% 增加至 95%),极端耗水条带、非经济高耗水条带及经济高耗水条带发育面积逐渐变大,同时经济低耗水条带发育面积逐渐变小;当开发至综合含水率为 98.47% 时,储层极端耗水条带与非经济高耗水条带显著发育。

  • 图7 耗水条带发育程度演化规律

  • Fig.7 Evolution laws of development degree of water-consumption zones

  • 4 结论

  • 通过引入耗水条带表征指标,形成了耗水条带发育程度分级方法,并将其运用于某油田实际区块,认识研究区目前的耗水条带发育程度及其分布特征。通过研究发现,随着原油黏度降低,高耗水条带和极端耗水条带形成时所对应的拟耗水率变小,发育快;随着渗透率的降低,经济高耗水条带消失,同时出现非经济低耗水条带,高耗水条带形成所对应的拟耗水率变大,但极端耗水条带形成时对应的拟耗水率变小。研究区目前的极端耗水条带主要分布于水井附近,发育面积较小;非经济高耗水条带包裹极端耗水条带,发育面积其次;经济高耗水条带包裹非经济高耗水条带,且发育面积较大;经济低耗水条带分布于驱替效率较低区域,发育面积较大。

  • 符号解释

  • H——拟耗水率,m3 /m3

  • I——经济极限耗水率,m3 /m3

  • K——渗透率,mD;

  • Kro——油相相对渗透率,无因次;

  • Krw——水相相对渗透率,无因次;

  • Krwi ——水相相对渗透率端点值,无因次;

  • m——油相指数;

  • n——水相指数;

  • Pi ——水的处理费用,元/t;

  • Po——原油价格,元/t;

  • Ps ——人工成本等费用,元;

  • Pw——工业用水价格,元/t;

  • Qi ——累积产液量,m3

  • Qo——累积产油量,m3

  • Qw——累积产水量,m3

  • Sor ——残余油饱和度,无因次;

  • Sw——含水饱和度,无因次;

  • Swc——束缚水饱和度,无因次;

  • α——税率,无因次;

  • μo——原油黏度,mPa·s;

  • μw——水黏度,mPa·s。

  • 参考文献

    • [1] 周义博,刘卫东,孙灵辉,等.致密油藏水驱可动用性研究[J].断块油气田,2019,26(2):244-247.ZHOU Yibo,LIU Weidong,SUN Linghui,et al.Research on avail⁃ ability of water flooding in tight oil reservoir[J].Fault-Block Oil and Gas Field,2019,26(2):244-247.

    • [2] 陈德坡,方惠京,王军,等.坨11井区南沙二段8砂组河口坝砂体岩相组合识别及对储层的控制作用[J].油气地质与采收率,2019,26(2):51-59.CHEN Depo,FANG Huijing,WANG Jun,et al.Lithofacies combi⁃ nation recognition and its impact on the reservoir in No.8 sand group of the second member of Shahejie Formation in the south of Tuo11 area[J].Petroleum Geology and Recovery Efficiency,2019,26(2):51-59.

    • [3] 刘博,张荣达,张伊琳,等.双河油田高耗水条带影响因素及治理对策可行性研究[J].油气藏评价与开发,2020,10(6):96-102.LIU Bo,ZHANG Rongda,ZHANG Yilin,et al.Influencing factors and countermeasures feasibility of high water consumption strip in Shuanghe Oilfield[J].Reservoir Evaluation and Development,2020,10(6):96-102.

    • [4] 闫坤,韩培慧,曹瑞波,等.聚驱后优势渗流通道流线数值模拟识别方法的建立及应用[J].油气藏评价与开发,2019,9(2):33-37.YAN Kun,HAN Peihui,CAO Ruibo,et al.Establishment and ap⁃ plication of numerical simulation identification method for domi⁃ nant seepage channels after polymer flooding[J].Reservoir Evalu⁃ ation and Development,2019,9(2):33-37.

    • [5] 刘志宏,朱奇,冯其红,等.高耗水层带的级别划分方法[J].特种油气藏,2018,25(6):114-119.LIU Zhihong,ZHU Qi,FENG Qihong,et al.Level division for high water consumption zone[J].Special Oil & Gas Reservoirs,2018,25(6):114-119.

    • [6] YU Xiaocong,WANG Yushu,YANG Yongfei,et al.Effect of parti⁃ cle content on relative permeabilities in water flooding[J].Journal of Petroleum Science and Engineering,2021,205:108856.

    • [7] WANG Chunrui.Study on water injection effect of new reservoir for petroleum energy development[J].IOP Conference Series:Earth and Environmental Science,2021,770(1):012040.

    • [8] 朱丽红,王海涛,魏丽影,等.基于容量阻力模型的低效无效循环场定量识别[J].大庆石油地质与开发,2019,38(5):239-245.ZHU Lihong,WANG Haitao,WEI Liying,et al.Quantitative iden⁃ tification of the low and no-efficiency cycle fields based on CRM [J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):239-245.

    • [9] 李振泉,郭长春,王军,等.特高含水期油藏剩余油分布新认识——以孤岛油田中一区Ng3砂组为例[J].油气地质与采收率,2019,26(6):19-27.LI Zhenquan,GUO Changchun,WANG Jun,et al.New under⁃ standing of remaining oil distribution in oil reservoirs at extrahigh water-cut stage:A case of Upper Ng3 sand group in Zhongyi area,Gudao Oilfield[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(6):19-27.

    • [10] 康永梅,李明,王联国,等.鄂尔多斯盆地演武油田S1区块延8油层组微观水驱渗流特征[J].油气地质与采收率,2019,26(5):48-57.KANG Yongmei,LI Ming,WANG Lianguo,et al.Microscopic wa⁃ terflooding percolation characteristics of Yan8 Formation in Block S1,Yanwu Oilfield,Ordos Basin[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(5):48-57.

    • [11] 刘晓彤,轩玲玲,朱春艳,等.中高渗透稠油油藏大孔道动态评价[J].现代地质,2021,35(2):388-395.LIU Xiaotong,XUAN Lingling,ZHU Chunyan,et al.Dynamic evaluation of high-capacity channel in heavy oil reservoirs with medium-high permeability[J].Geoscience,2021,35(2):388-395.

    • [12] 罗超,曾凤凰,尹楠鑫,等.高含水油田大孔道特征及控制机理分析——以陇东地区延9油组为例[J].西北大学学报:自然科学版,2019,49(3):428-436.LUO Chao,ZENG Fenghuang,YIN Nanxin,et al.Characteristics and controlling mechanisms of high capacity channels in high wa⁃ ter cut oilfield:A case of Yan9 formation in Longdong district[J].Journal of Northwest University:Natural Science Edition,2019,49(3):428-436.

    • [13] WANG Liping.Study on reservoir heterogeneity in block S[J].IOP Conference Series:Earth and Environmental Science,2021,770(1):012020.

    • [14] 吴忠维,崔传智,杨勇,等.高含水期大孔道渗流特征及定量描述方法[J].石油与天然气地质,2018,39(4):839-844.WU Zhongwei,CUI Chuanzhi,YANG Yong,et al.Seepage charac⁃ teristics and quantitative description of large pore pathways at high water cut stage[J].Oil & Gas Geology,2018,39(4):839-844.

    • [15] HENG Yuanqiu,ZE Yuli.The study of high capacity channels gen⁃ esis and formation conditions in Block M Liaohe Oilfield[J].Ap⁃ plied Mechanics and Materials,2015,3830(733):23-26.

    • [16] 崔传智,杨勇,曹刚,等.疏松砂岩油藏大孔道中高速非达西渗流对产能的影响分析[J].石油天然气学报,2009,31(3):122-125,129.CUI Chuanzhi,YANG Yong,CAO Gang,et al.Effect of high veloc⁃ ity non-Darcy flow on productivity in wormhole of unconsolidated sandstone reservoirs[J].Journal of Oil and Gas Technology,2009,31(3):122-125,129.

    • [17] 濮孟蕾.高含水后期“低效、无效循环”形成条件的数值模拟分析[J].化工管理,2020,(9):217-218.PU Menglei.Numerical simulation analysis of formation condi⁃ tions of“inefficient and ineffective cycles”in late stage of high water cut[J].Chemical Enterprise Management,2020,(9):217-218.

    • [18] 王东琪,殷代印.水驱油藏相对渗透率曲线经验公式研究[J].岩性油气藏,2017,29(3):159-164.WANG Dongqi,YIN Daiyin.Empirical formulas of relative perme⁃ ability curve of water drive reservoirs[J].Lithologic Reservoirs,2017,29(3):159-164.

    • [19] 崔传智,耿正玲,王延忠,等.水驱油藏高含水期渗透率的动态分布计算模型及应用[J].中国石油大学学报:自然科学版,2012,36(4):118-122.CUI Chuanzhi,GENG Zhengling,WANG Yanzhong,et al.Calcu⁃ lation model of dynamic permeability distribution and its applica⁃ tion to water drive reservoir at high water cut stage[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(4):118-122.

  • 参考文献

    • [1] 周义博,刘卫东,孙灵辉,等.致密油藏水驱可动用性研究[J].断块油气田,2019,26(2):244-247.ZHOU Yibo,LIU Weidong,SUN Linghui,et al.Research on avail⁃ ability of water flooding in tight oil reservoir[J].Fault-Block Oil and Gas Field,2019,26(2):244-247.

    • [2] 陈德坡,方惠京,王军,等.坨11井区南沙二段8砂组河口坝砂体岩相组合识别及对储层的控制作用[J].油气地质与采收率,2019,26(2):51-59.CHEN Depo,FANG Huijing,WANG Jun,et al.Lithofacies combi⁃ nation recognition and its impact on the reservoir in No.8 sand group of the second member of Shahejie Formation in the south of Tuo11 area[J].Petroleum Geology and Recovery Efficiency,2019,26(2):51-59.

    • [3] 刘博,张荣达,张伊琳,等.双河油田高耗水条带影响因素及治理对策可行性研究[J].油气藏评价与开发,2020,10(6):96-102.LIU Bo,ZHANG Rongda,ZHANG Yilin,et al.Influencing factors and countermeasures feasibility of high water consumption strip in Shuanghe Oilfield[J].Reservoir Evaluation and Development,2020,10(6):96-102.

    • [4] 闫坤,韩培慧,曹瑞波,等.聚驱后优势渗流通道流线数值模拟识别方法的建立及应用[J].油气藏评价与开发,2019,9(2):33-37.YAN Kun,HAN Peihui,CAO Ruibo,et al.Establishment and ap⁃ plication of numerical simulation identification method for domi⁃ nant seepage channels after polymer flooding[J].Reservoir Evalu⁃ ation and Development,2019,9(2):33-37.

    • [5] 刘志宏,朱奇,冯其红,等.高耗水层带的级别划分方法[J].特种油气藏,2018,25(6):114-119.LIU Zhihong,ZHU Qi,FENG Qihong,et al.Level division for high water consumption zone[J].Special Oil & Gas Reservoirs,2018,25(6):114-119.

    • [6] YU Xiaocong,WANG Yushu,YANG Yongfei,et al.Effect of parti⁃ cle content on relative permeabilities in water flooding[J].Journal of Petroleum Science and Engineering,2021,205:108856.

    • [7] WANG Chunrui.Study on water injection effect of new reservoir for petroleum energy development[J].IOP Conference Series:Earth and Environmental Science,2021,770(1):012040.

    • [8] 朱丽红,王海涛,魏丽影,等.基于容量阻力模型的低效无效循环场定量识别[J].大庆石油地质与开发,2019,38(5):239-245.ZHU Lihong,WANG Haitao,WEI Liying,et al.Quantitative iden⁃ tification of the low and no-efficiency cycle fields based on CRM [J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):239-245.

    • [9] 李振泉,郭长春,王军,等.特高含水期油藏剩余油分布新认识——以孤岛油田中一区Ng3砂组为例[J].油气地质与采收率,2019,26(6):19-27.LI Zhenquan,GUO Changchun,WANG Jun,et al.New under⁃ standing of remaining oil distribution in oil reservoirs at extrahigh water-cut stage:A case of Upper Ng3 sand group in Zhongyi area,Gudao Oilfield[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(6):19-27.

    • [10] 康永梅,李明,王联国,等.鄂尔多斯盆地演武油田S1区块延8油层组微观水驱渗流特征[J].油气地质与采收率,2019,26(5):48-57.KANG Yongmei,LI Ming,WANG Lianguo,et al.Microscopic wa⁃ terflooding percolation characteristics of Yan8 Formation in Block S1,Yanwu Oilfield,Ordos Basin[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(5):48-57.

    • [11] 刘晓彤,轩玲玲,朱春艳,等.中高渗透稠油油藏大孔道动态评价[J].现代地质,2021,35(2):388-395.LIU Xiaotong,XUAN Lingling,ZHU Chunyan,et al.Dynamic evaluation of high-capacity channel in heavy oil reservoirs with medium-high permeability[J].Geoscience,2021,35(2):388-395.

    • [12] 罗超,曾凤凰,尹楠鑫,等.高含水油田大孔道特征及控制机理分析——以陇东地区延9油组为例[J].西北大学学报:自然科学版,2019,49(3):428-436.LUO Chao,ZENG Fenghuang,YIN Nanxin,et al.Characteristics and controlling mechanisms of high capacity channels in high wa⁃ ter cut oilfield:A case of Yan9 formation in Longdong district[J].Journal of Northwest University:Natural Science Edition,2019,49(3):428-436.

    • [13] WANG Liping.Study on reservoir heterogeneity in block S[J].IOP Conference Series:Earth and Environmental Science,2021,770(1):012020.

    • [14] 吴忠维,崔传智,杨勇,等.高含水期大孔道渗流特征及定量描述方法[J].石油与天然气地质,2018,39(4):839-844.WU Zhongwei,CUI Chuanzhi,YANG Yong,et al.Seepage charac⁃ teristics and quantitative description of large pore pathways at high water cut stage[J].Oil & Gas Geology,2018,39(4):839-844.

    • [15] HENG Yuanqiu,ZE Yuli.The study of high capacity channels gen⁃ esis and formation conditions in Block M Liaohe Oilfield[J].Ap⁃ plied Mechanics and Materials,2015,3830(733):23-26.

    • [16] 崔传智,杨勇,曹刚,等.疏松砂岩油藏大孔道中高速非达西渗流对产能的影响分析[J].石油天然气学报,2009,31(3):122-125,129.CUI Chuanzhi,YANG Yong,CAO Gang,et al.Effect of high veloc⁃ ity non-Darcy flow on productivity in wormhole of unconsolidated sandstone reservoirs[J].Journal of Oil and Gas Technology,2009,31(3):122-125,129.

    • [17] 濮孟蕾.高含水后期“低效、无效循环”形成条件的数值模拟分析[J].化工管理,2020,(9):217-218.PU Menglei.Numerical simulation analysis of formation condi⁃ tions of“inefficient and ineffective cycles”in late stage of high water cut[J].Chemical Enterprise Management,2020,(9):217-218.

    • [18] 王东琪,殷代印.水驱油藏相对渗透率曲线经验公式研究[J].岩性油气藏,2017,29(3):159-164.WANG Dongqi,YIN Daiyin.Empirical formulas of relative perme⁃ ability curve of water drive reservoirs[J].Lithologic Reservoirs,2017,29(3):159-164.

    • [19] 崔传智,耿正玲,王延忠,等.水驱油藏高含水期渗透率的动态分布计算模型及应用[J].中国石油大学学报:自然科学版,2012,36(4):118-122.CUI Chuanzhi,GENG Zhengling,WANG Yanzhong,et al.Calcu⁃ lation model of dynamic permeability distribution and its applica⁃ tion to water drive reservoir at high water cut stage[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(4):118-122.