en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

裴雪皓(1999—),男,山西长治人,在读博士研究生,从事油藏渗流机理、数值模拟及开发系统工程方面的研究。E-mail:pxhfly@qq.com。

中图分类号:TE341

文献标识码:A

文章编号:1009-9603(2022)03-0092-10

DOI:10.13673/j.cnki.cn37-1359/te.202106011

参考文献 1
王凤琴,薛中天.利用系统分析方法评价注水开发油田的水驱效果[J].断块油气田,1998,5(3):39-42.WANG Fengqin,XUE Zhongtian.An application of system analy⁃ sis method to evaluate the water drive effect in low permeable res⁃ ervoir[J].Fault-Block Oil and Gas Field,1998,5(3):39-42.
参考文献 2
房育金,王茂显.运用存水率和水驱指数评价油田注水开发效果[J].吐哈油气,2005,10(1):37-39.FANG Yujin,WANG Maoxian.Using water storage and water drive index to evaluate the effect of water flooding oilfield[J].Tuha Oil and Gas,2005,10(1):37-39.
参考文献 3
李治平,赵必荣.油田注水开发效果评价的灰色关联分析法 [J].大庆石油地质与开发,1990,9(3):44-51.LI Zhiping,ZHAO Birong.A grey-correlation analysis method for evaluating waterflooding effect during oilfield development[J].Pe⁃ troleum Geology and Oilfield Development in Daqing,1990,9(3):44-51.
参考文献 4
罗二辉,王晓冬,王继强,等.基于灰色模糊理论的水驱开发效果综合评价[J].新疆石油天然气,2010,6(2):30-34.LUO Erhui,WANG Xiaodong,WANG Jiqiang,et al.Integrated evaluation of water flood development effect based on grey fuzzy theory[J].Xinjiang Oil & Gas,2010,6(2):30-34.
参考文献 5
唐嗣元,富丹丹.一种基于灰色系统的综合评价方法研究[J].长江大学学报:自然科学版,2010,7(3):438-440.TANG Siyuan,FU Dandan.Research on a comprehensive evalua⁃ tion method based on grey system[J].Journal of Yangtze Universi⁃ ty:Natural Science Edition,2010,7(3):438-440.
参考文献 6
邹存友,王国辉,窦宏恩,等.油田开发效果评价方法与关键技术[J].石油天然气学报,2014,36(4):125-130,147.ZOU Cunyou,WANG Guohui,DOU Hongen,et al.Method and key techniques for evaluating the effect of oilfield development [J].Journal of Oil and Gas Technology,2014,36(4):125-130,147.
参考文献 7
熊钰,孙雷,孙良田,等.沈84块高凝油注水开发效果模糊综合评价[J].特种油气藏,2001,8(3):49-52.XIONG Yu,SUN Lei,SUN Liangtian,et al.Fuzzy evaluation for developing high pour point oil with water drive in Shen84 block [J].Special Oil & Gas Reservoirs,2001,8(3):49-52.
参考文献 8
唐海,黄炳光,李道轩,等.模糊综合评判法确定油藏水驱开发潜力[J].石油勘探与开发,2002,29(2):97-99.TANG Hai,HUANG Bingguang,LI Daoxuan,et al.Determing wa⁃ ter driving effectiveness of oil reservoir with fuzzy comprehensive evaluation method[J].Petroleum Exploration and Development,2002,29(2):97-99.
参考文献 9
马敏.基于模糊综合评价法的油田区块分类指示评价[D].大庆:东北石油大学,2014.MA Min.Evaluation for classified index of oil block based on the method of fuzzy comprehensive evaluation[D].Daqing:Northeast Petroleum University,2014.
参考文献 10
司想,汪宁宇,焦冀博.基于模糊综合评价法的水驱开发效果评价[J].化学工程师,2019,33(4):18-20.SI Xiang,WANG Ningyu,JIAO Jibo.Evaluation of waterflooding development based on fuzzy comprehensive evaluation method[J].Chemical Engineer,2019,33(4):18-20.
参考文献 11
刘月田,孙保利,于永生.大孔道模糊识别与定量计算方法[J].石油钻采工艺,2003,25(5):54-59.LIU Yuetian,SUN Baoli,YU Yongsheng.Fuzzy identification and quantative calculation method for big pore throat[J].Oil Drilling & Production Technology,2003,25(5):54-59.
参考文献 12
陈付真,姜汉桥,李杰,等.油藏流场的定量化描述方法及其应用研究[J].石油天然气学报,2011,33(12):111-114.CHEN Fuzhen,JIANG Hanqiao,LI Jie,et al.Quantitative liquid field description method and its application[J].Journal of Oil and Gas Technology,2011,33(12):111-114.
参考文献 13
辛治国,贾俊山,孙波,等.优势流场发育阶段定量确定方法研究[J].西南石油大学学报:自然科学版,2012,34(2):119-124.XIN Zhiguo,JIA Junshan,SUN Bo,et al.Research on the quanti⁃ tative determination of the dominant flow field development stages [J].Journal of Southwest Petroleum University:Science & Tech⁃ nology Edition,2012,34(2):119-124.
参考文献 14
姜瑞忠,王平,侯玉培,等.基于BP神经网络的油藏流场评价体系研究[J].断块油气田,2012,19(3):319-322.JIANG Ruizhong,WANG Ping,HOU Yupei,et al.Study on reser⁃ voir flow field evaluation system based on BP neural network[J].Fault-Block Oil and Gas Field,2012,19(3):319-322.
参考文献 15
贾云林,王冰,刘月田,等.基于生产实际的大孔道模糊识别模型及评价体系研究[J].石油钻采工艺,2013,35(5):88-91.JIA Yunlin,WANG Bing,LIU Yuetian,et al.Research on highcapacity channel fuzzy recognition model and evaluation system based on actual production situation[J].Oil Drilling & Production Technology,2013,35(5):88-91.
参考文献 16
柏明星,张志超,梁健巍.中高渗透砂岩油田优势流场识别与调整[J].油气地质与采收率,2017,24(1):100-105.BAI Mingxing,ZHANG Zhichao,LIANG Jianwei.Identification and adjustment of streamline field in middle-high permeability sandstone oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2017,24(1):100-105.
参考文献 17
贾虎,邓力珲.基于流线聚类人工智能方法的水驱油藏流场识别[J].石油勘探与开发,2018,45(2):312-319.JIA Hu,DENG Lihui.Oil reservoir water flooding flow area identi⁃ fication based on the method of streamline clustering artificial in⁃ telligence[J].Petroleum Exploration and Development,2018,45(2):312-319.
参考文献 18
陈红伟,冯其红,张先敏,等.考虑优势通道发育的层状水驱油藏开发指标预测方法[J].油气地质与采收率,2017,24(4):72-77,104.CHEN Hongwei,FENG Qihong,ZHANG Xianmin,et al.A meth⁃ od of development index prediction for multi-layer waterflooding reservoir with preferential flow path[J].Petroleum Geology and Recovery Efficiency,2017,24(4):72-77,104.
参考文献 19
常涛,程大勇,李振鹏,等.新型水驱效果评价图版建立及应用 [J].断块油气田,2019,26(1):66-69.CHANG Tao,CHENG Dayong,LI Zhenpeng,et al.Establishment and application of evaluation chart of new water flooding effect [J].Fault-Block Oil and Gas Field,2019,26(1):66-69.
参考文献 20
吴晓慧,邓景夫,陈晓明,等.注采连通性计算及渗流通道的定量识别[J].特种油气藏,2019,26(3):114-118.WU Xiaohui,DENG Jingfu,CHEN Xiaoming,et al.Calculation of injection-production connectivity and quantitative identification of flow channel[J].Special Oil & Gas Reservoirs,2019,26(3):114-118.
参考文献 21
梁文福.大庆萨南油田特高含水期水驱注采结构优化调整方法[J].大庆石油地质与开发,2020,39(4):53-58.LIANG Wenfu.Optimizing and adjusting methods of the water⁃ flooding injection-production structure at extra-high watercut stage for Daqing Sanan Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):53-58.
参考文献 22
张世明,杨勇.特高含水水驱油藏流场边界动态追踪模型研究 [J].油气地质与采收率,2021,28(2):91-99.ZHANG Shiming,YANG Yong.Study on the dynamic tracking model of flow field boundaries in water drive reservoirs at ultrahigh water cut stage[J].Petroleum Geology and Recovery Efficien⁃ cy,2021,28(2):91-99.
参考文献 23
张乔良,姜瑞忠,姜平,等.油藏流场评价体系的建立及应用 [J].大庆石油地质与开发,2014,33(3):86-89.ZHANG Qiaoliang,JIANG Ruizhong,JIANG Ping,et al.Estab⁃ lishment and application of oil reservoir flow-field evaluating sys⁃ tem[J].Petroleum Geology & Oilfield Development in Daqing,2014,33(3):86-89.
参考文献 24
谷建伟,刘志文,于秀玲,等.基于剩余油可动潜力控制程度的井网调整研究[J].特种油气藏,2017,24(6):84-89. GU Jianwei,LIU Zhiwen,YU Xiuling,et al.Well network adjust⁃ ment based on the movable potential control-level of remaining oil [J].Special Oil & Gas Reservoirs,2017,24(6):84-89.
参考文献 25
ZHAO Pingqi,HE Shumei,CAI Mingjun,et al.Streamline simula⁃ tion based vector flow field characterization and reconstruction method for high water cut reservoir[C].Dhahran:International Pe⁃ troleum Technology Conference,2020.
参考文献 26
冯其红,李闪闪,黄迎松,等.基于瞬时流场潜力系数的水驱开发效果评价方法[J].油气地质与采收率,2020,27(4):79-84.FENG Qihong,LI Shanshan,HUANG Yingsong,et al.Evaluation method of water flooding development effect based on instanta⁃ neous flow field potential coefficient[J].Petroleum Geology and Recovery Efficiency,2020,27(4):79-84.
参考文献 27
THIELE M R,BATYCKY R.Water injection optimization using a streamline-based workflow[R].SPE 84080,2003.
参考文献 28
MAQUI A F,ZHAI X,NEGREIRA A S,et al.A comprehensive workflow for near real time waterflood management and produc⁃ tion optimization using reduced-physics and data-driven technol⁃ ogies[R].SPE 185614,2017.
参考文献 29
赵红红.自由曲面CAD模型相似性评价的研究[D].兰州:兰州理工大学,2019.ZHAO Honghong.Research on similarity evaluation of free-form surface CAD models[D].Lanzhou:Lanzhou University of Technol⁃ ogy,2019.
参考文献 30
李广年.复杂曲面拟合与误差分析研究[D].长春:吉林大学,2016.LI Guangnian.Research on curved surface fitting and error analy⁃ sis[D].Changchun:Jilin University,2016.
参考文献 31
张开兴,白晓亮,张树生.基于局部形状特征的自由曲面相似性评价方法[J].计算机集成制造系统,2014,20(3):530-536.ZHANG Kaixing,BAI Xiaoliang,ZHANG Shusheng.Similarity as⁃ sessment approach of freeform surfaces based on local features [J].Computer Integrated Manufacturing System,2014,20(3):530-536.
参考文献 32
王志哲,余玲玲,杨安康.基于曲面法向量的曲面ICP拼接算法研究[J].微计算机信息,2010,26(21):145-147.WANG Zhizhe,YU Lingling,YANG Ankang.The research on the ICP algorithm based on the normal vector of the curved surface [J].Microcomputer Information,2010,26(21):145-147.
参考文献 33
HERNANDEZ-BELMONTE U H,AYALA-RAMIREZ V,SAN⁃ CHEZ-YANEZ R E.A comparative review of two-pass connected component labeling algorithms[C].Mexican:Mexican Internation⁃ al Conference on Artificial Intelligence,2011.
参考文献 34
WU K,OTOO E,SUZUKI K.Optimizing two-pass connected-component labeling algorithms[J].Pattern Analysis and Applica⁃ tions,2009,12(2):117-135.
目录contents

    摘要

    目前常用的水驱开发效果评价方法多是对整个油藏开发历史的评价,难以及时反映当前时刻井网及注采压力系统与油藏状态的匹配程度。因此,针对水驱油藏地下流场演化本质,通过逻辑分析法筛选出含油饱和度与渗流速度作为流场评价参数,依据统计学理论,建立了由相对适配系数、流饱差、绝对适配系数和均衡系数等4个指标构成的流场适配性评价模型。以典型注采单元和实际区块为例,进行流场适配性评价,分析结果表明:均衡系数与实际日产油量之间呈正相关性,流场适配性评价模型可有效预警开发系统与油藏状态配置失衡的发生,并直观反映区域内的不合理位置,指导注采调整,量化评价各类调整措施的有效性,为水驱油藏下步开发调整提供技术支持。

    Abstract

    At present,the commonly used evaluation indexes for water-flooding development effect are mostly related to the evaluation of the entire reservoir development history,which are difficult to timely reflect the matching degree of the current well pattern and the injection-production pressure system with the reservoir state. Therefore,in view of the nature of the un- derground flow field evolution in water-flooding reservoirs,the oil saturation and flow velocity are screened out as seepage field evaluation parameters by the logic analysis method. In light of the statistical theory,an evaluation model of flow field adaptability is established with four indexes,including relative adaptation coefficient,flow-saturation difference(FSD),ab- solute adaptation coefficient,and equilibrium coefficient. With typical injection-production units and actual blocks as ex- amples,the flow field adaptability is evaluated. The analysis results show that the equilibrium coefficient and the actual dai- ly oil production are correlated positively. The developed evaluation model of flow field adaptability can effectively warn the imbalance between the development system and the reservoir state and intuitively reflect unreasonable positions in the ar- ea,thus able to guide the adjustment of injection and production,quantitatively evaluate the effectiveness of various adjust- ment measures,and provide technical support for the following development and adjustment of water-flooding reservoirs.

  • 水驱油藏注采开发系统包括井网系统和注采压力系统,井网及生产制度合理性的分析贯穿于油藏开发全过程。尤其是油藏进入高含水开发阶段后,油水渗流规律极其复杂,如何合理而准确地对水驱油藏开发系统进行评价,关系到油藏下步挖潜方向及调整措施的有效性。因此,准确认识油藏当前开发系统相对于油藏状态的优劣程度,及时发现油藏开发存在的问题,对制定科学、合理的开发调整方案,最终实现油田高效开发,具有极其重要的现实意义。

  • 前人的研究多集中于水驱开发效果评价,建立了多种开发效果综合评价模型,目前应用较成熟的评价方法主要有:系统动态分析法[1-2]、灰色关联度法[3-6]、模糊综合评判法[7-10]等,均是运用数学方法对宏观指标或参数进行综合评价以期得到合理正确的评价结果,该类评价是从宏观上评判油藏整个开发历史的效果,无法反映油藏当前时刻开发系统与油藏状态的合理匹配程度。近年来,诸多学者对油藏流场进行研究,但多以优势渗流通道、大孔道的识别为目标[11-22],提出了面通量[23] 等流场评价参数,但这些参数仍然是对油藏开发历史的评价,即使进行了相应开发调整,也不能及时响应,无法评价措施的有效程度,对于油藏中短时间发生的快速变化难以识别。谷建伟等引入了油相流动系数和流线密度作为剩余油可动潜力控制的评价指标[24]; ZHAO 等提出流线簇的概念,对流场调整后的流体分布差异进行了表征与评价[25];冯其红等基于流场流线位置分布数据以及流线上油水流动速率、饱和度分布构建瞬时流场潜力系数进行水驱开发效果评价[26]。但现有瞬时流场评价方法多基于流线[25-28],评价过程繁琐,对于大规模矿场实际问题的评价时间成本较高。为此,笔者从渗流场入手,以油藏流场的适配性来评价开发系统的合理程度,从而全息式评价油藏当前开发系统与油藏状态的匹配程度,明确油藏开发调整的目标和方向,为水驱开发方案调整与提高采收率方案决策提供科学依据与技术支撑。

  • 1 油藏流场评价参数

  • 1.1 油藏流场要素

  • 根据表征油藏流场性质的参数是否随时间而改变可将其分为静态要素与动态要素,根据参数是否可人为直接控制将其分为可控要素与不可控要素。静态要素主要有渗透率、孔隙度、砂体厚度、地层原油黏度、润湿性、油层非均质性、油水界面张力、相对渗透率、油水重度差、沉积微相、孔喉半径、流度比等。动态要素包括井网密度、注采压差、过水倍数、含水率、饱和度、流体流速、存水率、驱油效率、地层压力梯度等。其中可控要素主要有井网密度、注采压差、流体流速等。

  • 1.2 流场评价参数筛选

  • 从表征油藏流场性质的诸多要素中确定合适的评价参数,就要筛选出独立性较强、可直接反映油藏流场现状的参数。油藏流场各要素之间的逻辑关系主要包括:①井网及注采压差决定了油藏的压力分布。②岩石润湿性通过影响相对渗透率进而影响渗流速度。③储层非均质性、各向异性、沉积微相、孔喉半径等决定了不同位置、不同方向渗透率的大小。④压力(压力梯度)与渗透率、相对渗透率以及流体黏度通过运动方程共同决定了渗流速度。⑤渗流速度的时间积分即累积冲刷强度等指标导致饱和度的变化。研究发现,油藏流场的诸多要素本质就是饱和度场和渗流速度场。饱和度场表征油藏状态,渗流速度场表征当前井网及注采压力系统的作用。油藏的开发过程就是人为调整渗流速度场来改变饱和度场的过程。因此确定饱和度和渗流速度作为流场评价参数。

  • 2 油藏流场评价参数适配性指标选取

  • 2.1 相对适配性

  • 油藏开发过程中最有利的状态是含油饱和度高的位置流速大,含油饱和度低的位置流速小,也就是理想渗流速度场的相对大小分布应该与饱和度场的相对大小分布一致。那么,将饱和度场的相对分布与渗流速度场的相对分布进行比较即可评价油藏流场的合理程度。

  • 含水率是饱和度的函数,某一位置在饱和度确定的情况下含水率是确定的。根据分流量方程可知,含水率一定,则油水的流速比一定,因此油水总流速是能真实反映地下流动状态的渗流速度。分流量方程为:

  • fw=11+vovw
    (1)
  • 为消除不同参数间单位和尺度差异的影响,分别对饱和度场及渗流速度场进行归一化,得到二者各自的相对分布:

  • So¯(x,y,z,t)=So(x,y,z,t)-Somin (t)Somax (t)-Somin (t)
    (2)
  • V-(x,y,z,t)=vL(x,y,z,t)-vLmin(t)vLmax(t)-vLmin(t)
    (3)
  • 对比 2 个场的一致性,可借鉴图像领域评价两幅图像相似度的方法[29-34],若想得到分布场中每一点的相似度,则要基于曼哈顿距离(Manhattan Dis⁃ tance)的思路,结合油藏实际定义一种可以得到单点及总体相似度的评价指标。

  • 建立一个渗透率非均匀分布、饱和度平衡初始化、一注一采的概念模型进行分析(注采井连线为高渗透条带)。通过对比归一化饱和度场与归一化渗流速度场可见(图1),归一化饱和度场基本接近 1,而归一化渗流速度场基本接近0,二者基准不同,参数间的差异未完全消除。故引入平移因子定义为使井组(区块)总相对适配系数最大的平移量。

  • 图1 相对适配系数含义示意

  • Fig.1 Meaning of relative adaptation coefficient

  • 对2个相对分布场进行适当平移后相减即可得到饱和度场与渗流速度场在形状上的相似程度,将其定义为相对适配系数。分布式和区块的相对适配系数表达式分别为:

  • τr(x,y,z,t)=1-V-(x,y,z,t)-S-o(x,y,z,t)+α(t)
    (4)
  • τr(t)=1ni=1n τr(x,y,z,t)
    (5)
  • 其中:

  • α(t)=ESo¯(t)-E(V-(t))=1ni=1n S-o(t)-1ni=1n V-(t)
    (6)
  • i=1n V-(t)-So¯(t)+α(t)=0
    (7)
  • α(t)=α(t)mini=1n V-(t)-So¯(t)+α(t)||=α(t)maxi=1n 1-V-(t)-So¯(t)+α(t)
    (8)
  • αt)是归一化饱和度与归一化渗流速度的期望之差,即(6)式,但由于其分布类型动态变化,因此需采用优化算法求(7)式的极小值进行计算,即 (8)式,α∈[-1,1]。平移因子是时间的函数,只要饱和度场与渗流速度场发生变化,α就需要重新计算。同时从 α 的定义可以看出,α 与评价区块的划分相关,对于大型油藏模型,可采用全局评价与局部评价相结合的方式进行精细评价,理论上(4)式计算的相对适配系数可能出现负值,但实际油藏通常不会出现,即使出现也是极小范围的异常低适配,这种情况下为了真实反映大面积区域的适配性,对负值直接置0即可。

  • 相对适配系数越高就表明该位置越符合含油饱和度高的位置渗流速度大或含油饱和度低的位置渗流速度小的理想状态,无效水循环通道和未波及区域均呈现低相对适配系数。采用(4)式计算得到的一注一采概念模型相对适配系数分布如图2a 所示,适配性最佳的区域是高渗透带两侧的八字形区域。

  • (4)式中定义的相对适配系数可以直观地显示各点相对适配性的高低并且可以方便地计算出区块平均相对适配系数以表征区块的整体适配程度,但却无法反映出渗流速度是偏高还是偏低。为解决这一问题,提出流饱差,即:

  • FSD(x,y,z,t)=V-(x,y,z,t)-So¯(x,y,z,t)+α(t)
    (9)
  • FSD=0 表示适配性最佳,FSD>0 说明渗流速度偏大,FSD<0 说明渗流速度偏小,通过 FSD 可以直观了解区域进行流场调整的方向(图2b)。

  • 2.2 绝对适配性

  • 相对适配性可以反映油藏内部的适配性差异,却无法有效反映油藏整体的开发水平。要反映油藏每一点的开发水平,即反映油藏每一点的开发速度,直接采用水相流速或者油水总流速无法去除无效水循环的影响;采用油相流速则对中低含油饱和度强水洗部位的高效开发无法有效表征。中低含油饱和度部位虽然油相表观流速不高,但油相在水相的携带下大量产出,是高含水油藏产量的主要来源。因此采用油相真实渗流速度作为绝对适配系数:

  • 图2 概念模型适配性指标分布

  • Fig.2 Distributions of adaptability indexes of conceptual model

  • τa(x,y,z,t)=vo(x,y,z,t)ϕ(x,y,z)So(x,y,z,t)-Sor(x,y,z)
    (10)
  • 油相真实渗流速度可以真实反映油藏每一点的开发水平(图2c),τa出现异常高表明原油迅速流失,有可能即将产生无效水循环通道。

  • 对于中高渗透油藏来说,均衡开采是最理想的方式,即 τa 越均匀越好,可用 τa 的方差来评价油藏开发的均衡性:

  • στ(t)=σ2τa(x,y,z,t)
    (11)
  • τa的方差定义为均衡系数στστ出现异常高表明存在突变部位,可能有无效水循环通道正在形成,具体形成位置可通过 τa的分布来确定。无效水循环通道形成之后,由于通道中的 vo ≈ 0 又会导致该处 τa 下降,στ 恢复正常,所以无效水循环通道形成之前或者形成初期会在στ曲线上形成尖峰。

  • 相对适配性与绝对适配性共同构成了适配性评价指标体系(表1),4个指标分别有各自的使用优势与特点。其中区块相对适配系数与均衡系数为主要监测指标,适合在全开发周期持续监测;流饱差与绝对适配系数为辅助指标,主要是在高含水阶段需要进行流场调整时根据这2个指标进行调整方案的制定与优选。

  • 表1 适配性评价指标体系

  • Table1 System of adaptability evaluation indexes

  • 注:分布量是指每一点均有的对应值,宏观量是指对于区域才有的对应值。

  • 3 量化评价注采调整措施

  • 常规注采系统适配性随开发的进行逐渐下降,因此需要进行注采调整。现场常用的注采调整方法包括转变流向、井网加密、交替注采等。针对文中所建的一注一采模型在原井网含水率达到 80% 后,分别采用转变流向、井网加密和交替注采对原开发系统进行改进,研究常用注采调整措施的作用机理。原井网含水率达到 80% 时的适配性指标分布见图3。

  • 图3 不同调整措施相对适配系数的变化

  • Fig.3 Variations in relative adaptation coefficients of different adjustment measures

  • 转变流向是指将原井网的注采井同时关闭,在另一条对角线方向进行注采,注采量保持不变;井网加密是指在正方形另外 2个顶点处增加 2口采油井,将井网变为反九点井网的1/4,新井强采,老井弱采,总注采量保持不变;交替注采为保持原井网不变,采取注水井和采油井交替开井注采的方式,注水井强注 1个月,采油井缓采 5个月,周期总注采量与其他方式保持一致(表2)。

  • 表2 不同调整措施生产制度设置

  • Table2 Production settings of different adjustment measures

  • 分别对 3 种调整措施进行模拟计算,得到对应适配性参数。从图3可以看出,3种调整措施均可有效改善开发系统的适配性。其中转变流向的瞬时改善效果最好,且作用时间较长,从图4a1 和4a2 可以看出,转变流向后油藏在很长一段时间保持大面积的高适配性,且逐步形成大面积片状高适配区域。图4a5 和4a6 反映出转变流向后绝对适配系数也一直保持在较高水平,油相流动效果好。

  • 井网加密措施在初期改善效果并不明显(图4b1),但措施后 2 a 内相对适配系数递减较缓,后期递减加快。图4b2 和4b4 反映出井网加密在一定程度上缓解了高渗透通道的影响,但该措施难以动用生产井间区域,波及效果较差。

  • 交替注采的适配系数与注采阶段有关,注入阶段主要是水相在低含油饱和度区域的流动,因此表现为适配系数骤降;但是由于在注入阶段油水饱和度分布趋于均匀,高渗透通道处的相对适配系数有所改善,高渗透通道的影响被压制(图4c1)。采出阶段相对于注入阶段发生在高含油饱和度区域的流动要更多,因此平均相对适配系数较高,且随采出时间的延长,流动更加深入到高含油饱和度的区域,因此整体相对适配系数逐渐增大。但在采出阶段高渗透通道处的适配系数下降,出现与连续注采类似的八字形区域(图4c2)。交替注采过程相对适配系数基本无瞬时改善效果,但有效减缓了原始方案相对适配系数的递减速度。

  • 研究分析发现,对于该模型转变流向是最优的调整方法。现场采用的各种注采调整措施是在调整流场的适配性,适配性评价指标从根源上解释了注采调整的作用机理。通过适配性评价模型可以直观准确地对各种调整措施进行分析比较。

  • 4 实例应用

  • 4.1 区块模型的建立

  • 试验区为四周被断层封闭的反向屋脊断块,断块内部地层呈现西北高、东南低的构造形态,截至 2019年底综合含水率为 96.5%,采出程度为 46.9%。建立区块地质模型,采用10 m×10 m的网格,油藏模型为80×83×18个网格。对模型进行包括储量、全区及单井产油量、含水率、压力及产液剖面等的历史拟合,最终拟合结果达到精细拟合要求,模型准确可靠,为油藏流场适配性研究奠定了基础。

  • 试验区油藏于 1971年 1月投入开发,整体分为 3个开发阶段:①依靠天然能量开发,初期有部分井自喷生产,基本不含水,后期能量不足,影响了断块的高速开发。②1983年7月开始转入第二阶段即注水开发阶段,初期地层压力下降速度有所减缓,产量上升,开发效果较好,后期含水率上升快,产量递减大。③1992 年进入第三阶段,实施井网完善,初期能量回升,开发效果明显改善,后期由于油水井井况恶化造成注采井网二次不完善。

  • 4.2 开发系统评价

  • 通过对油藏不同时刻的适配性分析得到相对适配系数与均衡系数随时间的变化(图5),可以看出区块相对适配系数、均衡系数与区块日产油量和含水率具有良好的相关性。在天然能量开发初期,含油饱和度分布趋于均衡,与此时的整体低速开采更为匹配,相对适配系数小幅上升;而天然能量开发后期,油井大幅提液,边水舌进导致适配性有所下降。

  • 注水开始后于1984年1月均衡系数即出现第1 个峰值,这表明此时可能有无效水循环通道正在形成。峰值时刻对应的绝对适配系数分布如图6a 所示,半年后的 FSD 分布(图6b)表明在对应位置 P2 井与 I1 井之间形成高流速区,为无效水循环通道,这也是导致1985年后产量急剧下降的主要原因。

  • 1996 年 1 月均衡系数出现了第 2 个峰值,此时绝对适配系数分布如图7a所示,但之后对应位置的 FSD显示该位置流速偏低(图7b),液相流速偏低的位置油相流速反而较高,这表明在井网完善后由于强注强采导致短时间内油藏大面积区域已被水淹,油藏西北角存在小范围的高含油饱和度低流速区域,这也直接导致第 2 个峰值之后日产油量长期处于极低水平。

  • 图4 不同调整措施适配性指标分布

  • Fig.4 Distributions of adaptation indexes of different adjustment measures

  • 图5 区块适配性指标与日产油量、含水率的对比

  • Fig.5 Comparison of block adaptability indexes with daily oil production and water cut

  • 图6 均衡系数第1个峰值对应适配性指标分布

  • Fig.6 Distributions of adaptability indexes corresponding to the first peak of equilibrium coefficient

  • 均衡系数的2个峰值均有效反映了油藏状态的较大变化,适配性评价模型可以有效预警开发系统与油藏状态配置失衡的发生。根据研究区开发历史,可设定均衡系数 0.02为无效水循环通道形成的预警值,均衡系数超过 0.02表明可能有无效水循环通道正在形成,这时要根据绝对适配系数分布找出异常高值区域并及时采取措施。

  • 图7 均衡系数第2个峰值对应适配性指标分布

  • Fig.7 Distributions of adaptability indexes corresponding to the second peak of equilibrium coefficient

  • 对于实际油藏,可根据其开发历史或类似油藏的开发历史对相对适配性评价指标进行分级。根据开发某一阶段油藏适配性分析结果可得到该油藏相对适配系数概率分布(图8),根据概率设定即可得到对应的适配性分级标准(表3)。

  • 4.3 区块流场调整

  • 2019 年 12 月研究区块的 FSD 分布(图9a)与图7b对比可以看出,在均衡系数第 2个峰值之后油藏适配性分布基本未发生太大变化,期间也基于剩余油分布进行了多次井网调整,但含水率始终没有明显改善,未有效改善流场适配性。依据适配性评价结果可知目前油藏西北角高部位渗流速度偏低,难以动用。因此在油藏西北角增加 1口新井 P7,以高液量生产,同时降低P6及P5井的产液量(油藏总注采量保持不变)。预测进行流场调整2 a后采出程度提高 3.9%。流场调整后 FSD 分布(图9b)可以看到经过调整之后油藏西北角适配性得到明显改善,油藏平均相对适配系数从 0.77 提升至 0.81,直观反映了调整方案的有效性。

  • 图8 研究区开发中期相对适配系数概率分布

  • Fig.8 Probability distribution of relative adaptation coefficient in middle development period of study area

  • 表3 试验区相对适配性评价指标分级

  • Table3 Evaluation index classification of relative adaptability in test area

  • 图9 油藏调整前后FSD分布对比

  • Fig.9 Comparison of FSD distribution before and after reservoir adjustment

  • 5 结论

  • 选用含油饱和度与渗流速度作为流场表征参数与传统的驱替倍数、面通量等参数对比,更能合理地反映流场瞬态,便于评价油藏当前开发系统与油藏状态的匹配情况。现场采用的各种注采调整措施本质均是在调整流场的适配性,通过适配性评价模型可以直观准确地对各种调整措施进行分析比较。实际油藏分析表明,流场适配性评价模型可以准确而直观地表征当前油藏开发系统的优劣程度,有效预警开发系统与油藏状态配置失衡的发生。针对油藏当前适配性状况,设计流场调整方案,调整之后流场适配性明显提升,达到了提高采收率的目的。所建评价方法基于数值模拟结果,对数值模拟准确性的依赖性较高,可以进一步研究适配性指标的现场快速获取方法。

  • 符号解释

  • E——期望运算符;

  • fw——含水率;

  • FSD——流饱差;

  • i——网格编号,i=1,2,3,···,n

  • n——区块模型网格数;

  • So ¯xyzt——任意点t时刻归一化含油饱和度,小数;

  • Soxyzt)——任意点t时刻含油饱和度,小数;

  • Sorxyz)——任意点的残余油饱和度,小数;

  • t——时间,d;

  • V-xyzt——任意点t时刻归一化流速,小数;

  • vLxyzt)——任意点t时刻液体流速,m/d;

  • vo——油相流速,m/d;

  • vw——水相流速,m/d;

  • xyz——位置坐标;

  • ααt)——平移因子;

  • σ2 ——方差运算符;

  • στ——均衡系数;

  • τaxyzt)——绝对适配系数;

  • τrt)——区块相对适配系数;

  • τrxyzt)——任意点t时刻的相对适配系数;

  • ϕ——孔隙度,小数。

  • 参考文献

    • [1] 王凤琴,薛中天.利用系统分析方法评价注水开发油田的水驱效果[J].断块油气田,1998,5(3):39-42.WANG Fengqin,XUE Zhongtian.An application of system analy⁃ sis method to evaluate the water drive effect in low permeable res⁃ ervoir[J].Fault-Block Oil and Gas Field,1998,5(3):39-42.

    • [2] 房育金,王茂显.运用存水率和水驱指数评价油田注水开发效果[J].吐哈油气,2005,10(1):37-39.FANG Yujin,WANG Maoxian.Using water storage and water drive index to evaluate the effect of water flooding oilfield[J].Tuha Oil and Gas,2005,10(1):37-39.

    • [3] 李治平,赵必荣.油田注水开发效果评价的灰色关联分析法 [J].大庆石油地质与开发,1990,9(3):44-51.LI Zhiping,ZHAO Birong.A grey-correlation analysis method for evaluating waterflooding effect during oilfield development[J].Pe⁃ troleum Geology and Oilfield Development in Daqing,1990,9(3):44-51.

    • [4] 罗二辉,王晓冬,王继强,等.基于灰色模糊理论的水驱开发效果综合评价[J].新疆石油天然气,2010,6(2):30-34.LUO Erhui,WANG Xiaodong,WANG Jiqiang,et al.Integrated evaluation of water flood development effect based on grey fuzzy theory[J].Xinjiang Oil & Gas,2010,6(2):30-34.

    • [5] 唐嗣元,富丹丹.一种基于灰色系统的综合评价方法研究[J].长江大学学报:自然科学版,2010,7(3):438-440.TANG Siyuan,FU Dandan.Research on a comprehensive evalua⁃ tion method based on grey system[J].Journal of Yangtze Universi⁃ ty:Natural Science Edition,2010,7(3):438-440.

    • [6] 邹存友,王国辉,窦宏恩,等.油田开发效果评价方法与关键技术[J].石油天然气学报,2014,36(4):125-130,147.ZOU Cunyou,WANG Guohui,DOU Hongen,et al.Method and key techniques for evaluating the effect of oilfield development [J].Journal of Oil and Gas Technology,2014,36(4):125-130,147.

    • [7] 熊钰,孙雷,孙良田,等.沈84块高凝油注水开发效果模糊综合评价[J].特种油气藏,2001,8(3):49-52.XIONG Yu,SUN Lei,SUN Liangtian,et al.Fuzzy evaluation for developing high pour point oil with water drive in Shen84 block [J].Special Oil & Gas Reservoirs,2001,8(3):49-52.

    • [8] 唐海,黄炳光,李道轩,等.模糊综合评判法确定油藏水驱开发潜力[J].石油勘探与开发,2002,29(2):97-99.TANG Hai,HUANG Bingguang,LI Daoxuan,et al.Determing wa⁃ ter driving effectiveness of oil reservoir with fuzzy comprehensive evaluation method[J].Petroleum Exploration and Development,2002,29(2):97-99.

    • [9] 马敏.基于模糊综合评价法的油田区块分类指示评价[D].大庆:东北石油大学,2014.MA Min.Evaluation for classified index of oil block based on the method of fuzzy comprehensive evaluation[D].Daqing:Northeast Petroleum University,2014.

    • [10] 司想,汪宁宇,焦冀博.基于模糊综合评价法的水驱开发效果评价[J].化学工程师,2019,33(4):18-20.SI Xiang,WANG Ningyu,JIAO Jibo.Evaluation of waterflooding development based on fuzzy comprehensive evaluation method[J].Chemical Engineer,2019,33(4):18-20.

    • [11] 刘月田,孙保利,于永生.大孔道模糊识别与定量计算方法[J].石油钻采工艺,2003,25(5):54-59.LIU Yuetian,SUN Baoli,YU Yongsheng.Fuzzy identification and quantative calculation method for big pore throat[J].Oil Drilling & Production Technology,2003,25(5):54-59.

    • [12] 陈付真,姜汉桥,李杰,等.油藏流场的定量化描述方法及其应用研究[J].石油天然气学报,2011,33(12):111-114.CHEN Fuzhen,JIANG Hanqiao,LI Jie,et al.Quantitative liquid field description method and its application[J].Journal of Oil and Gas Technology,2011,33(12):111-114.

    • [13] 辛治国,贾俊山,孙波,等.优势流场发育阶段定量确定方法研究[J].西南石油大学学报:自然科学版,2012,34(2):119-124.XIN Zhiguo,JIA Junshan,SUN Bo,et al.Research on the quanti⁃ tative determination of the dominant flow field development stages [J].Journal of Southwest Petroleum University:Science & Tech⁃ nology Edition,2012,34(2):119-124.

    • [14] 姜瑞忠,王平,侯玉培,等.基于BP神经网络的油藏流场评价体系研究[J].断块油气田,2012,19(3):319-322.JIANG Ruizhong,WANG Ping,HOU Yupei,et al.Study on reser⁃ voir flow field evaluation system based on BP neural network[J].Fault-Block Oil and Gas Field,2012,19(3):319-322.

    • [15] 贾云林,王冰,刘月田,等.基于生产实际的大孔道模糊识别模型及评价体系研究[J].石油钻采工艺,2013,35(5):88-91.JIA Yunlin,WANG Bing,LIU Yuetian,et al.Research on highcapacity channel fuzzy recognition model and evaluation system based on actual production situation[J].Oil Drilling & Production Technology,2013,35(5):88-91.

    • [16] 柏明星,张志超,梁健巍.中高渗透砂岩油田优势流场识别与调整[J].油气地质与采收率,2017,24(1):100-105.BAI Mingxing,ZHANG Zhichao,LIANG Jianwei.Identification and adjustment of streamline field in middle-high permeability sandstone oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2017,24(1):100-105.

    • [17] 贾虎,邓力珲.基于流线聚类人工智能方法的水驱油藏流场识别[J].石油勘探与开发,2018,45(2):312-319.JIA Hu,DENG Lihui.Oil reservoir water flooding flow area identi⁃ fication based on the method of streamline clustering artificial in⁃ telligence[J].Petroleum Exploration and Development,2018,45(2):312-319.

    • [18] 陈红伟,冯其红,张先敏,等.考虑优势通道发育的层状水驱油藏开发指标预测方法[J].油气地质与采收率,2017,24(4):72-77,104.CHEN Hongwei,FENG Qihong,ZHANG Xianmin,et al.A meth⁃ od of development index prediction for multi-layer waterflooding reservoir with preferential flow path[J].Petroleum Geology and Recovery Efficiency,2017,24(4):72-77,104.

    • [19] 常涛,程大勇,李振鹏,等.新型水驱效果评价图版建立及应用 [J].断块油气田,2019,26(1):66-69.CHANG Tao,CHENG Dayong,LI Zhenpeng,et al.Establishment and application of evaluation chart of new water flooding effect [J].Fault-Block Oil and Gas Field,2019,26(1):66-69.

    • [20] 吴晓慧,邓景夫,陈晓明,等.注采连通性计算及渗流通道的定量识别[J].特种油气藏,2019,26(3):114-118.WU Xiaohui,DENG Jingfu,CHEN Xiaoming,et al.Calculation of injection-production connectivity and quantitative identification of flow channel[J].Special Oil & Gas Reservoirs,2019,26(3):114-118.

    • [21] 梁文福.大庆萨南油田特高含水期水驱注采结构优化调整方法[J].大庆石油地质与开发,2020,39(4):53-58.LIANG Wenfu.Optimizing and adjusting methods of the water⁃ flooding injection-production structure at extra-high watercut stage for Daqing Sanan Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):53-58.

    • [22] 张世明,杨勇.特高含水水驱油藏流场边界动态追踪模型研究 [J].油气地质与采收率,2021,28(2):91-99.ZHANG Shiming,YANG Yong.Study on the dynamic tracking model of flow field boundaries in water drive reservoirs at ultrahigh water cut stage[J].Petroleum Geology and Recovery Efficien⁃ cy,2021,28(2):91-99.

    • [23] 张乔良,姜瑞忠,姜平,等.油藏流场评价体系的建立及应用 [J].大庆石油地质与开发,2014,33(3):86-89.ZHANG Qiaoliang,JIANG Ruizhong,JIANG Ping,et al.Estab⁃ lishment and application of oil reservoir flow-field evaluating sys⁃ tem[J].Petroleum Geology & Oilfield Development in Daqing,2014,33(3):86-89.

    • [24] 谷建伟,刘志文,于秀玲,等.基于剩余油可动潜力控制程度的井网调整研究[J].特种油气藏,2017,24(6):84-89. GU Jianwei,LIU Zhiwen,YU Xiuling,et al.Well network adjust⁃ ment based on the movable potential control-level of remaining oil [J].Special Oil & Gas Reservoirs,2017,24(6):84-89.

    • [25] ZHAO Pingqi,HE Shumei,CAI Mingjun,et al.Streamline simula⁃ tion based vector flow field characterization and reconstruction method for high water cut reservoir[C].Dhahran:International Pe⁃ troleum Technology Conference,2020.

    • [26] 冯其红,李闪闪,黄迎松,等.基于瞬时流场潜力系数的水驱开发效果评价方法[J].油气地质与采收率,2020,27(4):79-84.FENG Qihong,LI Shanshan,HUANG Yingsong,et al.Evaluation method of water flooding development effect based on instanta⁃ neous flow field potential coefficient[J].Petroleum Geology and Recovery Efficiency,2020,27(4):79-84.

    • [27] THIELE M R,BATYCKY R.Water injection optimization using a streamline-based workflow[R].SPE 84080,2003.

    • [28] MAQUI A F,ZHAI X,NEGREIRA A S,et al.A comprehensive workflow for near real time waterflood management and produc⁃ tion optimization using reduced-physics and data-driven technol⁃ ogies[R].SPE 185614,2017.

    • [29] 赵红红.自由曲面CAD模型相似性评价的研究[D].兰州:兰州理工大学,2019.ZHAO Honghong.Research on similarity evaluation of free-form surface CAD models[D].Lanzhou:Lanzhou University of Technol⁃ ogy,2019.

    • [30] 李广年.复杂曲面拟合与误差分析研究[D].长春:吉林大学,2016.LI Guangnian.Research on curved surface fitting and error analy⁃ sis[D].Changchun:Jilin University,2016.

    • [31] 张开兴,白晓亮,张树生.基于局部形状特征的自由曲面相似性评价方法[J].计算机集成制造系统,2014,20(3):530-536.ZHANG Kaixing,BAI Xiaoliang,ZHANG Shusheng.Similarity as⁃ sessment approach of freeform surfaces based on local features [J].Computer Integrated Manufacturing System,2014,20(3):530-536.

    • [32] 王志哲,余玲玲,杨安康.基于曲面法向量的曲面ICP拼接算法研究[J].微计算机信息,2010,26(21):145-147.WANG Zhizhe,YU Lingling,YANG Ankang.The research on the ICP algorithm based on the normal vector of the curved surface [J].Microcomputer Information,2010,26(21):145-147.

    • [33] HERNANDEZ-BELMONTE U H,AYALA-RAMIREZ V,SAN⁃ CHEZ-YANEZ R E.A comparative review of two-pass connected component labeling algorithms[C].Mexican:Mexican Internation⁃ al Conference on Artificial Intelligence,2011.

    • [34] WU K,OTOO E,SUZUKI K.Optimizing two-pass connected-component labeling algorithms[J].Pattern Analysis and Applica⁃ tions,2009,12(2):117-135.

  • 参考文献

    • [1] 王凤琴,薛中天.利用系统分析方法评价注水开发油田的水驱效果[J].断块油气田,1998,5(3):39-42.WANG Fengqin,XUE Zhongtian.An application of system analy⁃ sis method to evaluate the water drive effect in low permeable res⁃ ervoir[J].Fault-Block Oil and Gas Field,1998,5(3):39-42.

    • [2] 房育金,王茂显.运用存水率和水驱指数评价油田注水开发效果[J].吐哈油气,2005,10(1):37-39.FANG Yujin,WANG Maoxian.Using water storage and water drive index to evaluate the effect of water flooding oilfield[J].Tuha Oil and Gas,2005,10(1):37-39.

    • [3] 李治平,赵必荣.油田注水开发效果评价的灰色关联分析法 [J].大庆石油地质与开发,1990,9(3):44-51.LI Zhiping,ZHAO Birong.A grey-correlation analysis method for evaluating waterflooding effect during oilfield development[J].Pe⁃ troleum Geology and Oilfield Development in Daqing,1990,9(3):44-51.

    • [4] 罗二辉,王晓冬,王继强,等.基于灰色模糊理论的水驱开发效果综合评价[J].新疆石油天然气,2010,6(2):30-34.LUO Erhui,WANG Xiaodong,WANG Jiqiang,et al.Integrated evaluation of water flood development effect based on grey fuzzy theory[J].Xinjiang Oil & Gas,2010,6(2):30-34.

    • [5] 唐嗣元,富丹丹.一种基于灰色系统的综合评价方法研究[J].长江大学学报:自然科学版,2010,7(3):438-440.TANG Siyuan,FU Dandan.Research on a comprehensive evalua⁃ tion method based on grey system[J].Journal of Yangtze Universi⁃ ty:Natural Science Edition,2010,7(3):438-440.

    • [6] 邹存友,王国辉,窦宏恩,等.油田开发效果评价方法与关键技术[J].石油天然气学报,2014,36(4):125-130,147.ZOU Cunyou,WANG Guohui,DOU Hongen,et al.Method and key techniques for evaluating the effect of oilfield development [J].Journal of Oil and Gas Technology,2014,36(4):125-130,147.

    • [7] 熊钰,孙雷,孙良田,等.沈84块高凝油注水开发效果模糊综合评价[J].特种油气藏,2001,8(3):49-52.XIONG Yu,SUN Lei,SUN Liangtian,et al.Fuzzy evaluation for developing high pour point oil with water drive in Shen84 block [J].Special Oil & Gas Reservoirs,2001,8(3):49-52.

    • [8] 唐海,黄炳光,李道轩,等.模糊综合评判法确定油藏水驱开发潜力[J].石油勘探与开发,2002,29(2):97-99.TANG Hai,HUANG Bingguang,LI Daoxuan,et al.Determing wa⁃ ter driving effectiveness of oil reservoir with fuzzy comprehensive evaluation method[J].Petroleum Exploration and Development,2002,29(2):97-99.

    • [9] 马敏.基于模糊综合评价法的油田区块分类指示评价[D].大庆:东北石油大学,2014.MA Min.Evaluation for classified index of oil block based on the method of fuzzy comprehensive evaluation[D].Daqing:Northeast Petroleum University,2014.

    • [10] 司想,汪宁宇,焦冀博.基于模糊综合评价法的水驱开发效果评价[J].化学工程师,2019,33(4):18-20.SI Xiang,WANG Ningyu,JIAO Jibo.Evaluation of waterflooding development based on fuzzy comprehensive evaluation method[J].Chemical Engineer,2019,33(4):18-20.

    • [11] 刘月田,孙保利,于永生.大孔道模糊识别与定量计算方法[J].石油钻采工艺,2003,25(5):54-59.LIU Yuetian,SUN Baoli,YU Yongsheng.Fuzzy identification and quantative calculation method for big pore throat[J].Oil Drilling & Production Technology,2003,25(5):54-59.

    • [12] 陈付真,姜汉桥,李杰,等.油藏流场的定量化描述方法及其应用研究[J].石油天然气学报,2011,33(12):111-114.CHEN Fuzhen,JIANG Hanqiao,LI Jie,et al.Quantitative liquid field description method and its application[J].Journal of Oil and Gas Technology,2011,33(12):111-114.

    • [13] 辛治国,贾俊山,孙波,等.优势流场发育阶段定量确定方法研究[J].西南石油大学学报:自然科学版,2012,34(2):119-124.XIN Zhiguo,JIA Junshan,SUN Bo,et al.Research on the quanti⁃ tative determination of the dominant flow field development stages [J].Journal of Southwest Petroleum University:Science & Tech⁃ nology Edition,2012,34(2):119-124.

    • [14] 姜瑞忠,王平,侯玉培,等.基于BP神经网络的油藏流场评价体系研究[J].断块油气田,2012,19(3):319-322.JIANG Ruizhong,WANG Ping,HOU Yupei,et al.Study on reser⁃ voir flow field evaluation system based on BP neural network[J].Fault-Block Oil and Gas Field,2012,19(3):319-322.

    • [15] 贾云林,王冰,刘月田,等.基于生产实际的大孔道模糊识别模型及评价体系研究[J].石油钻采工艺,2013,35(5):88-91.JIA Yunlin,WANG Bing,LIU Yuetian,et al.Research on highcapacity channel fuzzy recognition model and evaluation system based on actual production situation[J].Oil Drilling & Production Technology,2013,35(5):88-91.

    • [16] 柏明星,张志超,梁健巍.中高渗透砂岩油田优势流场识别与调整[J].油气地质与采收率,2017,24(1):100-105.BAI Mingxing,ZHANG Zhichao,LIANG Jianwei.Identification and adjustment of streamline field in middle-high permeability sandstone oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2017,24(1):100-105.

    • [17] 贾虎,邓力珲.基于流线聚类人工智能方法的水驱油藏流场识别[J].石油勘探与开发,2018,45(2):312-319.JIA Hu,DENG Lihui.Oil reservoir water flooding flow area identi⁃ fication based on the method of streamline clustering artificial in⁃ telligence[J].Petroleum Exploration and Development,2018,45(2):312-319.

    • [18] 陈红伟,冯其红,张先敏,等.考虑优势通道发育的层状水驱油藏开发指标预测方法[J].油气地质与采收率,2017,24(4):72-77,104.CHEN Hongwei,FENG Qihong,ZHANG Xianmin,et al.A meth⁃ od of development index prediction for multi-layer waterflooding reservoir with preferential flow path[J].Petroleum Geology and Recovery Efficiency,2017,24(4):72-77,104.

    • [19] 常涛,程大勇,李振鹏,等.新型水驱效果评价图版建立及应用 [J].断块油气田,2019,26(1):66-69.CHANG Tao,CHENG Dayong,LI Zhenpeng,et al.Establishment and application of evaluation chart of new water flooding effect [J].Fault-Block Oil and Gas Field,2019,26(1):66-69.

    • [20] 吴晓慧,邓景夫,陈晓明,等.注采连通性计算及渗流通道的定量识别[J].特种油气藏,2019,26(3):114-118.WU Xiaohui,DENG Jingfu,CHEN Xiaoming,et al.Calculation of injection-production connectivity and quantitative identification of flow channel[J].Special Oil & Gas Reservoirs,2019,26(3):114-118.

    • [21] 梁文福.大庆萨南油田特高含水期水驱注采结构优化调整方法[J].大庆石油地质与开发,2020,39(4):53-58.LIANG Wenfu.Optimizing and adjusting methods of the water⁃ flooding injection-production structure at extra-high watercut stage for Daqing Sanan Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):53-58.

    • [22] 张世明,杨勇.特高含水水驱油藏流场边界动态追踪模型研究 [J].油气地质与采收率,2021,28(2):91-99.ZHANG Shiming,YANG Yong.Study on the dynamic tracking model of flow field boundaries in water drive reservoirs at ultrahigh water cut stage[J].Petroleum Geology and Recovery Efficien⁃ cy,2021,28(2):91-99.

    • [23] 张乔良,姜瑞忠,姜平,等.油藏流场评价体系的建立及应用 [J].大庆石油地质与开发,2014,33(3):86-89.ZHANG Qiaoliang,JIANG Ruizhong,JIANG Ping,et al.Estab⁃ lishment and application of oil reservoir flow-field evaluating sys⁃ tem[J].Petroleum Geology & Oilfield Development in Daqing,2014,33(3):86-89.

    • [24] 谷建伟,刘志文,于秀玲,等.基于剩余油可动潜力控制程度的井网调整研究[J].特种油气藏,2017,24(6):84-89. GU Jianwei,LIU Zhiwen,YU Xiuling,et al.Well network adjust⁃ ment based on the movable potential control-level of remaining oil [J].Special Oil & Gas Reservoirs,2017,24(6):84-89.

    • [25] ZHAO Pingqi,HE Shumei,CAI Mingjun,et al.Streamline simula⁃ tion based vector flow field characterization and reconstruction method for high water cut reservoir[C].Dhahran:International Pe⁃ troleum Technology Conference,2020.

    • [26] 冯其红,李闪闪,黄迎松,等.基于瞬时流场潜力系数的水驱开发效果评价方法[J].油气地质与采收率,2020,27(4):79-84.FENG Qihong,LI Shanshan,HUANG Yingsong,et al.Evaluation method of water flooding development effect based on instanta⁃ neous flow field potential coefficient[J].Petroleum Geology and Recovery Efficiency,2020,27(4):79-84.

    • [27] THIELE M R,BATYCKY R.Water injection optimization using a streamline-based workflow[R].SPE 84080,2003.

    • [28] MAQUI A F,ZHAI X,NEGREIRA A S,et al.A comprehensive workflow for near real time waterflood management and produc⁃ tion optimization using reduced-physics and data-driven technol⁃ ogies[R].SPE 185614,2017.

    • [29] 赵红红.自由曲面CAD模型相似性评价的研究[D].兰州:兰州理工大学,2019.ZHAO Honghong.Research on similarity evaluation of free-form surface CAD models[D].Lanzhou:Lanzhou University of Technol⁃ ogy,2019.

    • [30] 李广年.复杂曲面拟合与误差分析研究[D].长春:吉林大学,2016.LI Guangnian.Research on curved surface fitting and error analy⁃ sis[D].Changchun:Jilin University,2016.

    • [31] 张开兴,白晓亮,张树生.基于局部形状特征的自由曲面相似性评价方法[J].计算机集成制造系统,2014,20(3):530-536.ZHANG Kaixing,BAI Xiaoliang,ZHANG Shusheng.Similarity as⁃ sessment approach of freeform surfaces based on local features [J].Computer Integrated Manufacturing System,2014,20(3):530-536.

    • [32] 王志哲,余玲玲,杨安康.基于曲面法向量的曲面ICP拼接算法研究[J].微计算机信息,2010,26(21):145-147.WANG Zhizhe,YU Lingling,YANG Ankang.The research on the ICP algorithm based on the normal vector of the curved surface [J].Microcomputer Information,2010,26(21):145-147.

    • [33] HERNANDEZ-BELMONTE U H,AYALA-RAMIREZ V,SAN⁃ CHEZ-YANEZ R E.A comparative review of two-pass connected component labeling algorithms[C].Mexican:Mexican Internation⁃ al Conference on Artificial Intelligence,2011.

    • [34] WU K,OTOO E,SUZUKI K.Optimizing two-pass connected-component labeling algorithms[J].Pattern Analysis and Applica⁃ tions,2009,12(2):117-135.