-
弹塑性油藏压力敏感性较强,同时也具有明显的启动压力梯度,流体渗流规律不再符合达西定律[1-7]。受压力敏感效应影响,储层渗透率在弹性开发降压阶段和注水开发升压阶段发生变化,并引起启动压力梯度改变,导致储层渗流特征与常规油藏相比存在差异,因而储量动用规律也更加复杂[6-10]。井网井距设计是实现油藏有效开发的基础,但注采井距过小,会导致开发成本增加;注采井距过大,储层难以建立有效驱动压力系统[8-19],储量动用效果差。因此,需要明确弹塑性油藏储量有效动用规律,以指导此类油藏的合理注采井网设计。
-
在弹塑性油藏开发研究中,很多学者通过岩心变围压实验验证了渗透率损失具有不可逆性,并结合物质平衡和数值模拟等方法优化注水时机,以减小压力敏感带来的储层伤害[14-16];在储量动用规律及井距优化设计方面,通过在渗流方程中引入介质变形系数和启动压力梯度,研究单井渗流特征及储量有效动用半径;或者在传统极限井距计算公式基础上,考虑启动压力梯度变化来计算驱替压力,修正技术极限井距公式[20-26],但在常用注采井网基础上,针对不同开发阶段该类油藏渗透率随压力的变化对渗流场分布影响的研究较少。为此,建立考虑压力敏感、启动压力梯度综合影响的渗流方程,在典型注采井网下,使用逐次稳定迭代法求解油藏弹性开发降压阶段和注水开发升压阶段下的渗流场分布,分析压力敏感对渗流特征变化的影响,建立储量动用评价方法,研究储量动用规律,为实际弹塑性油藏合理开发提供技术支撑。
-
1 考虑压力敏感的弹塑性油藏注采井网渗流场求解
-
1.1 岩石的弹塑性变化
-
在弹塑性油藏开发过程中,岩石渗透率变化主要经历2个阶段:①弹性开发降压阶段,地层能量下降,上覆岩层的压实作用导致渗透率下降,启动压力梯度升高。②注水开发升压阶段,储层压力得到一定程度恢复,渗透率增加,启动压力梯度下降。
-
JS 油田平均渗透率为 9.73 mD,平均孔隙度为 13.8%,属于低孔低渗透油藏。选取典型储层岩心,进行变围压条件下渗透率变化规律实验(包括单向加压和松弛循环实验),测得岩石渗透率随围压的变化(图1)。由图1可知,低渗透岩心渗透率随着围压的增加而不断下降,但压力恢复至初始值后,渗透率没有恢复到原始值,对弹性开发降压阶段和注水开发升压阶段渗透率进行拟合,其表达式分别为:
-
图1 岩石围压与渗透率的关系
-
Fig.1 Relationships between rock confining pressure and permeability
-
考虑启动压力梯度与流度呈幂指数变化关系,进行启动压力梯度实验,得到弹性开发降压阶段和注水开发升压阶段该岩心启动压力梯度随渗透率变化的表达式分别为:
-
1.2 压力敏感储层渗流方程
-
根据单相不可压缩流体的稳定渗流理论,建立考虑压力敏感和启动压力梯度影响的基本渗流方程为:
-
其中渗透率随压力变化而变化,而启动压力梯度随渗透率变化而变化。
-
1.3 渗流场求解
-
低渗透油藏一般采取早期注水开发方式,交错井网在实际开发中波及系数大,注采比高,易于保持地层压力而得到广泛应用。因此,对采用交错井网的典型注采单元(图2)进行研究。
-
针对典型注采单元考虑压力敏感和启动压力梯度影响的渗流问题,求解思路如下:①从井底开始向外求解压力、启动压力梯度、渗透率变化,确定初始计算条件,基于稳定渗流理论,先求得考虑初始(静态)启动压力梯度的渗流方程解,获得包含启动压力梯度项的压力解析表达式。②以相同产量为约束条件,根据步骤①压力解析表达式求解压力,再求解渗透率,进而可求解出随渗透率变化的动态启动压力梯度。③将步骤②得到的渗透率和启动压力梯度代入步骤①的压力求解式,继续增加步长求解压力,至此即完成求解渗流场分布的一个完整步骤。④在此求解方法的基础上,结合压降叠加原理,每迭代计算一步,求解压力叠加结果,直至计算到极限半径终止迭代。
-
图2 交错井网典型注采单元
-
Fig.2 Typical injection-production unit with staggered well patterns
-
在弹性开发降压阶段结束时,输出渗流场计算结果(压力场、渗透率场、启动压力梯度场),以此数据作为注水开发升压阶段计算初始参数,同样使用稳定逐次迭代法结合压降叠加原理,得到注水开发升压阶段的渗流场分布。求解步骤如图3所示。
-
图3 渗流场求解步骤
-
Fig.3 Procedures for solving flow fields
-
1.3.1 弹性开发降压阶段的压力分布求解
-
对于(5)式,当地层中某口生产井压力传播半径为r1时,在rw与r1之间压力的表达式为:
-
对r求导,可得到压力梯度表达式为:
-
由于存在压力敏感效应,则在生产过程中,随着地层压力的变化,储层渗透率、启动压力梯度都是压力、距离的函数,压力从井底传播到距离r处后流体的渗流速度为:
-
根据产量和渗流速度的关系,可得到考虑启动压力梯度影响时产量公式为:
-
则联立(7),(8),(9)式,得到启动压力梯度和压力敏感影响的地层压力迭代表达式为:
-
对于注采单元内包含的8口井(图2),根据(10) 式,得单井压降为:
-
根据压降叠加原理,地层中任意一点压力可写为:
-
令 q=Q/h,结合(11)和(12)式,得到图2 井网条件下弹性开发降压阶段压力表达式为:
-
1.3.2 注水开发升压阶段的压力分布求解
-
在注水开发升压阶段,图2 井网中的中间 2 口油井转注,记注水井产生的压降为Δp水,角井产生的压降为Δp角,边井产生的压降为Δp边,渗流场初始计算压力为弹性开发降压阶段结束后的压力 p降( r),则注水开发升压阶段压力表达式可写为:
-
在这里,注水井定日注水量为qw,角井定日产液量为q1,边井定日产液量为q2。
-
注水开发升压阶段的渗流场,其求解方法与弹性开发降压阶段的求解方法相同,则该阶段渗流场任意一点(x,y)的压力表达式为:
-
将(15)式计算所得的数据平面离散化,记 x 方向网格数为 m,y 方向网格数为 n,任意网格处的压力表示为 p(ix,jy),则可求得渗流场压降叠加后在 x,y方向上压力梯度分别为:
-
对(16)式中 x 和 y 方向上压力梯度进行矢量合成,减去启动压力梯度可得到有效驱动压力梯度为:
-
2 注采单元中储量动用效果评价方法
-
2.1 动用范围表征
-
储层中的流体需要克服启动压力梯度才能流动,并且不同区域启动压力梯度不尽相同,储量有效动用的程度可以用压力梯度与启动压力梯度之差即有效驱动压力梯度来反映。有效驱动压力梯度越大,流体流动能力越强,储量动用效果越好。
-
在图2 所示的注采单元中,设单元控制总面积为 Ao,根据(17)式可计算任意位置处的有效驱动压力梯度, 对应的区域即为有效动用面积。当驱动压力梯度大于等于某一值 时,其等值线包络的储量动用面积为Apk。
-
为统一对比分析,定义无因次动用范围来表征注采单元的储量动用程度,其表达式为:
-
Dpk值越大,表示大于该有效驱动压力梯度下的储量动用范围越大。可以统计注采单元渗流场在不同驱动条件下的储量动用范围,绘制无因次动用范围与有效驱动压力梯度的关系曲线,来分析不同条件下的储量动用变化规律。
-
2.2 无因次有效动用强度的表征
-
定义有效动用强度来表征注采井网单元中整体储量有效动用强度。当有效驱动压力梯度大于 时,则有效动用强度表达式为:
-
由(19)式可知,通过计算不同有效驱动压力梯度与动用范围的乘积,可以反映出储层储量动用效果。为便于研究,将计算结果除以初始启动压力梯度,采用无因次储量有效动用强度表征储量动用效果,其表达式为:
-
由(20)式知,RD值越大,表示该条件下注采单元中的储量动用强度越高;可绘制不同条件下无因次有效动用强度的变化曲线,通过分析曲线的变化规律,进而确定储量有效动用的界限。
-
3 不同条件下注采单元储量有效动用规律
-
3.1 压力敏感和启动压力梯度对油藏渗流特性变化的影响
-
给出油藏初始渗透率为 K0,初始启动压力梯度为 G0,设定油藏各处生产参数的初始值相同。其他计算条件为:生产压差为 10 MPa,井距为 200 m,初始启动压力梯度为 0.01 MPa/m,介质变形系数为 0.02 MPa-1。在弹性开发降压阶段和注水开发升压阶段,对比分析不同条件下注采单元中的渗流场变化。
-
采用无因次渗透率变化幅度 K/K0、无因次启动压力梯度变化幅度 G/G0,来反映油藏渗流特性变化的相对状况。由结果(图4)分析可知:①在弹性开发降压阶段,整个渗流场渗透率呈下降趋势,越靠近生产井,K 降压/K0值越小,相对应区域的 G 降压/G0值就越大。②在注水开发升压阶段,中部油井转注后,K 升压/K0值整体提高,越靠近注水井提高越明显; 相对应区域的 G 升压/G0值就越小。③除注水井井底附近外,渗流场绝大部分区域K 降压没能恢复至K0,渗流场绝大部分区域 G 升压仍高于 G0,说明压力敏感对整个注采单元渗流特性参数的影响是长期的和普遍的。因此对于此类油藏,需要综合考虑弹性开发降压阶段和注水开发升压阶段对渗流场的影响,以储量有效动用最大为目标,定量确定不同条件下的合理技术策略。
-
图4 不同阶段、不同区域渗流参数变化
-
Fig.4 Variations of flow parameters in different stages and regions
-
3.2 压力敏感和启动压力梯度对注采渗流场分布的影响
-
考虑压力敏感和只考虑启动压力梯度对油藏渗流场分布的影响结果见图5。
-
从渗流场分布图可以看出:①无启动压力梯度与压力敏感时的渗流场符合经典渗流理论,流线由注水井汇集到生产井,井间压降消耗小,渗流场不存在滞留区。②只考虑启动压力梯度时,渗流场等压线、流线的分布发生明显改变;由于流体的流动需要克服一定的启动压力梯度,所以在注采井间消耗的压差增大,存在一定区域的滞留区。③同时考虑压力敏感、启动压力梯度的影响时,井间低压区的渗透率下降、启动压力梯度增大,加大了流体流动的渗流阻力,导致渗流场进一步变化,在油井排之间的滞留区和弱动用区的范围增大;而在注水井间压力较高,渗透率得到一定程度恢复,井间滞留区的范围变小。
-
图5 不同条件下渗流场分布及有效驱动压力梯度分布对比
-
Fig.5 Comparison of flow field distribution and distribution of effective driving pressure gradients under different conditions
-
3.3 储量有效动用规律
-
对储量有效动用规律进行研究时,参数取值分别为:生产压差控制在10 MPa,井距为100~400 m,初始启动压力梯度为 5×10-3~20×10-3 MPa/m,介质变形系数为0.01~0.04 MPa-1。
-
由不同条件下无因次动用范围和无因次有效动用强度的变化(图6)可以看出:①有效驱动压力梯度越高的区域(大于 0.02 MPa/m),流体流动能力越强,但对应无因次动用范围、无因次有效动用强度较小,中—较低有效驱动压力梯度区域(0.005~0.02 MPa/m),流体流动能力较小,但对储量有效动用强度贡献较高,是开发的重点区域。②井距、初始启动压力梯度、介质变形系数对储量动用效果的影响呈非线性的变化趋势;一般井距越小、初始启动压力梯度越小、介质变形系数越小,无因次动用范围越大、动用效果越好。③有效驱动压力梯度小于 0.005 MPa/m 的区域,在无因次动用范围曲线变化明显,而无因次有效动用强度曲线的斜率很小,说明该区域占据范围较大,但对整体储量动用效果影响较小,是开发调整的重点区域;可将0.005 MPa/ m 作为划分有效动用的界限,高于该值的区域定义为有效动用范围。
-
图6 不同条件下储量有效动用规律
-
Fig.6 Laws of effective reserve production under different conditions
-
4 实际油田合理井距确定
-
基于对储量有效动用规律研究的认识,针对实际油藏条件,确定其合理井距。JS油田具有较明显的压力敏感效应,取油藏基本计算参数包括:储层有效厚度为 15 m,原始地层压力为 35 MPa,储层原始平均渗透率为9.73 mD,原油黏度为4.0 mPa•s,初始启动压力梯度为 0.012 MPa/m,介质变形系数为 0.014 MPa-1。
-
保持注采平衡,计算不同井距下注采单元储量有效动用范围,结果如图7所示。
-
图7 JS油田储量有效动用范围变化规律
-
Fig.7 Variation laws of effective reserve production range in JS Oilfield
-
以有效驱动压力梯度为 0.005 MPa/m 作为有效动用需要的压力梯度界限,由图7a知,井距越小,渗流场有效动用范围的占比越大,中低动用范围提升越明显;由图7b知,井距越大,储量有效动用范围下降越快,在满足 JS 油田有效驱动压力梯度大于 0.005 MPa/m的前提下,储量有效动用范围大于0.7,设计井距不应超过 240 m;储量有效动用范围大于 0.6,设计井距不应超过275 m。
-
5 结论
-
基于典型注采井网单元,建立了考虑压力敏感效应影响的渗流模型,以计算压力敏感油藏不同开发阶段下的渗流场分布。建立了定量描述弹塑性油藏储量有效动用强度的评价方法,提出了储量有效动用界限,描述了启动压力梯度和压敏效应影响下渗流场驱动压力分布特征,定量分析了不同初始启动压力梯度、介质变形系数、井距影响下储量动用变化规律。结合实际油田开发条件及要求,制定了JS油田弹塑性油藏开发策略,若要保证储量有效动用范围大于 0.6,设计井距不能超过 275 m。所建立的方法综合考虑了多种因素的影响,计算简便、实用,具有较大的利用价值。
-
符号解释
-
A——渗流截面面积,m2;
-
Ao——单元控制总面积,m2;
-
Apk——储量动用面积,m2;
-
d——油井间的距离,m;
-
Dpk——无因次动用范围;
-
e——迭代精度,MPa/m;
-
G——油藏开发过程中启动压力梯度,MPa/m;
-
G 降压——弹性开发降压阶段启动压力梯度,MPa/m;
-
G 升压——注水开发升压阶段启动压力梯度,MPa/m;
-
G0——初始启动压力梯度,MPa/m;
-
h——储层有效厚度,m;
-
i——井编号;
-
k——迭代次数;
-
K——渗透率,mD;
-
K0——初始渗透率,mD;
-
K 降压——弹性开发降压阶段渗透率,mD;
-
K 升压——注水开发升压阶段渗透率,mD;
-
m,n——x,y方向网格数;
-
p——地层压力,MPa;
-
p1——距井底为r1的地层压力,MPa;
-
pe——原始地层压力,MPa;
-
p(ix,jy)——任意网格处的压力,MPa;
-
p(r)——开发阶段任意一点地层压力,MPa;
-
p(r,t)——开发阶段任意一点任意时间地层压力,MPa;
-
Δpo——单井压降,MPa;
-
pk——一定驱动压力梯度下的压力值,MPa/m;
-
pw——井底压力,MPa;
-
pwf——井底流压,MPa;
-
pwfi ——第i口井井底流压,MPa;
-
px——x方向压力,MPa;
-
py——y方向压力,MPa;
-
p升( r)——注水开发升压阶段压力,MPa;
-
p降( r)——弹性开发降压阶段压力,MPa;
-
Δpoi ——单井在地层任意一点的压降,MPa;
-
Δp水——注水井产生的压降,MPa;
-
Δp角——角井产生的压降,MPa;
-
Δp边——边井产生的压降,MPa;
-
q——单位厚度日产液量,m3 /(d·m);
-
qi ——第i口井日产液量,m3 /d;
-
qw——注水井定日注水量,m3 /d;
-
q1——角井定日产液量,m3 /d;
-
q2——边井定日产液量,m3 /d;
-
Q——日产量,m3 /d;
-
Q1——单井日产量,m3 /d;
-
r——距井底的距离,m;
-
r1——地层中某口生产井压力传播半径,m;
-
ri ——第i口井计算半径,m;
-
re——极限半径,m;
-
rw——井筒半径,m;
-
r 迭代——迭代半径,m;
-
RD——无因次储量有效动用强度;
-
t——时间,s;
-
TD——有效动用强度,MPa/m;
-
v——压力从井底传播到距离r处后流体的渗流速度,m/ s;
-
x,y——渗流场任意一点的横、纵坐标;
-
α——介质变形系数,MPa-1;
-
μ——地层原油黏度,mPa·s。
-
参考文献
-
[1] 张建国.油气层渗流力学[M].东营:石油大学出版社,2002:34-36. ZHANG Jianguo.Mechanics of oil and gas reservoir percolation [M].Dongying:Press of Petroleum University of China,2002:34-36.
-
[2] 阮敏,王连刚.低渗透油田开发与压敏效应[J].石油学报,2002,23(3):73-76.RUAN Min,WANG Liangang.Low permeability oilfield develop⁃ ment and pressure-sensitive effect[J].Acta Petrolei Sinica,2002,23(3):73-76.
-
[3] 陈民锋,王兆琪,张琪琛,等.启动压力影响下注采井间有效驱替规律[J].深圳大学学报:理工版,2017,34(1):91-97.CHEN Minfeng,WANG Zhaoqi,ZHANG Qichen,et al.Effective displacement rules for interwell with threshold pressure[J].Jour⁃ nal of Shenzhen University:Science and Engineering,2017,34(1):91-97.
-
[4] 李晓平.地下油气渗流力学[M].北京:石油工业出版社,2008:68-71.LI Xiaoping.Mechanics of underground oil and gas seepage[M].Beijing:Petroleum Industry Press,2008:68-71.
-
[5] 谢晓庆,姜汉桥,陈民锋,等.介质变形对低品位油藏开发的影响研究[J].西南石油大学学报:自然科学版,2009,31(1):65-69.XIE Xiaoqing,JIANG Hanqiao,CHEN Minfeng,et al.The effect on media deformation on lean reservoir development[J].Journal of Southwest Petroleum University:Science & Technology Edi⁃ tion,2009,31(1):65-69.
-
[6] 宋春涛.考虑应力敏感和启动压力梯度的低渗透油藏数值模拟研究[J].科学技术与工程,2012,12(25):6 319-6 326.SONG Chuntao.Numerical reservoir simulation considering threshold pressure gradient stress sensitive phenomenon[J].Sci⁃ ence Technology and Engineering,2012,12(25):6 319-6 326.
-
[7] 李承龙,赵国忠.基于压敏效应的变启动压力梯度面积井网产量计算模型[J].断块油气田,2020,27(3):327-334.LI Chenglong,ZHAO Guozhong.Production calculation model of areal well pattern with variable start-up pressure gradient based on pressure sensitive effect[J].Fault-Block Oil and Gas Field,2020,27(3):327-334.
-
[8] 祝明谦,王怒涛,张辉.启动压力梯度和应力敏感效应对油藏产能的影响[J].大庆石油地质与开发,2018,37(3):59-63.ZHU Mingqian,WANG Nutao,ZHANG Hui.Influences of the start-up pressure gradient and stress sensitive effect on the pro⁃ ductivity of the oil reservoir[J].Petroleum Geology & Oilfield De⁃ velopment in Daqing,2018,37(3):59-63.
-
[9] 陈民锋,王兆琪,张琪琛,等.低渗透弹塑性油藏压力分布特征及极限半径研究[J].复杂油气藏,2016,9(3):61-64.CHEN Minfeng,WANG Zhaoqi,ZHANG Qichen,et al.Study on pressure distribution characteristic and limit flow radius in lowpermeable elastoplastic reservoir[J].Complex Hydrocarbon Res⁃ ervoirs,2016,9(3):61-64.
-
[10] 杨子由,陈民锋,屈丹,等.特低渗透各向异性油藏井网加密储量动用规律[J].油气地质与采收率,2020,27(3):57-63.YANG Ziyou,CHEN Minfeng,QU Dan,et al.Reserve producing law of extra-low permeability anisotropic reservoirs with infilled well pattern[J].Petroleum Geology and Recovery Efficiency,2020,27(3):57-63.
-
[11] 姜瑞忠,张春光,崔永正,等.考虑压敏的双重介质分形油藏非线性渗流模型[J].断块油气田,2018,25(5):612-616.JIANG Ruizhong,ZHANG Chunguang,CUI Yongzheng,et al.Nonlinear flow model of dual-medium fractal reservoir consider⁃ ing pressure sensitivity[J].Fault-Block Oil and Gas Field,2018,25(5):612-616.
-
[12] 陈民锋,尹承哲,王振鹏,等.直井-水平井组合井网平面井间动用规律[J].深圳大学学报:理工版,2018,35(4):368-376. CHEN Minfeng,YIN Chengzhe,WANG Zhenpeng,et al.Interwell oil recovery in horizontal-vertical composed well pattern[J].Journal of Shenzhen University:Science and Engineering,2018,35(4):368-376.
-
[13] 魏杰.关于低渗透油藏应力敏感性的探讨[J].石化技术,2019,26(5):186-187.WEI Jie.Discussion on stress sensitivity of low permeability reser⁃voir[J].Petrochemical Industry Technology,2019,26(5):186-187.
-
[14] 柴汝宽,刘月田,王俊强,等.基于两相启动压力梯度和应力敏感的油藏油井产能模型研究[J].西安石油大学学报:自然科学版,2018,33(3):44-50.CHAI Rukuan,LIU Yuetian,WANG Junqiang,et al.Study on pro⁃ ductivity model of oil well in low-permeability reservoirs based on two-phase threshold pressure gradient and stress sensitivity [J].Journal of Xi’an Shiyou University:Natural Science Edition,2018,33(3):44-50.
-
[15] 李小益,刘德华.应力敏感实验评价结果与开发特征矛盾分析 [J].大庆石油地质与开发,2016,35(6):63-67.LI Xiaoyi,LIU Dehua.Contradiction analyses on the evaluation re⁃ sults of the pressure sensitivity experiment and development char⁃ acteristics[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2016,35(6):63-67.
-
[16] 苏彦春,陈民锋.低渗透压力敏感油藏储量有效动用规律研究 [J].陕西科技大学学报:自然科学版,2015,33(6):104-110.SU Yanchun,CHEN Minfeng.Study on effective drive mechanism in pressure-sensitive low permeability reservoir[J].Journal of Shaanxi University of Science and Technology:Natural Science Edition,2015,33(6):104-110.
-
[17] 葛宏选,党海龙,解伟,等.变形介质油藏非线性不稳定渗流特征研究[J].非常规油气,2015,2(3):50-57.GE Hongxuan,DANG Hailong,XIE Wei,et al.Non-linear unsta⁃ ble seepage flow in stress-sensitive reservoirs[J].Unconventional Oil & Gas,2015,2(3):50-57.
-
[18] 王敬,刘慧卿,刘仁静,等.考虑启动压力和应力敏感效应的低渗、特低渗油藏数值模拟研究[J].岩石力学与工程学报,2013,32(增2):3 317-3 327.WANG Jing,LIU Huiqing,LIU Renjing,et al.Numerical simula⁃ tion for low-permeability and extra-low permeability reservoirs with considering starting pressure and stress sensitivity effects[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(Supplement2):3 317-3 327.
-
[19] 刘顺,何衡,贺艳祥,等.低渗透油藏应力敏感实验数据处理方法对比[J].油气地质与采收率,2012,19(4):71-73,116.LIU Shun,HE Heng,HE Yanxiang,et al.Data processing correla⁃ tion on stress sensitivity experiment for low-permeability reser⁃ voirs[J].Petroleum Geology and Recovery Efficiency,2012,19(4):71-73,116.
-
[20] 谢晓庆,姜汉桥,王全柱,等.低渗透油藏压敏效应与注水时机研究[J].石油学报,2009,30(4):574-577,582.XIE Xiaoqing,JIANG Hanqiao,WANG Quanzhu,et al.Discus⁃ sion on pressure-sensitivity effect and water-flooding timing in low-permeability reservoir[J].Acta Petrolei Sinica,2009,30(4):574-577,582.
-
[21] 张宇,何鑫迪,李承龙.考虑变启动压力梯度的技术极限井距计算方法研究[J].复杂油气藏,2020,13(3):62-66.ZHANG Yu,HE Xindi,LI Chenglong.Study on calculation meth⁃ od of technical limit well spacing considering variable starting pressure gradient[J].Complex Hydrocarbon Reservoirs,2020,13(3):62-66.
-
[22] 计秉玉,李莉,王春艳.低渗透油藏非达西渗流面积井网产油量计算方法[J].石油学报,2008,29(2):256-261.JI Bingyu,LI Li,WANG Chunyan.Oil production calculation for areal well pattern of low-permeability reservoir with non-Darcy seepage flow[J].Acta Petrolei Sinica,2008,29(2):256-261.
-
[23] 贾品,李壮,尹恒飞,等.高地饱压差油藏应力敏感特征及定量表征研究[J].特种油气藏,2021,28(2):150-155.JIA Pin,LI Zhuang,YIN Hengfei,et al.Study on the stress sensi⁃ tivity characteristics and quantitative characterization of oil reser⁃ voir with high formation saturation pressure difference[J].Special Oil & Gas Reservoirs,2021,28(2):150-155.
-
[24] 陈存良,马奎前,王相,等.基于最大注水效率的平面均衡驱替方法[J].石油钻探技术,2021,49(3):124-128.CHEN Cunliang,MA Kuiqian,WANG Xiang,et al.Research on the planar equilibrium displacement based on maximum water in⁃ jection efficiency[J].Petroleum Drilling Techniques,2021,49(3):124-128.
-
[25] 田虓丰.考虑岩石压缩系数应力敏感的能量补充时间[J].断块油气田,2019,26(2):192-194,268.TIAN Xiaofeng.Energy replenishment time considering rock com⁃ pressibility stress sensitivity[J].Fault-Block Oil and Gas Field,2019,26(2):192-194,268.
-
[26] 杨明,刘英宪,陈存良,等.复杂断块油藏不规则注采井网平面均衡驱替方法[J].断块油气田,2019,26(6):756-760.YANG Ming,LIU Yingxian,CHEN Cunliang,et al.Equilibrium displacement of irregular injection-production pattern in complex fault block reservoir[J].Fault-Block Oil and Gas Field,2019,26(6):756-760.
-
摘要
一般弹塑性油藏存在启动压力梯度和压力敏感效应,使得开发过程中渗透率发生变化,因此,其渗流特征和储量有效动用规律与常规油藏相比存在很大差异,导致常规井网井距设计方法不能满足实际开发需求。基于经典渗流力学理论,建立典型注采井网条件下考虑压力敏感效应、启动压力梯度影响的渗流模型,并采用稳定逐次替换法得到注采渗流场分布规律;根据弹塑性油藏特点,建立储量有效动用效果的评价方法,得到不同条件下储量有效动用界限。结果表明,受到压力敏感、启动压力梯度的影响,注采单元中的储量动用范围、有效动用强度存在明显的变化;在给定油藏开发条件下,确定了储量有效动用界限,并计算得到满足储量有效动用目标的注采井距变化图版,可为油田井网优化设计提供理论依据。
Abstract
Generally,elastoplastic reservoirs have threshold pressure gradients and pressure-sensitive effects that can change the permeability during development. Therefore,their flow characteristics and the effective production laws of re- serves are dramatically different from those of conventional reservoirs,and the design methods for conventional well pat- terns and spacing cannot meet the actual development requirements. Based on the traditional mechanics of fluid flow in po- rous media,a flow model considering the influence of the pressure-sensitive effects and threshold pressure gradients was built with the typical injection-production well pattern,and the distribution law of injection-production flow fields was ob- tained using the steady successive substitution method. According to the characteristics of elastoplastic reservoirs,an evalu- ation method for the effective production effect of reserves was proposed,and the effective production limit of reserves un- der different conditions was obtained. The results show that the production range and effective production intensity of re- serves in injection-production units have obvious changes under the influence of pressure sensitivity and threshold pres- sure gradients. In given reservoir development conditions,the limit of effective reserve production is determined,and the change chart of inject-production well spacing that can achieve the target of effective reserve production is obtained through calculation,providing a theoretical basis for the optimization design of well patterns in oilfields.