-
大庆油田三类油层是指有效厚度小于1.0 m、有效渗透率小于0.1 D的表内薄层和表外储层[1-3]。三类油层地质储量占大庆长垣喇萨杏油田总地质储量的 44.6%,目前以水驱开发为主,采出程度为 39%,剩余储量大,是油田未来重要的产量接替潜力[4-5]。三类油层以三角洲内、外前缘沉积为主,与一、二类油层相比渗透率低、连通性差、纵向渗透率级差大、非均质性强,这就导致注入化学剂容易沿着高渗透油层发生突进,产生高渗透水淹通道,进而加剧低效无效循环,使低渗透油层不能被有效波及,造成化学驱效果差、采收率低[6-12]。因此仅通过一次性化学驱开发不能使低渗透油层得到充分动用[13],亟需攻关适用于三类油层的化学驱开采模式[14-15]。针对低渗透油层波及系数低的问题,开展了分期化学驱开采室内实验研究,利用非均质平面模型分期化学驱实验,分别对比了笼统化学驱开采与分期化学驱开采对三类油层开发效果的影响,创新形成了分期化学驱开采模式,利用该模式在北二区东部高台子油层进行了现场应用,分两期开展化学驱,一期主要对有效厚度小于 0.5 m、有效渗透率小于 0.05 D 的薄差油层和表外储层进行聚合物驱,二期在一期基础上补射高Ⅰ10-高Ⅱ14 油层,对有效厚度大于0.5 m、有效渗透率大于0.05 D的油层进行笼统弱碱三元复合驱。
-
1 分期化学驱开采室内实验
-
1.1 实验材料
-
实验用油为大庆油田北Ⅰ-1 联合站原油与航空煤油配制成的模拟油(45℃条件下黏度为 7.1 mPa•s)。实验用水为室内配制模拟大庆地层水,矿化度为 4 456 mg/ L,其中 NaCl,KCl,CaCl2,MgCl2 · 6H2O,Na2SO4,NaHCO3的质量浓度分别为2 294,13, 42,172,75,1 860 mg/L。聚合物为相对分子质量为 900×104 的部分水解聚丙烯酰胺(HPAM)、相对分子质量为 800×104 的低分抗盐聚合物(大庆炼化公司生产),表面活性剂为有效物质量分数为 50% 的石油磺酸盐(大庆炼化公司生产),碱为分析纯碳酸钠,活性水体系配方为 0.3% 表面活性剂,弱碱三元复合体系配方为 0.3% 表面活性剂+1.2% 碱+1 300 mg/L聚合物(相对分子质量为900×104 的HPAM)。
-
1.2 实验仪器
-
实验仪器包括:大型岩心压制机(江苏海安石油科研仪器有限公司)、HAS-100HSB型恒压恒速泵 (江苏华安科研仪器有限公司)、HW-II 型恒温箱 (江苏海安石油科研仪器有限公司)、六通、3个容量为1 L的高压中间容器、电阻率测试仪(80通道)、压力传感器、数据采集系统以及所需耐压阀门、管线、玻璃量筒若干。
-
1.3 实验模型
-
三层层内非均质平面岩心模型(图1)规格为 50 cm×50 cm×5 cm,露头砂压制,环氧树脂胶结,采用一注四采式五点法井网布置,中间为注入井,四角为采出井。K1,K2,K3 层的有效渗透率分别为 0.06,0.12,0.24 D,K1,K2,K3 层厚度比为 1∶1∶2,模型低、中、高渗透油层依次对应大庆油田三类、二类、一类油层;测压点共37个,每层在主流线方向各布置 2 个、边缘流线方向布置 4 个(图2);电阻率测量点共 80个,K1层 26个,K2,K3层各 27个,每相邻三对电极插在不同层位中,从而均匀测量各层电阻率(图3)。
-
图1 非均质平面岩心模型设计
-
Fig.1 Design of heterogeneous planar core model
-
1.4 实验方案
-
全部方案均采用层内非均质三维模型,每个方案使用 1 个模型,共 4 个。方案 1 为笼统注入,依次进行水驱、弱碱三元复合驱、保护段塞聚合物驱、后续水驱 4个阶段至含水率为 98% 结束。方案 2,3,4 在方案 1 的基础上,在笼统水驱阶段和笼统弱碱三元复合驱阶段之间增加了分期开采阶段,在该阶段关闭 K3 层,仅开采 K1 和 K2 层,但不同方案注入体系不同,其中方案 2注入模拟地层水、方案 3注入活性水、方案 4 注入低分抗盐聚合物,至含水率达 98%,补射开 K3 层,再依次进行笼统弱碱三元复合驱、保护段塞聚合物驱和后续水驱,至含水率为 98%结束(表1)。分析各方案采出液性质、压力、含油饱和度变化规律。
-
图2 模型测压点分布
-
Fig.2 Distribution of pressure measuring points of model
-
图3 模型电阻率测量点平面分布
-
Fig.3 Planar distribution of resistivity measurement points of model
-
1.5 实验步骤
-
实验步骤包括:①在45℃恒温下将模型抽真空并饱和地层水,测量孔隙度。饱和油建立束缚水饱和度,老化 5 d;②保持注入速度为 0.2 mL/min 开始驱替,进行笼统水驱;③方案 1 直接进入步骤④,方案 2,3,4 按方案设计先对 K1 和 K2 层开发,分别注入水、活性水、低分抗盐聚合物;④依次进行 0.3 PV 笼统弱碱三元复合驱、0.2 PV 笼统保护段塞聚合物驱和笼统后续水驱。
-
实验过程中记录测压点压力变化,测量电阻率,得出含油饱和度分布场,同时计量采出端含水率等。
-
2 实验结果与分析
-
2.1 采出动态
-
对比不同开采模式采出动态曲线(图4)和提高采收率效果(表2)可知,在笼统水驱阶段,全部方案均表现出注入压力先升高后降低,然后趋于稳定,采出程度逐渐增大,直至含水率达到 98%。在分期开采阶段,方案 2 和 3 注入压力、含水率、采出程度均无明显变化,采出程度仅提高 0.5% 和 1.2%,原因在于层内非均质岩心存在层间窜流,在重力影响下流体趋向流入 K3层[16-18];而方案 4因注入了具有流度调节能力的低分抗盐聚合物,注入压力迅速升高、含水率明显下降[19],采出程度稳步提升,注入量高达 0.7 PV,提高采收率 16.4%;在笼统弱碱三元复合驱阶段,方案1,2,3都表现出注入压力上升、含水率下降、采出程度提高,最终采收率分别为 58.5%, 59.1%和61.9%,而方案4注入压力开始平稳小幅降低,含水率经历了二次降低和回升,但含水率下降幅度与采收率提高值都低于分期开采阶段,原因是分期开采阶段的低分抗盐聚合物驱已经对含油饱和度较高的 K1 和 K2 层进行了一定程度驱替,降低了含油饱和度,削弱了后续笼统弱碱三元复合驱提高采收率的效果[20-21],最终采出程度达 65.8%。可以判定在笼统弱碱三元复合驱之前对中、低渗透油层进行聚合物驱可以较大程度上提高非均质正韵律地层的原油采收率。
-
2.2 压力变化
-
对比主流线方向沿程各层压力变化(图5)发现,由于纵向非均质性,流量在不同层位分配上也存在差异性,压力整体表现为 K3 层>K2 层>K1 层。方案1,2,3在K1层全过程压力较低,仅在笼统弱碱三元复合驱阶段压力小幅升高,说明方案 2 和 3 分期开采阶段与方案 1 笼统注水阶段对 K1 层动用差别不大,都没有明显改善高渗透油层的突进现象; 而方案 4 分期开采阶段,K1 层压力显著升高,说明低分抗盐聚合物进入K2,K3层(中、高渗透油层)后发挥流度控制作用,促使一部分聚合物进入 K1 层 (低渗透油层),对低渗透油层起到更好的动用效果,使油藏整体波及体积更大、驱替效率更高。
-
图4 不同开采模式采出动态曲线
-
Fig.4 Dynamic production performance curve at different production modes
-
2.3 采出液黏度变化
-
对比各方案采出液黏度变化(图6)可知,方案 1,2,3从笼统弱碱三元复合驱开始,经过0.3~0.4 PV 后,采出液黏度开始升高,对比含水率曲线,得出段塞在岩心内黏度最高阶段对应着含水率大幅下降阶段,黏度最高值都约为 16~18 mPa·s,低于注入端初始黏度(25 mPa·s),这是由于注入过程中存在剪切、吸附、滞留等影响,另外也是由于注入弱碱三元复合体系和保护段塞会与前后段塞接触而造成溶解稀释。方案4由于分期开采阶段进行低分抗盐聚合物驱,采出液黏度高值持续时间更长(0.4~1.5 PV),且黏度最高值达到 20 mPa·s,高于其他方案,原因在于分期低分抗盐聚合物驱注入量大,对弱碱三元段塞起保护作用,使段塞黏度损失减少。地层内驱替液黏度越高,水油流度比越大,波及体积就越大[22],更大程度上减小了层间非均质性对化学驱的影响,使化学驱达到更好的提高采收率效果,所以方案4提高采收率值最大。
-
2.4 含油饱和度场变化
-
实验过程中利用电阻率测量点对模型各层不同位置的电阻率进行测量,通过地层水导电性质,建立与含油饱和度之间的关系[23],其表达式为:
-
通过测量得到地层水电阻率为 3 500 Ω·m,同时测量不同油水配比值下流体通过模型时的电阻率,回归得到岩性相关无量纲参数 b为 1.5×108,n为 3.7,得到含油饱和度计算公式为:
-
根据实验测得不同开采模式不同注入阶段含油饱和度数据,利用作图软件得到含油饱和度场。对比笼统水驱与分期注入结束时各层含油饱和度场(图7)可知,由于层间非均质性所产生的渗透率差异,各方案整体都表现出K3层驱替效果最好,K2 层次之,K1 层最差[24],且驱替后同时存在残余油和剩余油,残余油主要集中在油水井主流线方向上,剩余油主要存在于相邻采出井之间的未波及非主流线区域[25];方案 2 和 3 各层分期开采阶段与笼统水驱时含油饱和度场无明显变化,说明方案 2 和 3 分期开采阶段注入体系对油层整体开发效果微弱。而方案 4各层含油饱和度均有明显下降,K1层含油饱和度由 56.8% 降低至 43.8%,K2 层由 36.1% 降低至 26.1%,K3层由 31.4%降低至 22.3%。说明方案 4 分期开采阶段可同时提高各层波及体积,且低渗透油层含油饱和度降低最为显著。由于分期开采阶段K2,K3层滞留了大量聚合物,后续进行笼统弱碱三元复合驱时可起到流度调控作用,使K1层得到进一步动用。
-
图5 不同开采模式主流线方向沿程各层压力变化
-
Fig.5 Pressure variation curve of each reservoir along mainstream direction at different production modes
-
图6 不同开采模式采出液黏度变化曲线
-
Fig.6 Viscosity variation curve of produced fluids at different production modes
-
2.5 影响因素分析
-
实验模型为正韵律,纵向上层间渗透率差异明显,方案 2,3,4 都是在笼统水驱后率先开发 K1 和 K2层,其中方案2和3分别进行水驱和活性水驱,注入流体没有流度调节能力,只对K3层进行多轮次驱替,无法有效启动K1,K2层;而方案4在此阶段进行低分抗盐聚合物驱,可对流度进行调整,明显增大低渗透油层波及体积[26]。因此,针对非均质油层,进行化学驱分期开采,先对中、低渗透油层进行聚合物驱,能够有效缓解层间矛盾,改善流度比,扩大波及体积,后续进行笼统弱碱三元复合驱开采,可进一步提高洗油效率,从而提高采收率。
-
3 现场应用
-
3.1 基本情况
-
结合室内分期开采研究成果,在北二区东部三类油层开展分期化学驱试验。试验区开采高台子油层,采用五点法井网、注采井距为 125 m,规模为注入井 12 口、采出井 14 口。一期开采有效厚度小于 0.5 m、有效渗透率小于 0.05 D 的薄差油层,有效厚度为4.0 m,平均有效渗透率为0.05 D,开展中-低分聚合物驱;二期利用原井网补射开高Ⅰ10到高Ⅱ 14 油层组中有效厚度大于 0.5 m 的油层,有效厚度为 7.8 m,平均有效渗透率为 0.11 D,开展笼统弱碱三元复合驱。
-
3.2 效果分析
-
一期注入聚合物相对分子质量为 600×104的HPAM,注入量为 0.73 PV,黏度为 23.7 mPa•s,聚合物用量为616 mg/L•PV,采油井全部见效,提高采收率4.8%;二期笼统弱碱三元复合驱注入聚合物为相对分子质量为800×104 的HPAM,表面活性剂是质量分数为 0.3% 的石油磺酸盐,碱是质量分数为 1.2% 的弱碱 Na2CO3 [27],注入量为 0.78 PV,黏度为 32.0 mPa•s,采油井全部见效,提高采收率 6.3%。一、二期整体提高采收率 9.5%,预计最终可提高采收率 12% 以上。试验区利用老井开展试验,税后收益率为34.5%,各项指标均好于行业基准,取得了显著的技术经济效果。
-
3.2.1 注入状况
-
一期注聚合物试验过程注入井能够连续注入,最高注入压力比水驱时上升 3.3 MPa,上升幅度为 35.9%,比吸水指数平均为 0.41 m3 /(d·MPa·m),较水驱时下降 0.46 m3 /(d · MPa · m),下降幅度为 59.0%;二期笼统弱碱三元复合驱试验在弱碱三元复合驱阶段与水驱时相比,注入压力上升 3.0 MPa,上升幅度为 32.3%,比吸水指数平均为 0.45 m3 /(d· MPa·m),较水驱下降0.42 m3 /(d·MPa·m),下降幅度为 53.2%。与一期注聚合物试验对比,二期笼统弱碱三元复合驱试验注入能力更强(图8,图9)。
-
3.2.2 采出状况
-
一期注聚合物试验中,随着采油井含水率逐渐下降,产液量表现为注聚合物初期下降,后随着采油井见效,产液量上升,平均产液指数为 4.6 t/(d· MPa),含水率最大降幅为 7.9%;二期笼统弱碱三元复合驱试验平均产液指数为 5.8 t/(d·MPa),产液能力高于一期,但含水率最大降幅仅为 3.3%,小于一期,与室内实验规律一致(图10,图11)。
-
4 结论
-
针对非均质三类油层优选不同提高采收率开采模式,得出在进行笼统水驱后,先对中、低渗透油层进行低分抗盐聚合物驱,再补射开高渗透油层进行笼统弱碱三元复合驱的最终采收率最高,达到 65.8%。笼统弱碱三元复合驱前先对中、低渗透油层进行低分抗盐聚合物驱可有效波及低渗透油层,充分启动三类油层剩余油,大幅度提高原油采收率,且注入体系应尽早提高波及体积,从而保证提高采收率效果。在北二区东部高台子油层开展化学驱分期试验,二期笼统弱碱三元复合驱试验比一期聚合物驱试验注采能力更强,含水率最大降幅小于一期,试验区整体预计最终可提高采收率 12% 以上。
-
图7 方案2,3,4分期注入前后含油饱和度场对比
-
Fig.7 Comparison of oil saturation fields before and after staged injection at modes2,3,and 4
-
图8 一、二期注入压力对比曲线
-
Fig.8 Comparison curve of injection pressure in Stage I and Stage II
-
图9 一、二期比吸水指数对比曲线
-
Fig.9 Comparison curve of specific injectivity index in Stage I and Stage II
-
图10 一、二期含水率对比曲线
-
Fig.10 Comparison curve of water cut at Stage I and Stage II
-
图11 一、二期产液指数对比曲线
-
Fig.11 Comparison curve of production index at Stage I and Stage II
-
符号解释
-
IR——电阻率比值;
-
Rw——地层水电阻率,Ω·m;
-
Rt ——含油岩石电阻率,Ω·m;
-
Sw——含水饱和度,%;
-
So——含油饱和度,%;
-
b,n——与地层岩石性质有关的参数。
-
参考文献
-
[1] 张晓芹,关恒,王洪涛,等.大庆油田三类油层聚合物驱开发实践[J].石油勘探与开发,2006,33(3):374-377.ZHANG Xiaoqin,GUAN Heng,WANG Hongtao,et al.Practice of tertiary-main layers polymer flooding in Daqing Oilfield[J].Petro⁃ leum Exploration and Development,2006,33(3):374-377.
-
[2] 张仲宏,杨正明,刘先贵,等.低渗透油藏储层分级评价方法及应用[J].石油学报,2012,33(3):437-441.ZHANG Zhonghong,YANG Zhengming,LIU Xiangui,et al.A grading evaluation method for low-permeability reservoirs and its application[J].Acta Petrolei Sinica,2012,33(3):437-441.
-
[3] 赵凯鑫.特高含水期三类油层剩余油分布与挖潜[J].大庆石油地质与开发,2014,33(3):60-63.ZHAO Kaixin.Distribution and potential tapping for the remained oil in classⅢreservoir at the extra-high watercut stage[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2014,33(3):60-63.
-
[4] 张彦辉,曾雪梅,王颖标,等.大庆油田三类油层聚合物驱数值模拟研究[J].断块油气田,2011,18(2):232-234.ZHANG Yanhui,ZENG Xuemei,WANG Yingbiao,et al.Numeri⁃ cal simulation of polymer flooding in ClassⅢreservoir of Daqing Oilfield[J].Fault-Block Oil and Gas Field,2011,18(2):232-234.
-
[5] 张立娟,岳湘安,贺丰果.大庆喇萨杏三类油层注聚可行性分析[J].钻采工艺,2009,32(1):49-52.ZHANG Lijuan,YUE Xiang’an,HE Fengguo.Analysis of feasibil⁃ ity of polymer flooding in La-sa-xing tertiary-main layers[J].Drilling & Production Technology,2009,32(1):49-52.
-
[6] FAN Z Z,WANG M,WANG J G,et al.Study on oil displacement efficiency of binary compound flooding in heterogeneous reservoir [J].Energy and Power Engineering,2015,7(12):570-573.
-
[7] 王成俊,洪玲,高瑞民,等.低渗透油藏提高采收率技术现状与挑战[J].非常规油气,2018,5(3):102-108.WANG Chengjun,HONG Ling,GAO Ruimin,et al.Status-quo and challenges of enhanced oil recovery in low permeability reser⁃ voirs[J].Unconventional Oil & Gas,2018,5(3):102-108.
-
[8] 闫文华,姚振杰,石晓博,等.三类油层弱碱三元复合体系动态驱油实验研究[J].特种油气藏,2013,20(2):102-104,114.YAN Wenhua,YAO Zhenjie,SHI Xiaobo,et al.Experimental study on the displacement of oil by ASP weak alkali system in class Ⅲ reservoirs[J].Special Oil & Gas Reservoirs,2013,20(2):102-104,114.
-
[9] 陈刚,宋莹盼,唐德尧,等.表面活性剂驱油性能评价及其在低渗透油田的应用[J].油田化学,2014,31(3):410-413,418.CHEN Gang,SONG Yingpan,TANG Deyao,et al.Evaluation and application of a new surfactant oil-displacing agent in low perme⁃ ability oilfield[J].Oilfield Chemistry,2014,31(3):410-413,418.
-
[10] 李瑞冬,王冬梅,张子玉,等.复合表面活性剂提高低渗透油田采收率研究[J].油田化学,2013,30(2):221-225.LI Ruidong,WANG Dongmei,ZHANG Ziyu,et al.Studies on sur⁃ factant enhanced oil recovery for low permeability oilfield[J].Oil⁃ field Chemistry,2013,30(2):221-225.
-
[11] MA Y F,HOU J R,ZHAO F L,et al.Linearly descending viscosity for alkaline-surfactant-polymer flooding mobility modification in multilayer heterogeneous reservoirs[J].RSC Advances,2018,8(15):8 269-8 284.
-
[12] ZHAO F L,MA Y F,HOU J R,et al.Feasibility and mechanism of compound flooding of high-temperature reservoirs using organic alkali[J].Journal of Petroleum Science & Engineering,2015,135(8):88-100.
-
[13] 张忠林,王成俊.延长油田特低渗油藏新型驱油剂研究进展 [J].应用化工,2018,47(6):1 246-1 249,1 253.ZHANG Zhonglin,WANG Chengjun.Research progress on new oil-displacing agent in extra-low-permeability reservoir in Yan⁃ chang oilfield[J].Applied Chemical Industry,2018,47(6):1 246-1 249,1 253.
-
[14] 袁士义,王强.中国油田开发主体技术新进展与展望[J].石油勘探与开发,2018,45(4):657-668.YUAN Shiyi,WANG Qiang.New progress and prospect of oil⁃ fields development technologies in China[J].Petroleum Explora⁃ tion and Development,2018,45(4):657-668.
-
[15] 廖广志,王强,王红庄,等.化学驱开发现状与前景展望[J].石油学报,2017,38(2):196-207.LIAO Guangzhi,WANG Qiang,WANG Hongzhuang,et al.Chemi⁃ cal flooding development status and prospect[J].Acta Petrolei Si⁃ nica,2017,38(2):196-207.
-
[16] 王友启,于洪敏,刘平,等.低渗透油藏聚合物驱启动压力梯度研究[J].中国石油大学学报:自然科学版,2015,39(4):126-130.WANG Youqi,YU Hongmin,LIU Ping,et al.Start-up pressure gradient of polymer flooding in low permeability reservoirs[J].Journal of China University of Petroleum:Edition of Natural Sci⁃ ence,2015,39(4):126-130.
-
[17] 杨二龙,宋考平.大庆油田三类油层聚合物驱注入速度研究 [J].石油钻采工艺,2006,28(3):45-49.YANG Erlong,SONG Kaoping.Study on injection rate of third lev⁃ el formation with polymer flooding in Daqing Oilfield[J].Oil Drill⁃ ing & Production Technology,2006,28(3):45-49.
-
[18] 罗健辉,王平美,彭宝亮,等.低渗透油田水驱扩大波及体积技术探讨[J].油田化学,2017,34(4):756-760.LUO Jianhui,WANG Pingmei,PENG Baoliang,et al.Discussion on expanding swept volume technique of water flooding in low per⁃ meability oilfield[J].Oilfield Chemistry,2017,34(4):756-760.
-
[19] 宋国亮,张承丽,魏明国.喇嘛甸油田三类油层三元复合驱注入方案优选研究[J].科学技术与工程,2012,12(6):1 397-1 399,1 402.SONG Guoliang,ZHANG Chengli,WEI Mingguo.The research on optimizing the plans of ASP flooding injection for classⅢreservoir in Lamadian oil field[J].Science Technology and Engineering,2012,12(6):1 397-1 399,1 402.
-
[20] KO K M,CHON B H,JANG S B,et al.Surfactant flooding charac⁃ teristics of dodecyl alkyl sulfate for enhanced oil recovery[J].Jour⁃ nal of Industrial and Engineering Chemistry,2014,20(1):228-233.
-
[21] DEMIKHOVA I I,LIKHANOVA N V,HERNANDEZ PEREZ J R,et al.Emulsion flooding for enhanced oil recovery:Filtration model and numerical simulation[J].Journal of Petroleum Science and Engineering,2016,143:235-244.
-
[22] 李宗阳,谭河清,李林祥,等.聚合物驱后期油藏注采耦合技术提高采收率研究及应用[J].油气地质与采收率,2019,26(6):115-121.LI Zongyang,TAN Heqing,LI Linxiang,et al.Research and appli⁃ cation of injection-production coupling technology for enhancing oil recovery in reservoirs at later stage of polymer flooding[J].Pe⁃ troleum Geology and Recovery Efficiency,2019,26(6):115-121.
-
[23] 高天放.特低渗透油藏平面物理模拟方法研究[D].廊坊:中国科学院研究生院(渗流流体力学研究所),2014.GAO Tianfang.Research on plane physical simulation methods of ultra-low permeability reservoir[D].Langfang:Institute of Porous Flow & Fluid Mechanics,Chinese Academy of Sciences,2014.
-
[24] 徐冰.纵向非均质储层凝胶调剖剩余油分布特征实验研究[J].油气地质与采收率,2020,27(6):71-80.XU Bing.Experimental study on distribution characteristics of re⁃ maining oil in vertical heterogeneous reservoirs by gel profile con⁃ trol[J].Petroleum Geology and Recovery Efficiency,2020,27(6):71-80.
-
[25] 王刚,刘斌,王欣然,等.渤海X油田聚驱后不同化学驱注入段塞优选及剩余油分布研究[J].石油地质与工程,2018,32(1):91-93.WANG Gang,LIU Bin,WANG Xinran,et al.Optimization of dif⁃ ferent chemical flooding injection slug after polymer flooding and remaining oil distribution[J].Petroleum Geology and Engineer⁃ ing,2018,32(1):91-93.
-
[26] 韩培慧,张东,潘峰,等.大庆油田抗盐聚合物驱矿场试验[J].大庆石油地质与开发,2021,40(6):95-105.HAN Peihui,ZHANG Dong,PAN Feng,et al.Field test of the salt-resistant polymer in Daqing Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(6):95-105.
-
[27] 姜丽丽.乳化作用对弱碱三元复合驱增油效果的影响[J].大庆石油地质与开发,2021,40(4):119-124.JIANG Lili.Influence of emulsification on oil increment effect of weak alkali ASP flooding[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2021,40(4):119-124.
-
摘要
大庆油田三类油层地质储量大,占大庆长垣喇萨杏油田总地质储量的比例接近一半,具有厚度薄、渗透率低、连通性差、非均质性严重等地质特点。为了使化学驱实现高、低渗透油层同步驱替,达到储层均衡受效的目的,开展了室内平面模型驱替实验,对比了三类油层不同开采模式下提高采收率效果,优选出分期化学驱开采模式并应用于现场,一期优先对有效厚度小于0.5 m、有效渗透率小于0.05 D的薄差油层和表外储层进行聚合物驱,二期补射开其余油层进行笼统弱碱三元复合驱。研究结果表明:在室内实验中,对中、低渗透油层进行分期聚合物驱,最终采收率达65.8%。北二区东部高台子油层分期化学驱现场应用结果表明,试验区整体预计提高采收率12%以上,取得显著效果。
Abstract
Class III reservoirs in Daqing Oilfield account for nearly half of the total reserves in La-Sa-Xing Oilfield of Daq- ing Placanticline,which have geological characteristics including thin thickness,low permeability,poor connectivity,and serious heterogeneity. For the synchronous displacement of high-and low-permeability oil reservoirs by chemical flooding and balanced reservoir efficiency,the displacement experiment with a laboratory plane model was carried out and the devel- opment effects of enhanced oil recovery(EOR)technology were compared at different production modes in Class III reser- voirs. As a result,the staged chemical flooding production mode was selected and applied in oilfields.In the first stage,poly- mer flooding was performed in thin and poor oil reservoirs with effective thickness less than 0.5 m and effective permeabili- ty less than 0.05 D and untabulated oil reservoirs. In the second stage,commingled weak-alkalinity ASP flooding was car- ried out in other oil reservoirs by supplement perforation. The results show that in laboratory experiments,staged polymer flooding for medium-and low-permeability oil reservoirs registers ultimate recovery of up to 65.8%. The field application of staged chemical flooding in Gaotaizi reservoir of Beierdong Block indicates that the overall ultimate recovery is expected to increase by more than 12% in the test area,and remarkable results have been achieved.
Keywords
Class III reservoirs ; chemical flooding ; staged production ; field test