-
近年来,随着中国社会经济高速发展,石油消费量持续增长,其供需矛盾日益突出,2020 年中国石油对外依存度已高达 73%,加大油气开发力度,保障国家能源安全已刻不容缓[1-2]。中国约 46% 的油气资源集中在低渗透储层[3],且新增探明石油地质储量中低渗透油藏占比达 80%~90%[4],低渗透油藏油气资源的高效开发对确保中国油气可持续发展具有十分重要的战略意义。自然资源部统计结果显示,中国低渗透油藏石油地质储量超过140× 108 t [2],主要分布在鄂尔多斯、塔里木、四川和松辽等盆地,其中以鄂尔多斯盆地低渗透油藏占比最大[5-7]。
-
延长油田地处鄂尔多斯盆地东南部,作为中国典型的低渗透油田,主要具有以下特点:①储层物性差,渗透率小于10 mD的储层占86%,多数油井压裂后才具备工业产能。②地层能量低,油井产量递减快,累计产油量低。③储层非均质性强,天然微裂缝和受压裂改造形成的人工裂缝普遍存在,注水开发易水窜、水淹[8]。当前,延长油田低渗透油藏开发以水驱为主,由于注入压力高、注入能力差和水窜等造成地层能量补充困难,且难以建立有效驱替系统,平均单井日产油量仅为 0.43 t/d,水驱采收率仅为 14.2%。为提升低渗透油藏的开发效果,延长油田通过积极探索和技术攻关,开展了CO2驱、空气泡沫驱、生物活性复合驱和微生物驱技术矿场应用与示范,均取得了较好的效果。
-
1 CO2驱提高采收率技术
-
延长油田结合企业煤-气-油综合发展产业布局及其综合利用、深度转化的特色,通过开展 CCUS 全流程一体化技术攻关,扩展了低渗透油藏 CO2非混相驱理论,提出了低渗透油藏提高 CO2驱混相程度技术,创建了CO2驱立体均衡动用技术,建成了注气能力为15×104 t/a的CO2驱油与封存示范工程,矿场取得了较好的CO2驱油与封存效果。延长油田将煤化工 CO2减排和 CO2资源化利用有力结合,成功开创了陕北地区煤化工低碳发展和油气资源绿色高效开发联动发展的产业模式。
-
1.1 驱油理论
-
延长油田是典型低压油藏,地层压力系数仅为 0.6~0.8,同时由于油藏前期主要依靠天然能量开发,地层压力保持水平低,导致 CO2驱混相程度低,故 CO2难以与地层原油混相。另外,储层天然微裂缝较发育和人工裂缝普遍存在的特点造成CO2驱油过程易发生气窜。因此,提高 CO2驱混相程度和有效控制气窜是提高CO2驱油效果的关键。
-
延长油田主力层位地层压力保持水平为 0.32~0.9,CO2驱混相程度多为 0.2~0.7(图1),主要为 CO2非混相驱。研究认为,在非混相驱条件下,CO2具有显著的“溶蚀增渗、润湿促渗”作用,以靖边乔家洼长 6油层为例,CO2与地层水和富含伊利石、绿泥石等酸性矿物的储层岩石长期作用后,岩石渗透率最高可增大24.38%,润湿角减小10°~20° [9-12]。为进一步提高 CO2非混相驱油效果,提出了通过降低 CO2 与原油最小混相压力和CO2灌注的双向技术合力来提高地层 CO2驱混相程度。实验结果表明,与单一助剂相比,“乙醇+乙二醇丁醚”复配型助剂降低CO2 与原油最小混相压力效果更好,以吴起白豹长 9 油层为例,注入该助剂 0.01 PV 后,CO2与原油最小混相压力降低 16.62%,CO2驱混相程度提高 0.15。数值模拟研究表明,杏子川化子坪油区大部分井组开展 CO2灌注 5~10轮次后,灌注井附近地层压力保持水平可提升至约0.8,CO2驱混相程度提高0.14。
-
图1 延长油田典型区块主力油层地层压力保持水平和 CO2驱混相程度
-
Fig.1 Formation pressure maintenance and miscibility of CO2 flooding in main reservoirs in Yangchang Oilfield
-
为有效延缓和控制 CO2气窜,延长油田基于室内实验和矿场 CO2驱注采动态,在将 CO2驱分阶段划分为“未见气、见气前缘、气体突破、严重气窜”的基础上,针对性提出了“注采协调、水气交替、泡沫抑窜、凝胶封堵”的 CO2驱立体均衡动用技术,主要通过调整注采参数,开展水气交替和 CO2增稠剂注入、超微 CO2泡沫体系及丙烯酰胺改性纤维素复合凝胶调堵等技术实现对 CO2 气窜分级分类治理[13-19],从而扩大CO2波及体积,提高CO2驱油效果。
-
1.2 矿场实践
-
自2007年以来,延长油田先后建成靖边乔家洼和吴起油沟 2 个 CO2驱油与封存先导试验区,共注入 14.92×104 t 的 CO2,累计增油量为 1.9×104 t,共封存 14.88×104 t 的 CO2。另外,杏子川油田注气能力为105 t/a的CCUS示范工程已于2021年10月建成并投运。
-
以吴起油沟油区 CO2非混相驱先导试验区为例,试验区开发层位为三叠系延长组长4+5油层,储层岩性主要为细-中砂岩,平均孔隙度为9.8%,平均渗透率为 0.78 mD,平均含油饱和度为 55%,油藏埋深为 1 960 m,油藏温度为 60℃,有效厚度为 8.9 m,可采石油地质储量为 132.5×104 t,地层原油密度为 0.78 g/cm3,地层原油黏度为 2.4 mPa·s。试验区于 2014年 12月开展首口井 CO2注入,并于 2016年 6月建成 5 口注气井,平均单井日注气量为 18 t/d。CO2 注入后,自然递减率减缓 9.3%,油区平均单井月产油量在水驱基础上由 57.22 t/月最高升至 77.25 t/月 (图2)。截至 2020 年 12 月,试验区共注入 5.61×104 t 的CO2,累计增油量为1.23×104 t,折算阶段换油率为 0.22 t/t,预测在水驱基础上提高采收率8%以上。
-
图2 吴起油沟油区CO2非混相驱前后生产动态
-
Fig.2 Production performance before and after CO2 immiscible flooding in Wuqi Yougou region
-
2 低温油藏空气泡沫驱提高采收率技术
-
空气泡沫驱是指将空气与泡沫剂混合形成泡沫作为驱替介质的驱替方法。空气泡沫驱不仅综合了空气驱和泡沫驱的优点,还具备低温氧化驱油机制,能间接实现烟道气驱以及热效应采油,先后在中外多个油田开展矿场试验,并取得较好的开发效果[20]。延长油田以低渗透低温油藏高效开发为攻关目标,揭示了浅层低温油藏复合耗氧机制,研发了性能优良的复合泡沫体系,建成宝塔油田唐80 井区空气泡沫驱示范工程,进一步扩展了空气泡沫驱适用条件,逐步探索出一条适合延长油田东部油区低渗透低温油藏的高效开发之路。
-
2.1 驱油理论
-
储层环境耗氧安全是开展空气泡沫驱的前提。与中外其他油田相比,延长油田东部油区特殊的储层环境造成其耗氧机制复杂,分析原因为:①储层渗透率低,氧气在储层滞留时间长,导致氧气产出慢。②储层温度低,造成氧化速度低,低温氧化难。 ③储层富含黄铁矿和原油轻质属性有利于耗氧。氧化实验结果显示:黄铁矿氧化与吸附、原油和地层水溶解是油藏耗氧的主要途径,三者耗氧量分别占总耗氧量的 93.82%,4.88% 和 1.30%;注入空气后,储层氧气含量呈指数递减变化,80 d后,氧气含量已降至爆炸极限(10%)以下(图3),表明油藏耗氧安全[21-22]。
-
图3 氧化实验中氧气和二氧化碳含量随反应时间的变化
-
Fig.3 Variations of oxygen and carbon dioxide content with reaction time in oxidation experiment
-
为提高驱油效果,研制了复合泡沫和新型智能凝胶协同驱油体系。评价结果显示:十二烷基羟丙基磷酸酯甜菜碱与氟碳类组成的复合泡沫体系,起泡性能和稳定性能显著提升,可实现低油水界面张力(3.83×10-2 mN/m)。注入 0.4 PV 的复合泡沫体系后,驱油效率较常规泡沫可提高5%;注入0.05 PV的新型智能凝胶可对油区微裂缝实现强封堵,协同驱油体系可在水驱基础上提高驱油效率15.44%[21]。
-
2.2 矿场实践
-
宝塔油田唐 80 井区主要含油层位为三叠系延长组长 6 油层,平均孔隙度为 7.9%,平均渗透率为 0.82 mD,油藏埋深为441 m,油藏温度为27℃,有效厚度为 14.3 m,可采石油地质储量为 81×104 t,地层原油密度为 0.82 g/cm3,地层原油黏度为 3.3 mPa·s。储层微裂缝发育,注入水沿微裂缝发育方向突进造成部分油井水窜、水淹,且侧向油井见效差。
-
2007 年 9 月,唐 80 井区开展了 2 个井组的空气泡沫驱先导试验,之后试验规模不断扩大,至 2017 年 8 月建成 61 个井组的空气泡沫驱示范工程。空气泡沫驱后,自然递减率减缓 13.7%,含水率下降 16%,平均单井月产油量在水驱基础上由 4.07 t/月最高升至 14.29 t/月,起到了良好的控水增油效果 (图4)。截至2017年12月,累计注入10.4×104 m3 的空气和5.1×104 m3 的泡沫液,累计增油量为2.08×104 t,提高采收率6.9%,节约用水量超过70%。目前,空气泡沫驱油技术已在延长油田东部油区 5 个油田、 144 个井组进行了大规模推广应用,累计控制石油地质储量为 1 065.9×104 t。矿场套管气含氧量监测结果表明套管气含氧量均低于5%,在安全范围内。
-
图4 宝塔油田唐80井区空气泡沫驱前后生产动态
-
Fig.4 Production performance before and after air foam flooding at Well Tang80 area in Baota Oilfield
-
3 生物活性复合驱提高采收率技术
-
3.1 驱油理论
-
延长油田三叠系延长组储层基质致密、微裂缝发育,裂缝/基质渗吸-驱替双重作用机制同时存在,油水渗流关系复杂,大部分原油难以从基质交换至裂缝被有效动用,油水置换效率低,驱油效率低。实验结果表明:孔喉半径小于 0.1 µm 时,驱油效率以渗吸作用为主;孔喉半径为0.1~1 µm时,为渗吸-驱替共同作用;孔喉半径大于 1 µm 时,则以驱替作用为主(图5)[23]。岩心驱替实验进一步发现适度的低油水界面张力(0.01~0.05 mN/m)和油藏中等润湿有利于发挥渗吸-驱替双重作用[24]。表面活性剂能在一定程度上强化渗吸,提高驱油效率,但普遍存在耐温性和抗盐性差、吸附量大、色谱分离效应严重等问题。为满足低渗透油田高效开发的需要,延长油田提出了生物活性复合驱提高采收率技术。
-
图5 不同孔喉尺度下渗吸-驱替双重作用
-
Fig.5 Dual effect of imbibition and displacement at different pore-throat scales
-
通过对延长油田微生物进行普查,筛选、分离出适用于油藏环境的铜绿假单胞菌菌株 QK-4,并以此作为基因工程出发菌株,通过基因重组技术,将鼠李糖脂合成的糖基转移酶基因 Rh1A 和 Rh1B 转入野生铜绿假单胞菌基因组中,构建出高产生物表面活性剂基因工程菌株 QK-4P,该菌株鼠李糖脂产量由28.93 g/L提高至43.24 g/L。将非离子表面活性剂与生物表面活性剂分别以0.3%和0.2%的质量分数进行复配,发明了增强渗吸-驱替效应的可降解生物活性复合驱油体系,该体系可将油水界面张力降至10-2 mN/m,岩石润湿类型由强亲水性转变为亲水性,其驱油效率较常规表面活性剂平均提高 7%。
-
3.2 矿场实践
-
安塞油田王214试验区主要开发层位为三叠系延长组长 2 油层,平均孔隙度为 11.95%,平均渗透率为 7.96 mD,油藏埋深为 950 m,有效厚度为 17.3 m,可采石油地质储量为274×104 t,地层原油密度为 0.86 g/cm3,地层原油黏度为16.1 mPa·s。
-
试验区 10 口注入井自 2010 年 5 月开展生物活性复合驱,注入的生物活性复合驱油剂溶液的质量分数为 0.5%。生物活性复合驱后,含水率下降 2.7%,平均单井月产油量在水驱基础上由48.45 t/月最高升至102.67 t/月(图6)。截至2014年3月,累计注入生物活性复合驱油剂溶液共 269.8 t,累计增油量为11.7×104 t,阶段投入产出比为1∶4,预测在水驱基础上提高采收率 7.5%。该技术在延长油田 9 个区块推广应用后,动用石油地质储量为 2 991.2×104 t,平均单井月产油量提高 30%,累计增油量为 15.88×104 t。
-
图6 安塞油田王214试验区生物活性复合驱前后生产动态
-
Fig.6 Production performance before and after bioactive combination flooding at Wang214 test area in Ansai Oilfield
-
4 微生物驱提高采收率技术
-
微生物驱油是指利用微生物及其代谢产物作用于油藏从而提高采收率,其中驱油用微生物可分为内源微生物和外源微生物2种类型[25-27]。内源微生物驱油技术是指通过向油藏注入适宜的营养激活剂以激活其中原有的功能微生物,通过微生物自身代谢活动来提高采收率。而外源微生物驱油技术则需要向油藏注入“外来”菌种及其发酵液以满足微生物在油藏的生长代谢活动,进而提高采收率。与外源微生物驱油技术相比,内源微生物驱油技术不需额外注入其他微生物,仅需添加适宜的营养激活剂,故操作成本低,经济环保,且油藏中的内源微生物不会因为油藏温度、压力和储层渗透率等条件的限制而影响驱油效率,具有更为广阔的应用前景[28-32]。
-
微生物生态资源普查显示延长油田微生物种类多达 16 854 种,且驱油菌种多达 1 582 种。通过菌群代谢功能分析筛选了 9 株驱油优势菌种,其中产表面活性剂菌可将油水界面张力降至10-2 mN/m,产聚合物菌可将注入水黏度增至 27 mPa·s,降烃菌可将原油中沥青质降低 15%。为靶向激活油藏内部驱油优势菌种,研发了具有驱油和调剖双重功能的低成本内源微生物激活剂,岩心驱替实验结果表明有效激活后油藏总菌质量浓度升高 6 个数量级,驱油效率提高 15% 以上。2017年 8月,安塞油田王 200试验区长2油层开展内源微生物驱,注入激活剂 3 个月后,地层芽孢杆菌和梭状芽孢杆菌丰度分别由试验前的3.1%和1.2%升高至28%和10%(图7),产量递减得到有效抑制。截至 2019 年 12 月,累计注入185 t的激活剂,累计增油量为2 019.6 t,投入产出比达到1∶4,预测提高采收率4.1%。
-
图7 安塞油田王200试验区长2油层注入激活剂前和 3个月后微生物群落及其丰度分布
-
Fig.7 Microbial communities and their abundance distribution before and after activator injection for three months in Chang2 layer at Wang200 test area in Ansai Oilfield
-
5 结论
-
经过多年的技术攻关与矿场实践,延长油田初步形成了适合鄂尔多斯盆地低渗透油藏的CO2非混相驱油与封存一体化、低温油藏空气泡沫驱、生物活性复合驱和微生物驱理论与技术,丰富了低渗透油藏 CO2非混相驱理论,发展了 CO2高效驱油和空气泡沫安全控制技术,完善了空气泡沫、生物活性复合剂和内源微生物激活剂配方体系,有力支撑了延长油田低渗透油藏的建设与开发,上述技术在矿场应用中均取得了较好的提高采收率效果。
-
低渗透油藏是一定时期内中国油气稳产、增产的主力军,但低渗透油藏提高采收率是一项复杂的系统工程,学科涉及面广,且技术创新难度大。未来,低渗透油藏提高采收率需要在创新发展提高采收率理论的基础上,深化驱油机理,研发新材料,注重不同技术组合,探索出新一代高效、低成本、环保型的提高采收率新技术。
-
参考文献
-
[1] 吴建邦,杨胜来.中国节约利用油气资源的必要性与方法探讨 [J].科学技术与工程,2020,20(11):4 191-4 201.WU Jianbang,YANG Shenglai.The necessity and method of sav⁃ ing and utilizing oil and gas resources in China[J].Science Tech⁃ nology and Engineering,2020,20(11):4 191-4 201.
-
[2] 李阳.低渗透油藏CO2驱提高采收率技术进展及展望[J].油气地质与采收率,2020,27(1):1-10.LI Yang.Technical advancement and prospect for CO2 flooding en⁃ hanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.
-
[3] 王光付,廖荣凤,李江龙,等.中国石化低渗透油藏开发状况及前景[J].油气地质与采收率,2007,14(3):84-89,117.WANG Guangfu,LIAO Rongfeng,LI Jianglong,et al.The develop⁃ ment situation and future of low permeability oil reservoirs of SIN⁃ OPEC[J].Petroleum Geology and Recovery Efficiency,2007,14(3):84-89,117.
-
[4] 刘满平,封红丽.40 年成就耀眼,油气改革下一步该发力何处 [J].中国石油和化工,2019,(1):22-27.LIU Manping,FENG Hongli.The achievements of the past 40 years are remarkable and what’s the next step of oil and gas re⁃ form[J].China Petroleum and Chemical Industry,2019,(1):22-27.
-
[5] 杨智,邹才能,陈建军,等“.进(近)源找油”:油气地质理论创新与重点领域勘探思考[J].石油学报,2021,42(10):1 310-1 324.YANG Zhi,ZOU Caineng,CHEN Jianjun,et al“.Exploring petro⁃leum inside or near the source kitchen”:innovations in petroleum geology theory and reflections on hydrocarbon exploration in key fields[J].Acta Petrolei Sinica,2021,42(10):1 310-1 324.
-
[6] 付金华,刘显阳,李士祥,等.鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力[J].中国石油勘探,2021,26(5):1-11.FU Jinhua,LIU Xianyang,LI Shixiang,et al.Discovery and re⁃ source potential of shale oil of Chang7 member,Triassic Yan⁃ chang Formation,Ordos Basin[J].China Petroleum Exploration,2021,26(5):1-11.
-
[7] 陈义国,贺永红,王超,等.鄂尔多斯盆地三叠系延长组8段非常规油藏成因与成藏模式——以盆地东南部甘泉西区为例 [J].石油学报,2021,42(10):1 270-1 286.CHEN Yiguo,HE Yonghong,WANG Chao,et al.Genesis and ac⁃ cumulation patterns of unconventional oil reservoir in Member8 of Triassic Yanchang Formation:a case study of the western Gan⁃ quan area,southeastern Ordos Basin[J].Acta Petrolei Sinica,2021,42(10):1 270-1 286.
-
[8] 王香增.低渗透油田开采技术[M].北京:石油工业出版社,2012.WANG Xiangzeng.Low permeability oilfield development[M].Beijing:Petroleum Industry Press,2012.
-
[9] 朱子涵,李明远,林梅钦,等.储层中CO2-水-岩石相互作用研究进展[J].矿物岩石地球化学通报,2011,30(1):104-112.ZHU Zihan,LI Mingyuan,LIN Meiqin,et al.Review of the CO2-water-rock interaction in reservoir[J].Bulletin of Mineralogy,Pe⁃ trology and Geochemistry,2011,30(1):104-112.
-
[10] 汤瑞佳,黄春霞,余华贵,等.延长油田CO2-岩石-地层水相互作用规律[J].油田化学,2015,32(4):515-519.TANG Ruijia,HUANG Chunxia,YU Huagui,et al.Interaction law between CO2,rock and formation water in Yanchang Oilfield[J].Oilfield Chemistry,2015,32(4):515-519.
-
[11] 曲希玉,刘立,胡大千,等.CO2流体对含片钠铝石砂岩改造作用的实验研究[J].吉林大学学报:地球科学版,2007,37(4):690-697.QU Xiyu,LIU Li,HU Daqian,et al.Study on the dawsonite sand⁃ stones reformation with CO2 fluid[J].Journal of Jilin University:Earth Science Edition,2007,37(4):690-697.
-
[12] 王伟,赵永攀,江绍静,等.延长组特低渗油藏 CO2驱储层溶蚀与结垢规律[J].油田化学,2018,35(1):91-96,108.WANG Wei,ZHAO Yongpan,JIANG Shaojing,et al.Corrosion and scaling of CO2 flooding in Yanchang ultra-low permeability reservoirs[J].Oilfield Chemistry,2018,35(1):91-96,108.
-
[13] 鲍云波.CO2气窜主控因素研究[J].科学技术与工程,2013,13(9):2 348-2 351,2 366.BAO Yunbo.The research on main controlling factors of CO2 gas channeling[J].Science Technology and Engineering,2013,13(9):2 348-2 351,2 366.
-
[14] 王维波,余华贵,杨红,等.低渗透裂缝性油藏 CO2驱两级封窜驱油效果研究[J].油田化学,2017,34(1):69-73.WANG Weibo,YU Huagui,YANG Hong,et al.Effect of twostage sealing gas channeling and flooding in low permeability frac⁃ ture reservoirs during CO2 flooding[J].Oilfield Chemistry,2017,34(1):69-73.
-
[15] 胡永乐,郝明强,陈国利,等.中国 CO2驱油与埋存技术及实践 [J].石油勘探与开发,2019,46(4):716-727.HU Yongle,HAO Mingqiang,CHEN Guoli,et al.Technologies and practice of CO2 flooding and sequestration in China[J].Petro⁃ leum Exploration and Development,2019,46(4):716-727.
-
[16] 杨红,余华贵,黄春霞,等.低渗油藏水驱后 CO2驱潜力评价及注入参数优化[J].断块油气田,2015,22(2):240-244.YANG Hong,YU Huagui,HUANG Chunxia,et al.Potential evalu⁃ ation and injection parameter optimization of CO2 flooding after waterflooding in low permeability reservoir[J].Fault-Block Oil and Gas Field,2015,22(2):240-244.
-
[17] 杨红,江绍静,王宏,等.靖边乔家洼油区裂缝性特低渗透油藏 CO2驱油气窜控制方法的适应性研究[J].西安石油大学学报:自然科学版,2017,32(2):105-109,115.YANG Hong,JIANG Shaojing,WANG Hong,et al.Research of adaptability of gas channeling controlling methods in CO2 flood⁃ ing of fractured ultra-low permeability reservoir[J].Journal of Xi’ an Shiyou University:Natural Science Edition,2017,32(2):105-109,115.
-
[18] 张蒙,赵凤兰,侯吉瑞,等.二氧化碳与稠化剂降低流度改善气驱效果评价[J].油田化学,2020,37(2):273-278.ZHANG Meng,ZHAO Fenglan,HOU Jirui,et al.Effect of thicken⁃ er and carbon dioxide system on mobility reduction and gas flood⁃ ing improvement[J].Oilfield Chemistry,2020,37(2):273-278.
-
[19] 申哲娜,洪玲,郭肖,等.一种自组装超微泡沫驱油剂及其制备方法与应用:201710864250.3[P].2017-09-22.SHEN Zhena,HONG Ling,GUO Xiao,et al.A self-assembled ul⁃ tra-fine foam oil displacement agent and its preparation method and application:201710864250.3[P].2017-09-22.
-
[20] 李兆敏,徐正晓,李宾飞,等.泡沫驱技术研究与应用进展[J].中国石油大学学报:自然科学版,2019,43(5):118-127.LI Zhaomin,XU Zhengxiao,LI Binfei,et al.Advances in research and application of foam flooding technology[J].Journal of China University of Petroleum:Edition of Natural Science,2019,43(5):118-127.
-
[21] 杨红,余华贵,黄春霞,等.浅层低温特低渗透油藏空气泡沫驱研究与应用[J].精细石油化工,2015,32(5):19-23.YANG Hong,YU Huagui,HUANG Chunxia,et al.Research and application of air foam flooding in shallow reservoir with low tem⁃ perature and permeability[J].Speciality Petrochemicals,2015,32(5):19-23.
-
[22] 姚振杰,江绍静,高瑞民,等.延长油田低温低渗油藏空气泡沫驱矿场实践[J].油气藏评价与开发,2020,10(1):108-112.YAO Zhenjie,JIANG Shaojing,GAO Ruimin,et al.Field practic⁃ es of air foam flooding in low temperature and low permeability reservoirs of Yanchang Oilfield[J].Reservoir Evaluation and De⁃ velopment,2020,10(1):108-112.
-
[23] 王香增,党海龙,高涛.延长油田特低渗油藏适度温和注水方法与应用[J].石油勘探与开发,2018,45(6):1 026-1 034.WANG Xiangzeng,DANG Hailong,GAO Tao.Method of moder⁃ ate water injection and its application in ultra-low permeability oil reservoirs of Yanchang Oilfield,NW China[J].Petroleum Ex⁃ploration and Development,2018,45(6):1 026-1 034.
-
[24] 洪玲,王香增,王成俊,等.特低渗透油藏新型高效驱油剂的研究与应用——以延长油区杏子川油田王214试验区为例[J].油气地质与采收率,2013,20(3):92-94.HONG Ling,WANG Xiangzeng,WANG Chengjun,et al.The re⁃ search and application of new effective oil displacement agent for ultra-low permeability reservoir-case study of Wang214 field in Xingzichuan oilfield of Yanchang[J].Petroleum Geology and Re⁃ covery Efficiency,2013,20(3):92-94.
-
[25] 薛媛,高怡文,洪玲,等.内源激活剂驱油藏内微生物菌群结构变化分析[J].科学技术与工程,2019,19(8):40-46.XUE Yuan,GAO Yiwen,HONG Ling,et al.Analyses on the changes of microbial diversity after endogenous activator flooding in oil reservoirs[J].Science Technology and Engineering,2019,19(8):40-46.
-
[26] 孙刚正,钱钦,胡婧,等.不同类型激活剂条件下沾3油藏内源微生物驱油规律研究[J].西安石油大学学报:自然科学版,2019,34(2):78-85.SUN Gangzheng,QIAN Qin,HU Jing,et al.Study on endogenous microorganism oil displacement law in Zhan 3 reservoir under dif⁃ ferent activators[J].Journal of Xi’an Shiyou University:Natural Science Edition,2019,34(2):78-85.
-
[27] 吴波,修建龙,俞理,等.大庆卫星油田微生物驱油体系构建与评价[J].大庆石油地质与开发,2021,40(6):106-114.WU Bo,XIU Jianlong,YU Li,et al.Establishment and evaluation of the MEOR system in Daqing Satellite Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(6):106-114.
-
[28] 胡婧,郭辽原,孙刚正,等.动态驱替内源微生物生长代谢与驱油效率关系[J].石油学报,2020,41(9):1 127-1 134.HU Jing,GUO Liaoyuan,SUN Gangzheng,et al.Relationship be⁃ tween the growth and metabolism of indigenous microorganisms and oil displacement efficiency during dynamic displacement[J].Acta Petrolei Sinica,2020,41(9):1 127-1 134.
-
[29] 汪卫东.微生物采油技术研究进展与发展趋势[J].油气地质与采收率,2021,28(2):1-9.WANG Weidong.Research advance and development trend in mi⁃ crobial enhanced oil recovery technology[J].Petroleum Geology and Recovery Efficiency,2021,28(2):1-9.
-
[30] 侯研博,宋欣,孙刚正,等.新型激活剂提高内源微生物驱油效果研究及应用[J].石油与天然气化工,2018,47(5):85-89.HOU Yanbo,SONG Xin,SUN Gangzheng,et al.Research and ap⁃ plication of the new activator to improve the effect of MEOR[J].Chemical Engineering of Oil & Gas,2018,47(5):85-89.
-
[31] 孙刚正,胡婧,刘涛,等.油藏物性及采出程度对内源微生物驱油效果的影响[J].油气地质与采收率,2021,28(2):41-48.SUN Gangzheng,HU Jing,LIU Tao,et al.Effects of reservoir phys⁃ ical properties and recoveries on oil displacement of endogenous microbes[J].Petroleum Geology and Recovery Efficiency,2021,28(2):41-48.
-
[32] 韩作为,曹丽,王晓锋,等.聚合物微球与本源微生物的协同驱油效果[J].油田化学,2019,36(3):422-427.HAN Zuowei,CAO Li,WANG Xiaofeng,et al.Synergy oil dis⁃ placement effect of polymeric microspheres and origin microor⁃ ganism flooding system[J].Oilfield Chemistry,2019,36(3):422-427.
-
摘要
延长油田低渗透油藏储量大,受储层基质致密、裂缝系统复杂的影响,常规注水开发效果差,原油采收率低,油田提高采收率需求迫切。基于延长油田CO2非混相驱油与封存一体化、低温油藏空气泡沫驱、生物活性复合驱和微生物驱技术及矿场实践,提出了低渗透油藏 CO2非混相驱“溶蚀增渗、润湿促渗”新理论,形成了以提高 CO2驱混相程度和 CO2驱立体均衡动用为主的 CO2非混相驱油技术,揭示了浅层低温油藏复合耗氧机制,完善了空气泡沫、生物活性复合剂和内源微生物激活剂配方体系。矿场实践表明低渗透油藏提高采收率技术在延长油田具有广阔的应用前景。
Abstract
Yanchang Oilfield has rich reserves of low permeability reservoirs,but the conventional waterflooding develop- ment of these reservoirs shows the poor performance and the low oil recovery due to the tight reservoir matrix and the com- plex fracture systems. Therefore,it is urgent to enhance oil recovery in Yanchang Oilfield. In this paper,a new theory of “corrosion increasing permeability,wetting promoting permeability”was proposed for CO2 immiscible flooding in low perme- ability reservoirs base on the technologies and the field practices of the integrated CO2 immiscible flooding and sequestra- tion,the air foam flooding at low temperature,the bioactive combination flooding and the microbial flooding. A CO2 immisci- ble flooding technology was developed to mainly improve CO2 miscibility and enhance 3D equilibrium producing of CO2 flooding. Moreover,the complex oxygen consumption mechanism in shallow reservoirs with a low temperature was revealed, and the formula systems of the air foam,the bioactive agents,and the endogenous microbial activators were improved. The field practices indicated that the prospect of enhanced oil recovery technology for low permeability oil reservoirs is broad in Yanchang Oilfield.