-
中国非常规油藏以陆相沉积为主,油气大规模连续聚集,但其储层物性差(低孔低渗透)且非均质性强、原油黏度和密度高及天然能量低,导致非常规油藏的开发面临更大的挑战[1-3]。致密储层经压裂改造后,裂缝错综复杂,低孔低渗透的岩石基质是油气的主要储集空间,裂缝是主要的流动通道,其中主裂缝导致注入介质快速推进,加剧窜流,难以充分接触基质原油,有效动用程度较低[4-5]。注气能够降低原油黏度,促使原油膨胀,提高原油的流动性[6-7]。但受储层非均质性的影响,注气过程中往往出现沿储层优势通道窜流和早期突破等现象,很大程度地抑制了波及范围和洗油效率[8-11]。泡沫在国外最早应用于控制气体的流度,在多孔介质运移过程中,通过叠加的贾敏效应,降低裂缝渗透率,促使气体向基质内部转移,从而有效改善储层非均质性,提高波及效率[12-13]。中国多数油田已进入中高含水期,面临着非均质性强、剩余油分布规律复杂等问题,近年来泡沫驱的理论研究及矿场应用均取得良好的效果[14-16]。但普通泡沫存在稳定性差、注入压力高、遇油消泡和施工成本高等问题[17],限制了其在油藏开发中的推广使用,其中泡沫的稳定性是影响采收率效果的关键因素,强化泡沫稳定性成为学者们研究的热点,如聚合物强化泡沫提升了泡沫的稳定性[18],但因其黏度高,在储层中附着力较强,难以迅速清除[19],聚合物强化泡沫技术的应用仍具有一定的局限性;纳米颗粒强化泡沫技术成本较高,目前以实验室研究居多,现场应用较少[20]。且普通泡沫的直径较大,泡沫驱在低渗透油藏开发过程中易出现注不进的现象,限制了泡沫驱的应用范围[21]。因此继续探索有效的强化泡沫技术手段,对提升中国原油产量具有重要的研究意义。
-
微泡沫是将聚合物和表面活性剂溶液配制成基液,通过搅拌或气流作用将气体引入基液中,形成均匀分布的微米级泡沫[22]。利用聚合物的高黏度以及微泡沫的气阻效应,提高气体的流度控制能力,大幅提升采收率[23]。微泡沫具有直径小、比表面积大、稳定性高、与水相当的流动性等独特的性质,在生物医学[24]、矿物浮选[25]、水处理[26]、土壤修复[27]以及钻井工程[28]等领域取得了广泛的应用[29-30]。与普通泡沫相比,微泡沫在驱替过程具有注入压力低、波及范围广等优势。为此,笔者介绍了微泡沫的结构与性质,阐述了微泡沫的封堵与提高采收率原理,总结了其在封堵与提高采收率应用中的研究现状,最后讨论了微泡沫的应用价值及潜力,并对微泡沫驱的发展趋势提出了几点建议。
-
1 微泡沫的结构与性质
-
1.1 微泡沫的结构特点
-
20世纪 70 年代,国外学者 SEBBA 等首次提出一种微米级、具有胶体性质的泡沫分散体系[31],中外部分学者也称其为微泡沫或者胶质气体泡沫 (Colloidal Gas Aphrons)[32-33]。微泡沫由紧密堆积的、直径为 10~100 μm 的球形气泡组成,包含了气核、增黏水层及液相三层结构,每层结构上排列有表面活性剂分子,微泡沫的基本结构如图1 所示。微泡沫的内层通常是包裹着气核的表面活性剂层,表面活性剂的疏水端指向气核,用来降低表面张力,以保持气体液膜的形成[34]。表面活性剂的亲水端指向中间层,该层是含有增稠剂和稳定剂的水溶液,通过降低液膜中气体的扩散速率来提高泡沫的稳定性。中间层的外边界上同样含有表面活性剂分子,这些分子的疏水端指向外层,外层是包含表面活性剂分子的双电层结构,其亲水端延伸到液相中。利用双电层的电荷作用,降低相邻气泡的聚并[35]。研究结果表明,微泡沫至少能承受 27.3 MPa 的压力,是普通泡沫承受压力能力的 10 倍左右[36]。微泡沫独特的结构,使其可以在一定压力下保持球形结构的形态,并泵入井下应用于油气田开发。
-
1.2 微泡沫与普通泡沫性质的区别
-
泡沫因其独特的性质在钻井[37-38]、压裂[39] 和驱油过程[40-41] 中取得了广泛的应用。虽然微泡沫与普通泡沫均是由皂膜外壳隔开形成的分散体系,但两者在结构上存在着较大差异。对比微泡沫与普通泡沫结构与性质的差异发现,普通泡沫中的气体被阻隔在表面活性剂单层中,而不是表面活性剂三层包裹构成,不存在增黏水层,因此普通泡沫发生聚并的可能性要远高于微泡沫。普通泡沫为连续相,泡沫为多面体结构,存在 Plateau 边界,而微泡沫是分散相,独立悬浮于液相中,不存在Plateau边界,液膜强度大。微泡沫直径为微米级(10~100 μm),而普通泡沫多为毫米级(1~10 mm)[42],因此,微泡沫的比表面积更大。普通泡沫的气体体积分数通常大于 90%,而微泡沫的气体体积分数一般为 40%~70%[43],微泡沫的气体体积分数远低于普通泡沫。普通泡沫中的气体通过表面活性剂单层的扩散速率高于气体通过表面活性剂和聚合物的多个交替层的扩散速率[44],因此,就结构稳定性而言,普通泡沫远低于微泡沫。
-
2 微泡沫的封堵与提高采收率原理
-
微泡沫和普通泡沫同属于泡沫体系范畴,因此微泡沫与普通泡沫在多孔介质中的运移规律具有一定的相似性。泡沫在孔隙中的运移基本分为暂时性封堵、孔喉处积聚、变形和突破 4 个阶段[45],贾敏效应产生的附加压力是阻碍泡沫在孔隙中流动的主要作用力。当气泡的平均直径大于或等于孔喉的直径时,泡沫会对孔喉造成暂时性的堵塞,迫使其余泡沫的流动路径发生转向,扩大波及体积。
-
微泡沫在储层孔隙运移中的封堵作用主要体现在3个方面(图2):①当微泡沫直径远小于孔喉直径时,多数微泡沫以微泡簇堆积的形式无序涌入,引起孔喉的暂时性封堵[46]。②当微泡沫直径与孔喉直径相当时,微泡沫通过孔喉时,因贾敏效应引起的附加压力,导致微泡沫发生变形,增大了流体的渗流阻力。③当微泡沫直径大于孔喉直径时,聚合物的吸附作用使孔喉表面形成高黏度的液膜,致使孔喉直径变小,微泡沫的渗流阻力进一步增大。
-
微泡沫与普通泡沫在注入方式、波及范围、提高采收率原理以及气体种类等方面存在诸多不同之处。
-
图2 微泡沫的封堵作用机理
-
Fig.2 Plugging mechanism of micro-foams
-
注入方式不同 普通泡沫的注入方式一般包括气液同注或气液交替注入,这 2 种注入方式往往导致井筒摩阻较高[47],使泡沫的注入性能较差,生成的泡沫不均匀,同时对油田机械设备的注入压力要求也更高。微泡沫是由配制好的基液与气体通过高速搅拌形成均一稳定的分散体系,其具有一定的黏度,在井筒中重力的作用远大于浮力,降低了井筒摩阻,因此微泡沫的注入性比普通泡沫更好[48]。由于常见的油田设备即可满足微泡沫的生成,节约了生产成本[49]。
-
波及范围不同 气体的黏度和密度一般较低,气驱过程中注入气往往易沿高渗透层发生气窜,导致波及体积较小(图3a)。普通泡沫在储层运移过程中,以生成、破灭、再生的方式向前推进[50],泡沫最初生成速率快且密度大,泡沫的贾敏效应增加了流体的渗流阻力,降低了裂缝的渗透率,扩大了流体的波及体积,同时在一定程度上抑制了气窜,提高了驱油效率。而当泡沫运移至渗透率低、非均质性强的区域时,一方面泡沫液膜需要承受更大的压力,加速了泡沫的聚并和破灭;另一方面生成的泡沫直径较大,往往不易进入孔喉直径更小的区域起到封堵作用(图3b)。微泡沫具有直径小、稳定性高的特点,直径较大的气泡优先进入封堵高渗透通道,直径较小的气泡能够进入大气泡无法进入的孔喉通道,起到与大气泡等效的封堵作用,同时抑制气窜,迫使气体向基质内部运移,提高了气体的波及效率[51] (图3c)。NATAWIJAYA 等使用特殊过滤筛板分别制备了直径为 10~50,40~70和 70~150 μm 的CO2微泡沫,研究结果表明,与直径较大的微泡沫相比,直径为 10~50 μm 的微泡沫采收率提高了 5.28%,直径为70~150 μm的微泡沫比直径为10~50 μm的微泡沫注入压力高27.5%[52],这表明直径较大的微泡沫封堵性能更好,迫使直径较小的微泡沫从高渗透区域转向低渗透区域,扩大了波及体积,从而提高了采收率。
-
提高采收率原理不同 普通泡沫驱提高采收率的原理主要是通过改善气液流变化,扩大波及体积,达到增产的效果,泡沫在储层中运移时因产生较大的渗流阻力,选择性地进入裂缝,一方面降低裂缝的渗透率,扩大流体的波及体积;另一方面抑制气窜,促使流体发生转向,增大了流体的波及体积。而微泡沫驱是使用一定浓度的聚合物和表面活性剂溶液配制成基液,在配制好的基液中引入气体,通过起泡装置及生成方式控制生气过程,形成的微米级气泡可以均一稳定地分布在基液中形成微泡沫,利用聚合物的高黏度和微泡沫多层结构的气阻效应提高气体流度控制能力,从而大幅度提高采收率。微泡沫直径与储层孔喉直径的比值对驱油效果有显著的影响,通过改变添加剂浓度和生成方法等措施可以控制微泡沫的直径分布,有利于低渗透油藏的开发。同时含有表面活性剂的微泡沫在致密低渗透储层中发挥渗吸置换效应[53],进一步提高了非常规油藏的采收率。
-
气体种类不同 微泡沫的气源种类多,如空气、天然气、氮气和二氧化碳等。从安全角度来看,在没有天然气爆炸或燃烧风险的井场,可采用空气和天然气作为气源生成泡沫,在容易爆炸和燃烧的井场,一般使用二氧化碳2或惰性气体生成泡沫。另外,不同气体介质的泡沫性能差别较大,二氧化碳在水中的溶解度高,导致二氧化碳通过液膜的速率更快,因此空气、氮气泡沫的稳定性比二氧化碳泡沫更高[54]。与氮气相比,二氧化碳兼具驱油与封存双重价值,从地质封存的角度来看,二氧化碳封存是实现中国碳减排工作的有效途径之一,以微泡沫的形式将二氧化碳注入衰竭油藏中,能够实现更加安全高效的封存。从驱油效果的角度分析,气体与原油的混相程度同样影响泡沫的适用性和驱替效果[55]。
-
3 微泡沫调剖与驱油效果研究现状
-
微泡沫钻井液由于低密度、可循环使用等特性已成功应用于易漏失储层的钻完井作业中[56]。微泡沫具有聚集而不聚并的特点,基液的黏度高,具有架桥作用,在钻低压衰竭储层时可以较好地控制滤失量。微泡沫的独特性质使其具备应用于油田提高采收率的潜力,特别是在低渗透非均质油藏中微泡沫具有良好的调剖与驱油效果。
-
图3 气驱、普通泡沫、微泡沫的波及范围示意
-
Fig.3 Schematic diagram of swept range of gas,ordinary foams,and micro-foams
-
3.1 影响微泡沫调剖与驱油效果的主要因素
-
微泡沫的稳定性是影响其封堵性能及驱油效果的关键因素之一,半衰期和直径分布是表征微泡沫稳定性的主要参数,聚合物与表面活性剂类型和浓度、温度、压力等是影响微泡沫稳定性的主要因素。非常规储层地质特征复杂,微泡沫组分与储层流体或岩石矿物不配伍,极易引起储层伤害且难以恢复。另外微泡沫的稳定性和封堵能力受储层的渗透率、岩石润湿性、地层饱和流体的性质等因素的影响。非常规储层孔喉直径分布范围是影响油气渗流能力的主要因素,微泡沫直径受温度和压力的影响而发生变化,研究微泡沫直径与储层孔喉直径的匹配关系,对明确微泡沫驱的油藏适用范围和驱油效果至关重要。
-
3.1.1 微泡沫稳定性的研究
-
KESHAVARZI 等使用阴离子表面活性剂十二烷基硫酸钠(SDBS)、非离子表面活性剂 TritonX100、两性离子表面活性剂椰油酰胺丙基甜菜碱和聚合物黄原胶制备了微泡沫,研究了搅拌时间、搅拌速率以及聚合物和表面活性剂浓度对微泡沫体积和半衰期的影响[57]。研究结果表明,黄原胶的浓度对微泡沫的形成和稳定性有很大影响,增加黄原胶的浓度,可降低微泡沫的起泡体积,但显著增加了半衰期。与非离子表面活性剂相比,由阴离子表面活性剂生成的微泡沫具有显著的稳定性。
-
PASDAR 等使用聚合物黄原胶、阴离子表面活性剂十二烷基硫酸钠(SDBS)和阳离子表面活性剂十六烷基溴化铵(CTAB)制备了微泡沫,研究了聚合物浓度、表面活性剂类型和浓度对微泡沫稳定性的影响。研究发现,使用 SDBS制备的微泡沫,聚合物和表面活性剂浓度的增加提高了微泡沫的稳定性,其中聚合物浓度对微泡沫稳定性的影响更大[58]。使用 CTAB 制备的微泡沫,随着聚合物浓度的增加和 CTAB 浓度的降低,微泡沫的稳定性有明显的提升,随着CTAB浓度的增加,在微泡沫中观察到白色絮状的沉淀生成,微泡沫迅速变得不稳定。
-
NGUYEN 等使用黄原胶和十二烷基硫酸钠 (SDBS)制备了 CO2微泡沫,使用一种新的实验设计方法——确定性实验筛选设计(Definitive Screening Design)研究了聚合物浓度、表面活性剂浓度、盐度、搅拌时间和搅拌速率5个定量参数对微泡沫稳定性的影响。实验结果表明,DSD 方法成功地评估了各参数对微泡沫稳定性的影响,微泡沫的稳定性主要取决于黄原胶的浓度[59]。研究还发现,SDBS 浓度和搅拌速率的增加提高了 CO2微泡沫的稳定性,盐度的增加降低了CO2微泡沫的稳定性。
-
AMIRI等研究了纳米蒙脱土对微泡沫稳定性的影响[60],由于表面活性剂与纳米颗粒的协同作用,颗粒具有更强的疏水性,增强了颗粒在泡沫表面上的吸附作用,因此与表面活性剂相比,添加纳米颗粒的微泡沫稳定性更好,同时对于高温和高盐油藏的适应性更好。ZHU 等研究了凹凸棒土对微泡沫稳定性和直径分布的影响,研究结果表明,凹凸棒土能有效改善微泡沫流体在高温下的稳定性、流变性和滤失性。同时大部分微泡沫直径为 10~150 μm,凹凸棒土添加量增至 2% 时,微泡沫直径分布更集中,平均直径减小至 100 μm 以下[61],这表明凹凸棒土的加入有利于提高微泡沫的稳定性。
-
3.1.2 微泡沫对储层伤害性的研究
-
GROWCOCK 等使用径向流填砂管模型研究了微泡沫对储层的伤害。实验结果表明,微泡沫的回流渗透率为 80%[62]。由于微泡沫与油气间的界面张力很低,且在储层运移中黏附作用力小,对储层的伤害较小。GUPTA 研究认为,微泡沫的流动速率比液相流体更快,并在流体前缘形成一团微气泡簇,微气泡簇堆积形成的屏障作用和径向流动模式迅速降低了剪切速率,提高了流体黏度,从而减少流体的滤失量[63]。
-
BJORNDALEN 等使用不同浓度的聚合物黄原胶和阴离子表面活性剂十二烷基苯磺酸钠(DDBS) 生成了微泡沫,研究了储层饱和流体(水、盐水、矿物油、原油)对微泡沫封堵性能的影响。结果表明,基液黏度越高,微泡沫越稳定[64]。微观驱替实验结果表明,微泡沫驱替过程中,压降不断增大,表明微泡沫在多孔介质流动中产生较高的渗流阻力,后续的水驱过程能够将多孔介质中的微泡沫几乎全部排出,说明微泡沫对储层伤害较小[65]。
-
3.1.3 微泡沫对储层封堵效果的研究
-
BJORNDALEN 等使用填砂管模型研究了微泡沫在不同润湿条件下的封堵效果,通过计算压降数据可知,微泡沫在油湿砂中的压降是水湿砂中压降的 3 倍左右[66],表明微泡沫对油湿性多孔介质的封堵效果较差,该学者认为在油湿条件下微泡沫在多孔介质不稳定导致了封堵性能下降。然而,PAS⁃ DAR 等在研究微泡沫在水湿和油湿条件下的封堵性能时发现,当多孔介质由水湿转变为油湿后,微泡沫的注入压力增加,表明微泡沫在油湿条件的封堵性能更好,导致这一现象的原因可能是由于油湿模型孔壁上存在一层薄的油相层,增加了微泡沫在多孔介质中的流动阻力[67]。因此,微泡沫在不同润湿条件下对多孔介质的封堵效果仍然存在一些争议,需要进一步研究。此外,微泡沫通过低渗透砂层时的压降上升速率高于高渗透砂层,微泡沫在低渗透非均质多孔介质中具有更有效的封堵能力[68]。
-
TABZAR等通过非均质微观模型研究了SiO2纳米颗粒与微泡沫在非均质多孔介质封堵中的协同作用[69]。实验观察到一些较大的气泡在非均质模型中被分割成较小的气泡,当大气泡发生液膜分离时会分裂成更多的小气泡,小气泡同时进入同一孔喉,它们互相阻碍导致气泡在多孔介质中的运移速率减慢,通过多孔介质的压降增大[69]。实验结果首次阐明了纳米颗粒与微泡沫的协同作用,提高了微泡沫的稳定性和封堵能力。
-
TELMADARREIE 等通过线性可视化模型研究了CO2微泡沫在多孔介质中的流动特性。实验结果表明,微泡沫在裂缝内积聚并诱导形成桥接机制,增大了裂缝内的渗流阻力,迫使微泡沫的流动向低渗透区域运移[70],从而提高了波及效率。
-
3.1.4 微泡沫直径分布与储层孔喉直径分布匹配性的研究
-
史胜龙等研究了微泡沫直径与储层孔喉直径的匹配关系,发现通过调节气液比、填砂管渗透率可将微泡沫直径控制为12.39~99.31 μm,当微泡沫的平均直径与岩心孔喉直径比为1.45~2.16时,微泡沫具有较好的注入性及深部封堵能力[71]。ALIZA⁃ DEH等建立数学模型,模拟了微泡沫在多孔介质中的运移规律,研究结果表明,微泡沫直径与孔喉直径的比值是影响微泡沫封堵能力的关键参数,其值越大,微泡沫的封堵效果越好[72]。吴雪瑞计算了平稳注入压力下微泡沫尺寸与孔喉尺寸的匹配关系,分析了不同渗透率下微泡沫体系的适应性。实验结果表明,当岩心渗透率大于 150 mD 时,微泡沫的平均半径与孔喉半径相匹配[73]。
-
3.2 微泡沫提高采收率的研究进展
-
近年来,许多学者研究了不同气体介质微泡沫配方的驱油效果,岩心驱替实验是研究提高采收率的传统方法。SAMUEL等通过微观可视化模型和填砂模型,对比了微泡沫驱与聚合物驱的驱油效果,研究结果表明,当采出程度相当时,微泡沫驱的注入压力仅为聚合物驱的1/3,且微泡沫具有稳定的驱替前缘,波及范围更广[74]。史胜龙使用甜菜碱表面活性剂S1和黄原胶制备N2微泡沫,通过非均质填砂管模型评价了微泡沫的驱油效果。研究结果表明,在三次采油条件下微泡沫驱采收率提高了 26.8%[75]。NATAWIJAYA 等使用质量分数为 0.4%的黄原胶和 0.3% 的十二烷基硫酸钠制备了不同直径的 CO2微泡沫,采用不同渗透率级差的填砂管模型分别研究 CO2驱、聚合物和表面活性剂驱、CO2微泡沫驱对驱油效率的影响。实验结果表明,CO2驱采收率提高了13.09%,聚合物和表面活性剂驱采收率提高了18.79%,CO2微泡沫驱采收率提高了26.38%,相比之下 CO2微泡沫驱提高采收率具有明显的优势[52]。在非均质油藏中,CO2微泡沫在低渗透区域波及效率高,采收率由水驱的7.14%提高到74.65%。王湛使用改性后的微泡沫进行了岩心驱替实验,发现微泡沫经过改性后,注入压力降低了 20%~40%,改性后的微泡沫在水驱及微泡沫驱的基础上采收率提高了 20.9%[76]。YOU 等添加改性剂 GXJ-C 与十二烷基硫酸钠混合制备微泡沫,经过改性的微泡沫驱采收率由 40.3% 提高到 63.6%[77],说明微泡沫改性后的驱油效果明显优于水驱和微泡沫驱。
-
玻璃微观刻蚀模型和可视填砂管岩心模型的应用,直观呈现了泡沫在非均质多孔介质中运移规律及与原油相互作用的过程。TELMADARREIE 等利用质量分数为0.55%的黄原胶和0.29%的表面活性剂 N85 制备成 CO2微泡沫,通过非均质微观可视化模型,研究了 CO2微泡沫驱替稠油的效果。实验结果表明,CO2微泡沫驱的采收率可达98%[70],微泡沫首先驱替裂缝及高渗透通道中的原油,在高渗透区域形成有效封堵后,逐渐向低渗透区域转移。 CO2微泡沫具有提高非均质稠油油藏采收率的潜力。高振东利用质量分数为 0.5% 的 UCAB 和 0.2% 的 SDS 制备成 CO2微泡沫,使用微观可视化模型研究了 CO2微泡沫的驱油效果。实验结果表明,当微泡沫的最佳注入速率为 2.0 L/min、泡沫阻力系数为 8~15时,CO2微泡沫能进入更小的孔喉,扩大了波及体积,其驱油效率在水驱的基础上可提高25.8%,在延长组低渗透油藏现场应用效果良好[78]。
-
4 存在问题及发展趋势
-
微泡沫虽已在生物医学、矿物浮选、水处理、土壤修复以及钻井中取得了较好的应用效果,在提高采收率中也表现出一定的应用潜力,但在非常规油藏的微观驱油机制尚不明确,需要进一步研究优选适宜于非常规油藏提高采收率的微泡沫配方。微泡沫现有的几种制备方法存在一定的局限性,设计微泡沫制备与驱替相结合的实验平台,有助于深入研究微泡沫的微观驱油机理。微泡沫直径与孔喉直径的匹配是影响微泡沫封堵及驱油效果的关键因素,建立微泡沫直径与孔喉直径比值的数学模型,根据不同油藏渗透率级差与孔喉比的特点,研发与储层渗透率级差和孔喉比适应性更高的微泡沫,有助于提高微泡沫驱的应用范围。CO2微泡沫的制备及其提高采收率机理研究,一方面符合中国当前碳减排工作的需要,另一方面,能够改善低渗透油藏的波及体积,提高采收率,对提升中国原油产量具有一定的研究价值与意义。
-
微泡沫配方的优选 微泡沫由于其特殊的结构,具有粒径小、稳定性高和流动性强等特点,微泡沫的稳定性和流变性是影响采收率的关键因素,现有关于微泡沫稳定性的研究,多集中在微泡沫钻井液配方的优选。已有部分学者证实了微泡沫在提高采收率应用中的可行性,但对微泡沫提高采收率的配方研究尚不多见,因此应进一步围绕提高采收率,结合不同油藏的特点,优选适宜的微泡沫配方。
-
微泡沫的制备方法 目前关于微泡沫的生成方法包括高速搅拌法、微流控法和特殊过滤筛板等,不同方法制备的微泡沫均存在一定的局限性,如高速搅拌法制备的微泡沫易受搅拌速率及搅拌时间的影响,导致微泡沫的尺寸分布均一性较差。微流控法制备的微泡沫均一性好,且能够可视化,便于室内研究,但该方法制备微泡沫的效率低,不适宜现场使用。特殊过滤筛板法是将气体通过具有微米级小孔的筛板,气流通过筛板时在剪切作用力下与液相相互作用生成微泡沫,该方法成本较低。目前在提高采收率研究中,多用填砂管制备不同尺寸的微泡沫,但该方法操作复杂,易影响实验结果的准确性。因此,需要进一步改进实验装置,优化微泡沫的制备方法。
-
微泡沫尺寸与孔喉尺寸的匹配性 微泡沫的直径分布是表征微泡沫稳定性的关键参数,微泡沫直径一般为 10~100 μm,而非常规油藏储集空间多为微纳米孔喉,常规介质难以注入,经过压裂改造的储层,裂缝错综复杂,进一步加剧了储层的非均质性,注入介质往往发生窜流,导致油藏的稳产期短、采收率较低。需进一步研究微泡沫尺寸与孔喉尺寸的比值关系,明确微泡沫提高采收率的适用性和驱油效果。
-
CO2微泡沫的研究 目前对于空气微泡沫的性质及应用的研究较多,以其他气体介质制备微泡沫的研究应用较少。对于部分油气藏,一方面,CO2由于能够与原油发生混相,置换原油,另一方面,CO2 地质封存是实现碳减排的有效途径之一,因此,需进一步研究与 CO2相适应的聚合物和表面活性剂,探究空气微泡沫与CO2微泡沫的性质差异。
-
5 结束语
-
当前非常规油气的开发是中国原油增产的重点,非常规油气压裂后一次采收率低,稳产周期短。微泡沫驱技术的提出对于提升中国油气采收率具有重要的研究价值与潜力。微泡沫与普通泡沫的结构与性质有着较大的差异,微泡沫具有直径小、稳定性高、注入性好且流动性强的特点,其独特的多层结构形成的气阻效应,有效改善了驱油体系的流度控制能力,扩大了波及体积,提高了采收率。发展微泡沫驱技术,可以有效解决普通泡沫驱存在的不足,满足中国低渗透非均质储层的开采需求。
-
参考文献
-
[1] 李国欣,朱如凯.中国石油非常规油气发展现状、挑战与关注问题[J].中国石油勘探,2020,25(2):1-13.LI Guoxin,ZHU Rukai.Progress,challenges and key issues of un⁃ conventional oil and gas development of CNPC[J].China Petro⁃ leum Exploration,2020,25(2):1-13.
-
[2] 孙龙德,邹才能,贾爱林,等.中国致密油气发展特征与方向 [J].石油勘探与开发,2019,46(6):1 015-1 026.SUN Longde,ZOU Caineng,JIA Ailin,et al.Development charac⁃ teristics and orientation of tight oil and gas in China[J].Petro⁃ leum Exploration and Development,2019,46(6):1 015-1 026.
-
[3] 赵迪斐,郭英海,刘静,等.页岩储层非均质性地质理论的研究现状、进展与方向评述[J].非常规油气,2020,7(6):1-4.ZHAO Difei,GUO Yinghai,LIU Jing,et al.Review on the current situation,progress and direction of the research on the geological theory of shale reservoir[J].Unconventional Oil & Gas,2020,7(6):1-4.
-
[4] 魏兵,刘江,张翔,等.致密油藏提高采收率方法与理论研究进展[J].西南石油大学学报:自然科学版,2021,43(1):91-102.WEI Bing,LIU Jiang,ZHANG Xiang,et al.Advances of enhanced oil recovery method and theory in tight reservoirs[J].Journal of Southwest Petroleum University:Science & Technology Edition,2021,43(1):91-102.
-
[5] 康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477.KANG Yili,TIAN Jian,LUO Pingya,et al.Technical bottleneck and development strategies of enhancing recovery for tight oil res⁃ ervoirs[J].Acta Petrolei Sinica,2020,41(4):467-477.
-
[6] 袁士义,王强,李军诗,等.注气提高采收率技术进展及前景展望[J].石油学报,2020,41(12):1 623-1 632.YUAN Shiyi,WANG Qiang,LI Junshi,et al.Technology progress and prospects of enhanced oil recovery by gas injection[J].Acta Petrolei Sinica,2020,41(12):1 623-1 632.
-
[7] 李阳.低渗透油藏CO2驱提高采收率技术进展及展望[J].油气地质与采收率,2020,27(1):1-10.LI Yang.Technical advancement and prospect for CO2 flooding en⁃hanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.
-
[8] 张世明.低渗透油藏CO2驱气窜通道识别方法[J].油气地质与采收率,2020,27(1):101-106.ZHANG Shiming.Study on identification method for gas channel⁃ ing of CO2 flooding in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):101-106.
-
[9] 马庆涛,吴洁,马骁.大芦湖油田高21块不稳定注水方式研究 [J].特种油气藏,2019,26(6):103-107.MA Qingtao,WU Jie,MA Xiao.Transient water injection pattern of block Gao-21 in Daluhu Oilfield[J].Special Oil & Gas Reser⁃ viors,2019,26(6):103-107.
-
[10] 杨晨旭,冯沙沙,张伟,等.小气顶底水薄层油藏开发规律及技术政策[J].断块油气田,2020,27(1):85-89.YANG Chenxu,FENG Shasha,ZHANG Wei,et al.Development rules and technical policies of thin-layer reservoir with small gas cap and bottom water[J].Fault-Block Oil and Gas Field,2020,27(1):85-89.
-
[11] 刘柏林.苏北盆地陈堡油田微观水驱油机理及水驱油效率影响因素研究[J].石油实验地质,2003,25(2):178-182.LIU Bailin.Study on microscopic water-drive mechanism and the affecting factors of water-drive efficiency in Chenbao oilfield,the north Jiangsu basin[J].Petroleum Geology & Experiment,2003,25(2):178-182.
-
[12] HOLM L W.Foam injection test in the Siggins Field,Illinois[J].Journal of Petroleum Technology,1970,22(12):1 499-1 506.
-
[13] 李兆敏,徐正晓,李宾飞,等.泡沫驱技术研究与应用进展[J].中国石油大学学报:自然科学版,2019,43(5):118-127.LI Zhaomin,XU Zhengxiao,LI Binfei,et al.Advances in research and application of foam flooding technology[J].Journal of China University of Petroleum:Edition of Natural Science,2019,43(5):118-127.
-
[14] 商琳琳,许建红.致密油层空气泡沫驱油提高驱油效率实验研究[J].油田化学,2019,36(3):489-493.SHANG Linlin,XU Jianhong.Experimental study on improving oil displacement efficiency by air-foam flooding in tight oil layer[J].Oilfield Chemistry,2019,36(3):489-493.
-
[15] 王杰祥,李娜,孙红国,等.非均质油层空气泡沫驱提高采收率试验研究[J].石油钻探技术,2008,36(2):4-6.WANG Jiexiang,LI Na,SUN Hongguo,et al.Experiment study of improved oil recovery through air foam flooding in heterogeneous reservoir[J].Petroleum Drilling Techniques,2008,36(2):4-6.
-
[16] 姚振杰,江绍静,高瑞民,等.延长油田低温低渗油藏空气泡沫驱矿场实践[J].油气藏评价与开发,2020,10(1):108-112.YAO Zhenjie,JIANG Shaojing,GAO Ruimin,et al.Field practic⁃ es of air foam flooding in low temperature and low permeability reservoirs of Yanchang oilfield[J].Reservoir Evaluation and De⁃ velopment,2020,10(1):108-112.
-
[17] 向城鑫,唐晓东,陈朕,等.强化泡沫驱油研究进展[J].中外能源,2020,25(11):34-39.XIANG Chengxin,TANG Xiaodong,CHEN Zhen,et al.Research progress of enhanced foam flooding[J].Sino-Global Energy,2020,25(11):34-39.
-
[18] 周凤军,王欣然,李金宜,等.泡沫体系改善早期聚合物驱效果实验研究[J].油气地质与采收率,2019,26(2):101-105.ZHOU Fengjun,WANG Xinran,LI Jinyi,et al.Experimental study on foam flooding for improving early polymer flooding in off⁃ shore oilfield[J].Petroleum Geology and Recovery Efficiency,2019,26(2):101-105.
-
[19] 潘一,马迪,张金辉,等.聚合物稳泡剂泡沫驱中耐温性研究进展[J].现代化工,2020,40(2):41-47.PAN Yi,MA Di,ZHANG Jinhui,et al.Research progress in tem⁃ perature stability of polymer foam stabilizer in foam flooding[J].Modern Chemical Industry,2020,40(2):41-47.
-
[20] 姚雪,孙宁,吕亚慧,等.泡沫调驱体系研究进展[J].油田化学,2020,37(1):169-177.YAO Xue,SUN Ning,LÜ Yahui,et al.Research progress of foam profile-controlling and flooding system[J].Oilfield Chemistry,2020,37(1):169-177.
-
[21] 刘凯,王前荣,王维波.微泡沫提高采收率技术研究进展[J].应用化工,2017,46(6):1 204-1 209.LIU Kai,WANG Qianrong,WANG Weibo.Micro-foam EOR re⁃ search progress[J].Applied Chemical Industry,2017,46(6):1 204-1 209.
-
[22] GHOSH M.Laboratory study on the generation and characterisa⁃ tion of CO2 colloidal gas aphrons[D].Edmonton:University of Al⁃ berta Civil and Environmental Engineering,2013.
-
[23] 叶仲斌,罗平亚,施雷庭,等.用微泡沫/聚合物驱油体系大幅度提高近海油田采收率[C].北京:我国近海油气勘探开发高技术发展研讨会,2005.YE Zhongbin,LUO Pingya,SHI Leiting,et al.Using micro foam/polymer flooding system to greatly improve oil recovery in off⁃ shore oil fields[C].Beijing:Seminar on High Technology Develop⁃ ment of Offshore Oil and Gas Exploration and Development in China,2005.
-
[24] JAUREGI P,VARLEY J.Colloidal gas aphrons:A novel approach to protein recovery[J].Biotechnology & Bioengineering,2015,59(4):471-481.
-
[25] SALEEM H,PAL P,HAIJA M A,et al.Regeneration and reuse of bio-surfactant to produce colloidal gas aphrons for heavy metal ions removal using single and multistage cascade flotation[J].Journal of Cleaner Production,2019,217:493-502.
-
[26] HASHIM M A,GUPTA B S.The application of colloidal gas aph⁃ rons in the recovery of fine cellulose fibres from paper mill waste⁃ water[J].Bioresource Technology,1998,64(3):199-204.
-
[27] WANG S,MULLIGAN C N.Rhamnolipid foam enhanced remedia⁃ tion of cadmium and nickel contaminated soil[J].Water,Air,and Soil Pollution,2004,157(1):315-330.
-
[28] BROOKEY T“.Micro-Bubbles”:new aphron drill-in fluid tech⁃ nique reduces formation damage in horizontal wells[C].Louisi⁃ ana:The SPE Formation Damage Control Conference,1998.
-
[29] MATSUSHITA K,MOLLAH A H,STUCKEY D C,et al.Predis⁃ persed solvent extraction of dilute products using colloidal gas Aphrons and colloidal liquid aphrons:Aphron preparation,stabili⁃ ty and size[J].Colloids & Surfaces,1992,69(1):65-72.
-
[30] MANSUR E A,WANG Y,DAI Y.Separation of fine particles by using colloidal gas aphrons[J].Chinese Journal of Chemical Engi⁃ neering,2004,12(2):286-289.
-
[31] SEBBA F.Foams and biliquid foams-aphrons[M].New York:John Willy & Sons Publishing Company,1987:47-48.
-
[32] 赵福,王平全,李旭.微泡沫钻井液Aphron最新进展[J].钻采工艺,2008,31(1):123-124.ZHAO Fu,WANG Pingquan,LI Xu.Recent advance in Aphron drilling fluids[J].Drilling & Production Technology,2008,31(1):123-124.
-
[33] YAN Y,QU C,ZHANG N,et al.A study on the kinetics of liquid drainage from colloidal gas aphrons(CGAs)[J].Colloids and Sur⁃ faces A:Physicochemical and Engineering Aspects,2005,259(1/3):167-172.
-
[34] HASHIM M A,MUKHOPADHYAY S,GUPTA B S,et al.Applica⁃ tion of colloidal gas aphrons for pollution remediation[J].Journal of Chemical Technology & Biotechnology,2012,87(3):305-324.
-
[35] MOLAEI A,WATERS K E.Aphron applications—A review of re⁃ cent and current research[J].Advances in Colloid and Interface Science,2015,216:36-54.
-
[36] FINK J.Petroleum engineer’s guide to oil field chemicals and flu⁃ ids[M].3rd ed.Amsterdam:Gulf Professional Publishing,2021:907-940.
-
[37] 李志勇,李强,孙晗森,等.适用于煤层气钻井的微泡沫钻井液研究[J].煤炭学报,2020,45(2):703-711.LI Zhiyong,LI Qiang,SUN Hansen,et al.Research on microfoam drilling fluid suitable for coalbed methane drilling[J].Jour⁃ nal of China Coal Society,2020,45(2):703-711.
-
[38] VAZIRI E,SIMJOO M,CHAHARDOWLI M.Application of foam as drilling fluid for cuttings transport in horizontal and inclined wells:A numerical study using computational fluid dynamics[J].Journal of Petroleum Science and Engineering,2020,194(10):10-16.
-
[39] 高亚罡,陈光杰,刘通义,等.聚合物-CO2泡沫压裂液性能研究及现场应用[J].油田化学,2017,34(3):438-443.GAO Yagang,CHEN Guangjie,LIU Tongyi,et al.Research and field application of the polymer-CO2 foam fracturing fluid[J].Oil⁃ field Chemistry,2017,34(3):438-443.
-
[40] 黄炜,温柔,庞进,等.低渗透非均质油藏空气泡沫驱替注入参数优化实验[J].特种油气藏,2021,28(3):124-129.HUANG Wei,WEN Rou,PANG Jin,et al.Experiment on injec⁃ tion parameter optimization for air foam flooding in low-permea⁃ bility heterogeneous reservoirs[J].Special Oil & Gas Reservoirs,2021,28(3):124-129.
-
[41] ZHANG Y,LIU Q,YE H,et al.Nanoparticles as foam stabilizer:Mechanism,control parameters and application in foam flooding for enhanced oil recovery[J].Journal of Petroleum Science and Engineering,2021,202(8):108561.
-
[42] VIGNES-ADLER M,WEAIRE D.New foams:Fresh challenges and opportunities[J].Current Opinion in Colloid & Interface Sci⁃ ence,2008,13(3):141-149.
-
[43] TAO W,MEI C,HAMZAH N.The application of surfactant colloi⁃ dal gas aphrons to remediate contaminated soil:A review[J].Jour⁃ nal of Contaminant Hydrology,2020,231:1-9.
-
[44] ZOZULYA O,PLETNEVA V.Influence of thermobaric conditions on size distribution of colloidal gas aphrons[J].Colloids and Sur⁃ faces A:Physicochemical and Engineering Aspects,2015,483:232-238.
-
[45] 闫立伟,宋智灵,杜朝锋,等.天然气泡沫体系流度控制能力影响因素[J].油气地质与采收率,2021,28(2):109-118.YAN Liwei,SONG Zhiling,DU Zhaofeng,et al.Influencing fac⁃ tors of fluidity control ability of natural gas foam system[J].Petro⁃ leum Geology and Recovery Efficiency,2021,28(2):109-118.
-
[46] 史胜龙,王业飞,周代余,等.微泡沫体系的制备及在调剖、驱油中的应用进展[J].油田化学,2016,33(4):750-755.SHI Shenglong,WANG Yefei,ZHOU Daiyu,et al.Preparation methods and research progress of microbubble in flooding and profile control[J].Oilfield Chemistry,2016,33(4):750-755.
-
[47] 符东宇,李祖友,鲁光亮,等.基于泡沫流体管流模型的速度管柱排采工艺优化——以川西坳陷中浅层气藏为例[J].大庆石油地质与开发,2020,39(2):72-79.FU Dongyu,LI Zuyou,LU Guangliang,et al.Optimization of the velocity-string drainage-production technology based on the foam-fluid tube-flow model:A case study on the middle-shallow gas reservoirs in Western Sichuan Depression[J].Petroleum Geol⁃ ogy & Oilfield Development in Daqing,2020,39(2):72-79.
-
[48] 史胜龙,王业飞,温庆志.微泡沫与普通泡沫注入性及调剖能力对比[J].石油与天然气化工,2018,47(3):62-66.SHI Shenglong,WANG Yefei,WEN Qingzhi.Comparison of injec⁃ tivity and profile control ability of microfoam and common foam [J].Chemical Engineering of Oil and Gas,2018,47(3):62-66.
-
[49] PASDAR M,KAMARI E,KAZEMZADEH E,et al.Investigating fluid invasion control by Colloidal Gas Aphron(CGA)based fluids in micromodel systems[J].Journal of Natural Gas Science and En⁃ gineering,2019,66:1-10.
-
[50] 王维波,陈龙龙,李超跃,等.泡沫驱提高采收率技术研究新进展[J].应用化工,2020,49(7):1 848-1 853.WANG Weibo,CHEN Longlong,LI Chaoyue,et al.The new re⁃ search progress on enhanced oil recovery technology by foam flooding[J].Applied Chemical Industry,2020,49(7):1 848-1 853.
-
[51] 邢晓璇.泡沫驱微观驱油机理及驱油效果[J].油气地质与采收率,2020,27(3):106-112.XING Xiaoxuan.Microscopic displacement mechanism and oil dis⁃ placement effect of foam flooding[J].Petroleum Geology and Re⁃ covery Efficiency,2020,27(3):106-112.
-
[52] NATAWIJAYA M A,SUGAI Y,ANGGARA F.CO2 microbubble colloidal gas aphrons for EOR application:the generation using porous filter,diameter size analysis and gas blocking impact on sweep efficiency[J].Journal of Petroleum Exploration and Produc⁃ tion Technology,2020,10(1):103-113.
-
[53] 张志升.适用于致密砂岩储层的多功能表面活性剂驱油压裂液体系[J].大庆石油地质与开发,2020,39(1):169-174.ZHANG Zhisheng.Multifunction surfactant oil-displacing fractur⁃ ing fluid system suitable for tight sandstone reservoirs[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2020,39(1):169-174.
-
[54] 赵淑霞,杨永恒,马涛.油田用于CO2起泡的表面活性剂的研究现状[J].石油与天然气化工,2017,46(6):66-70.ZHAO Shuxia,YANG Yongheng,MA Tao.Research status of sur⁃ factants used for CO2 foaming in oilfield[J].Chemical Engineer⁃ ing of Oil and Gas,2017,46(6):66-70.
-
[55] 张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.
-
[56] 王超群,陈缘博,赵志强,等.国外微泡沫钻井液技术新进展及探讨[J].钻井液与完井液,2020,37(2):133-139.WANG Chaoqun,CHEN Yuanbo,ZHAO Zhiqiang,et al.Micro foam drilling fluid technology abroad:New progress and discus⁃ sion[J].Drilling Fluid & Completion Fluid,2020,37(2):133-139.
-
[57] KESHAVARZI B,JAVADI A,BAHRAMIAN A,et al.Formation and stability of colloidal gas aphron based drilling fluid consider⁃ ing dynamic surface properties[J].Journal of Petroleum Science and Engineering,2019,174:468-475.
-
[58] PASDAR M,KAZEMZADEH E,KAMARI E,et al.Insight into se⁃ lection of appropriate formulation for colloidal gas aphron(CGA)-based drilling fluids[J].Petroleum Science,2020,17(3):759-767.
-
[59] NGUYEN Hai Le N,SUGAI Y,SASAKI K.Investigation of stabili⁃ ty of CO2 microbubbles-colloidal gas aphrons for enhanced oil re⁃ covery using definitive screening design[J].Colloids and Interfac⁃ es,2020,4(2):26.
-
[60] AMIRI M C,SADEGHIALIABADI H.Evaluating the stability of colloidal gas aphrons in the presence of montmorillonite nanoparti⁃ cles[J].Colloids and Surfaces A:Physicochemical and Engineer⁃ ing Aspects,2014,457:212-219.
-
[61] ZHU W,ZHENG X,LI G.Micro-bubbles size,rheological and fil⁃ tration characteristics of Colloidal Gas Aphron(CGA)drilling flu⁃ ids for high temperature well:role of attapulgite[J].Journal of Pe⁃ troleum Science and Engineering,2020,186:106683.
-
[62] GROWCOCK F B,BELKIN A,FOSDICK M,et al.Recent advanc⁃ es in aphron drilling-fluid technology[J].SPE Drilling and Com⁃ pletion,2007,22(2):74-80.
-
[63] GUPTA D.Method of fracturing with aphron containing fluids:US13/299246[P].2013-05-23.
-
[64] BJORNDALEN N,KURU E.Stability of microbubble-based drill⁃ ing fluids under downhole conditions[J].Journal of Canadian Pe⁃ troleum Technology,2008,47(6):40-47.
-
[65] BJORNDALEN N J M A.A study of the effects of colloidal gas aphron composition on pore blocking[J].SPE Drilling & Comple⁃ tion,2011,26(1):139-150.
-
[66] BJORNDALEN H N,JOSSY W E,ALVAREZ J M,et al.A labora⁃ tory investigation of the factors controlling the filtration loss when drilling with colloidal gas aphron(CGA)fluids[J].Journal of Petro⁃ leum Science and Engineering,2014,117(9):1-7.
-
[67] PASDAR M,KAMARI E,KAZEMZADEH E,et al.Investigating fluid invasion control by Colloidal Gas Aphron(CGA)based fluids in micromodel systems[J].Journal of Natural Gas Science and En⁃ gineering,2019,66:1-10.
-
[68] SHIVHARE S,KURU E.A study of the pore-blocking ability and formation damage characteristics of oil-based colloidal gas aph⁃ ron drilling fluids[J].Journal of Petroleum Science and Engineer⁃ ing,2014,122:257-265.
-
[69] TABZAR A,GHAZANFARI M H.Pore-scale analysis of filtration loss control by Colloidal Gas Aphron Nano-Fluids(CGANF)in heterogeneous porous media[J].Experimental Thermal and Fluid Science,2016,77:327-336.
-
[70] TELMADARREIE A,DODA A,TRIVEDI J J,et al.CO2 micro⁃ bubbles-A potential fluid for enhanced oil recovery:Bulk and po⁃ rous media studies[J].Journal of Petroleum Science and Engineer⁃ ing,2016,138:160-173.
-
[71] 史胜龙,王业飞,温庆志,等.微泡沫直径与地层孔隙直径的匹配关系[J].中国石油大学学报:自然科学版,2018,42(5):114-125.SHI Shenglong,WANG Yefei,WEN Qingzhi,et al.Matching rela⁃ tionship between microfoam diameter and formation pore diameter [J].Journal of China University of Petroleum:Edition of Natural Science,2018,42(5):114-125.
-
[72] ALIZADEH A,KHAMEHCHI E.Mathematical modeling of the Colloidal Gas Aphron transport through porous medium using the filtration theory[J].Journal of Natural Gas Science and Engineer⁃ ing,2017,44:37-53.
-
[73] 吴雪瑞.微泡沫体系研制及应用性能评价[D].北京:中国石油大学(北京),2017:30-39.WU Xuerui.A new micro-foam system formulation and evaluation of its application[D].Beijing:China University of Petroleum(Bei⁃ jing),2017:30-39.
-
[74] SAMUEL S R,KURU E.Design and development of aqueous col⁃ loidal gas aphrons for enhanced oil recovery applications[C].Oklahoma:SPE Improved Oil Recovery Symposium,2012.
-
[75] 史胜龙.微泡沫体系的制备及其在提高采收率中的应用研究 [D].青岛:中国石油大学(华东),2017:70-94.SHI Shenglong.Fabrication of microfoam systems and their appli⁃ cation in enhanced oil recovery[D].Qingdao:China University of Petroleum(East China),2017:70-94.
-
[76] 王湛.胶质气体泡沫的制备及其驱油性能的研究[D].青岛:中国石油大学(华东),2011:58-66.WANG Zhan.Preparation of colloidal gas aphron and its proper⁃ ties study on oil displacement[D].Qingdao:China University of Petroleum(East China),2011:58-66.
-
[77] YOU S,SUN X,LI X.Preparation of modified colloidal gas aph⁃ rons and analysis of the oil displacement effect[J].Applied Sci⁃ ences,2020,10(3):927.
-
[78] 高振东.延长组低渗透油藏非线性渗流机理与CO2微泡沫驱油研究[D].成都:西南石油大学,2018:188-202.GAO Zhendong.Study on nonlinear seepage mechanism and CO2 micro-foam flooding in low permeability reservoir of Yanchang Formation[D].Chengdu:Southwest Petroleum University,2018:188-202.
-
摘要
随着非常规油气资源开发的进行,针对非常规油藏提高采收率的二次和三次采油技术引起学者们的广泛关注。泡沫因其堵水不堵油的独特性质,在中高含水期油藏开发过程中取得了良好的应用效果。泡沫的稳定性是影响提高采收率效果的关键因素,近年来诸如聚合物强化泡沫、纳米颗粒稳泡等技术成为中外学者的研究热点。然而这些强化泡沫技术仍存在泡沫直径较大、储层中黏附聚合物难以清除、技术成本高等问题,限制了其在低渗透油藏中的推广与使用。与普通泡沫相比,微泡沫具有直径小(10~100 μm)、比表面积大、稳定性高且具有类似水的流动性等特点。微泡沫驱具有注入压力低和波及范围更广等优势,注入压力仅为聚合物驱的1/3,同时可有效控制其气体流度,扩大波及体积,进而提高采收率,是一项具有潜力的三次采油技术。在文献调研的基础上,介绍了微泡沫的结构与性质,阐述了微泡沫的封堵与提高采收率原理,总结了微泡沫驱提高采收率技术的研究现状,最后指出了微泡沫在低渗透油藏开发中存在的问题,展望了微泡沫在提高采收率应用中的发展潜力。
Abstract
With the development of unconventional oil and gas resources,secondary and tertiary oil recovery technologies for enhanced oil recovery in unconventional reservoirs have attracted widespread attention from scholars. Foam flooding has achieved good results in the development of medium and high water-cut oil reservoirs due to its unique properties of plug- ging water instead of oil,and foam stability is a key factor affecting the effect of enhanced oil recovery. In recent years,tech- nologies such as polymer-enhanced foam and nano-particle foam stabilization have become the research focuses for schol- ars both in China and abroad. However,these enhanced foam technologies still have problems such as large foam diame- ters,great difficulty in removing adhesive polymers in reservoirs,and high technical costs,which limit the promotion and use of these technologies in low-permeability reservoirs. Compared with ordinary foams,micro-foams have the characteris- tics of small diameters(10-100 μm),large specific surface areas,high stability,and water-like fluidity. As a potential ter- tiary oil recovery technology,micro-foam flooding has the advantages of low injection pressure and wider coverage. More- over,its injection pressure is only a third of the injection pressure of the ordinary foams,at the same time,it can effectively control its gas fluidity,expand the swept volume,and enhance oil recovery. On the basis of literature research,this paper in- troduced the structure and properties of micro-foams and the principle of micro-foam plugging and enhanced oil recovery, and the current research status of the micro-foam flooding technology for enhanced oil recovery is summarized. Finally,this paper indicated the problems of micro-foams in the development of low-permeability reservoirs and forecasted the develop- ment potential of micro-foams in the application of enhanced oil recovery.
Keywords
unconventional reservoirs ; micro-foam ; plugging ; oil displacement ; enhanced oil recovery