en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄仕林(1985—),男,四川西充人,高级工程师,在读博士研究生,从事高含硫气田开发、采气工艺、油气集输等技术研究和管理工作。E-mail:281561404@qq.com。

通讯作者:

汪周华(1979—),男,湖北宜昌人,教授,博导。E-mail:wangzhouhua@126.com。

中图分类号:TE312

文献标识码:A

文章编号:1009-9603(2022)04-0122-06

DOI:10.13673/j.cnki.cn37-1359/te.202104044

参考文献 1
钟晓,杜建芬.气水相渗特征与高温高压实验研究[J].重庆科技学院学报:自然科学版,2013,15(3):70-73.ZHONG Xiao,DU Jianfen.Gas-water permeability characteristics and high temperature and high pressure experimental study[J].Journal of Chongqing University of Science and Technology:Natu⁃ ral Sciences Edition,2013,15(3):70-73.
参考文献 2
计玮.致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕 234-235 井区盒8段、山1段为例 [J].吉林大学学报:地球科学版,2019,49(6):1 540-1 551.JI Wei.Gas water relative flow of tight sandstone gas reservoirs and its influencing factors:Case study of Member8 of Permian Xiashihezi Formation and Member1 of Permian Shanxi Formation in Shaan Well234-235 area of Sulige gas-field in Ordos Basin [J].Journal of Jilin University:Earth Science Edition,2019,49(6):1 540-1 551.
参考文献 3
易敏,郭平,孙良田.非稳态法水驱气相对渗透率曲线实验[J].天然气工业,2007,27(10):92-94.YI Min,GUO Ping,SUN Liangtian.An experimental study on rela⁃ tive permeability curve for unsteady-state gas displacement by water[J].Natural Gas Industry,2007,27(10):92-94.
参考文献 4
CAO R,XU J,YANG X,et al.Gas-water flow behaviour during mutual displacement in porous media[J].The Open Fuels & Ener⁃gy Science Journal,2017,10(1):13-22.
参考文献 5
杨志兴,许馨月,陈自立,等.不同压力梯度下气水相渗曲线的实验和产能研究[J].科技与创新,2019,(23):39-40.YANG Zhixing,XU Xinyue,CHEN Zili,et al.Experimental and productivity research on gas-water relative permeability curves under different pressure gradients[J].Science and Technology & Innovation,2019,(23):39-40.
参考文献 6
鲁瑞彬,王雯娟,胡琳,等.高温高压气藏衰竭开发气水相渗变化规律探讨[J].中国海上油气,2020,32(2):88-95.LU Ruibin,WANG Wenjuan,HU Lin,et al.Discussion on the change laws of gas-water relative permeability in the depletion development of HTHP gas reservoirs[J].China Offshore Oil and Gas,2020,32(2):88-95.
参考文献 7
蒋光迹,郭平,邓兴梁,等.裂缝-孔隙型碳酸盐岩储层相渗曲线测试方法对比研究[C].成都:油气藏地质及开发工程国家重点实验室第五次国际学术研讨会,2009.JIANG Guangji,GUO Ping,DENG Xingliang,et al.Contrast study on relative permeability curve test methods for fracture-pore car⁃ bonate rock reservoir[C].Chengdu:Fifth International Academic Conference of the State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering,2009.
参考文献 8
丁云宏,张倩,郑得文,等.微裂缝—孔隙型碳酸盐岩气藏改建地下储气库的渗流规律[J].天然气工业,2015,35(1):109-114.DING Yunhong,ZHANG Qian,ZHENG Dewen,et al.Seepage laws in coverting a microfissure-pore carbonate gas reservoir into a UGS[J].Natural Gas Industry,2015,35(1):109-114.
参考文献 9
汪周华,肖阳,郭平,等.缝洞型碳酸盐岩气藏高温高压气水两相渗流特征[J].油气藏评价与开发,2017,7(2):47-52.WANG Zhouhua,XIAO Yang,GUO Ping,et al.Gas-water flowing characteristics under high temperature and high pressure in frac⁃ tured-cavity carbonate gas reservoir[J].Reservoir Evaluation and Development,2017,7(2):47-52.
参考文献 10
李程辉,李熙喆,高树生,等.碳酸盐岩储集层气水两相渗流实验与气井流入动态曲线——以高石梯—磨溪区块龙王庙组和灯影组为例[J].石油勘探与开发,2017,44(6):930-938.LI Chenghui,LI Xizhe,GAO Shusheng,et al.Experiment on gaswater two-phase seepage and inflow performance curves of gas wells in carbonate reservoirs:A case study of Longwangmiao For⁃ mation and Dengying Formation in Gaoshiti-Moxi block,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2017,44(6):930-938.
参考文献 11
万腾.碳酸盐岩气藏气水两相渗流特征及产能模拟研究[D].北京:中国石油大学(北京),2019.WAN Teng.Experimental investigation of two-phase seepage characteristics and deliverability of carbonate gas reservoir[D].Beijing:China University of Petroleum(Beijing),2019.
参考文献 12
彭光明,刘言,李国蓉,等.元坝气田长兴组气藏生物礁相储集层发育特征[J].新疆石油地质,2014,35(5):511-516.PENG Guangming,LIU Yan,LI Guorong,et al.Development char⁃ acteristics of reef reservoir in Changxing gas pool,Yuanba gas field,northeastern Sichuan Basin[J].Xinjiang Petroleum Geolo⁃ gy,2014,35(5):511-516.
参考文献 13
武恒志,李忠平,柯光明.元坝气田长兴组生物礁气藏特征及开发对策[J].天然气工业,2016,36(9):11-19.WU Hengzhi,LI Zhongping,KE Guangming.Characteristics of the Changxing Fm biohermal gas reservoir in the Yuanba Gas⁃ field,Sichuan Basin and development countermeasures[J].Natu⁃ ral Gas Industry,2016,36(9):11-19.
参考文献 14
李宇平,范小军,郝景宇,等.元坝气田长兴组礁滩相气藏复杂气水关系成因[J].海相油气地质,2015,20(3):33-38.LI Yuping,FAN Xiaojun,HAO Jingyu,et al.Origin of complicat⁃ ed gas-water relation of upper Permian Changxing reef-shoal fa⁃ cies reservoirs in Yuanba gas field,Sichuan Basin[J].Marine Ori⁃ gin Petroleum Geology,2015,20(3):33-38.
参考文献 15
任世林,徐守成,杨杰,等.元坝气田超深层生物礁气藏产水类型识别与开发对策[J].天然气勘探与开发,2020,43(1):36-43.REN Shilin,XU Shoucheng,YANG Jie,et al.Classification and develoment countermeasures on water production in extradeep bioreef gas reservoirs,Yuanba gasfield,Sichuan Basin[J].Natural Gas Exploration and Development,2020,43(1):36-43.
参考文献 16
陈丹.川东北地区元坝气田与普光气田长兴组气藏特征对比分析[J].石油天然气学报,2011,33(10):11-14.CHEN Dan.Difference analysis of Changxin formation gas reser⁃ voir between Puguang gas field and Yuanba gas field in the north⁃ east of Sichuan area[J].Journal of Oil and Gas Technology,2011,33(10):11-14.
参考文献 17
袁淋,陈曦,姜林希,等.礁滩相气藏气井早期水侵识别方法优选及应用[J].中外能源,2020,25(7):36-43.YUAN Lin,CHEN Xi,JIANG Linxi,et al.Optimization and appli⁃ cation of identification method of early water influx in gas wells of reef-flat facies gas reservoir[J].Sino-Global Energy,2020,25(7):36-43.
参考文献 18
曲岩涛,戴志坚,李桂梅,等.岩心分析方法:GB/T 29172— 2012[S].北京:中华人民共和国国家质量监督检验检疫总局,2012.QU Yantiao,DAI Zhijian,LI Guimei,et al.Practices for core anal⁃ ysis:GB/T 29172-2012[S].Beijing:General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,2012.
参考文献 19
张祖波,罗蔓莉,戴志坚,等.岩石中两相流体相对渗透率测定方法:GB/T 28912—2012[S].北京:中华人民共和国国家质量监督检验检疫总局,2012.ZHANG Zubo,LUO Manli,DAI Zhijian,et al.Test method for two phase relative permeability in rock:GB/T 28912-2012[S].Bei⁃ jing:General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,2012.
参考文献 20
陈元千.油气藏工程计算方法(续篇)[M].北京:石油工业出版社,1991.CHEN Yuanqian.Petroleum reservoir engineering calculation methods(continuation)[M].Beijing:Petroleum Industry Press,1991.
目录contents

    摘要

    气水两相相对渗透率曲线是描述产水气藏气水渗流规律的重要基础参数,但是采用水驱气方法还是气驱水方法来确定气驱水相对渗透率曲线仍存在较大争议。以元坝气田为研究对象,基于室内实验测试方法,系统开展了孔隙型、裂缝型岩心气驱水相对渗透率曲线测试,对比分析不同类型储层岩心气驱水相对渗透率曲线特征,推荐产水气藏气水相对渗透率曲线测试法。结果表明:裂缝型岩心气驱水相对渗透率曲线表现出凹形曲线特征,与常规的X形曲线特征差异较大;与裂缝型岩心比较,孔隙型岩心气驱水相对渗透率曲线整体右移,两相流动饱和度区间范围更宽、水相相对渗透率上升更慢。与气驱水方法相比,水驱气相对渗透率曲线的束缚水饱和度更接近储层实际情况、水相渗流能力弱、气相渗流能力大于水相,实验设计符合产水气藏气水渗流过程。因此,针对产水气藏的产能评价、开发方案编制等,建议采用水驱气法测试的气驱水相对渗透率曲线开展模拟计算。

    Abstract

    The gas-water relative permeability curve is an important basic parameter to describe the gas-water flow law of water-producing gas reservoirs. However,it is still controversial to determine the gas-water relative permeability curve by the water-drive-gas method or the gas-drive-water method. Taking reservoirs in Yuanba gas field as the research objects, the systematic laboratory experiments were conducted to study the gas-water relative permeability curves of porous and fractured cores. The gas-water relative permeability curves of cores from different types of reservoirs were compared and an- alyzed,and the test method was recommended for the gas-water relative permeability curves in water-producing gas reser- voirs. The results demonstrate that the gas-water relative permeability curves of fractured cores are concave,which are quite different from conventional X-shaped curves;compared with that of fractured cores,the gas-water relative permeabili- ty curves of pored cores move to the right as a whole;the ranges of two-phase flow saturation are wider,and the waterphase relative permeability rises more slowly. Compared with that by the gas-drive-water method,the irreducible water sat-urations from the permeability curves by the water-drive-gas method are closer to the actual situation of the reservoir;the water phase flow capacity is weak,while the gas phase flow capacity is greater than that of the water phase. The experimen- tal design is in line with the gas-water flow process in water-producing gas reservoirs. Therefore,for the productivity evalu- ation and development plan design for water-producing gas reservoirs,it is recommended to use the gas-water relative per- meability curve tested by the water-drive-gas method for numerical simulation.

  • 对于产水气藏而言,气水两相相对渗透率曲线是气田开发研究中重要的基础研究之一。弄清气水两相相对渗透率随流体饱和度的变化规律,对于产水气藏产能评价、水侵过程中产水能力预测及气藏开发方案设计作用显著。气驱水相对渗透率曲线的测试主要受到测试方法、温度、压力、储层岩心物性、润湿性、流体饱和历程等因素的影响[1-2]。其中,测试方法包括气驱水和水驱气 2 种方法。室内实验测试通常使用稳态法和非稳态法进行不同温度、不同压力、不同驱替顺序(气驱水/水驱气)等条件下的气水两相相对渗透率曲线测试[3-6]

  • 裂缝型岩心的气水两相相对渗透率曲线不同于孔隙型岩心,水驱气相对渗透率测试的裂缝型岩心相对渗透率曲线斜率较大且两相区较窄,而基岩的相对渗透率曲线相对平缓。气驱水相对渗透率测试发现孔隙型岩心的气水共渗区间和气驱水效率均高于裂缝型岩心。通过气水互驱测定裂缝型岩心常温、常压及高温、高压下的气水两相渗流特征,发现不同温压条件下的裂缝型岩心的相对渗透率曲线均呈现出 X 形,且高温高压下具有更大的两相共渗区、较低的束缚水饱和度[7-11]

  • 通过调研发现,不同的相对渗透率曲线测试方法反映的气水渗流特征存在一定差异,在实际工作中如何选择合理的测试方法是描述气水两相渗流规律首先要解决的问题。对于裂缝型储层而言,经典渗流理论认为裂缝型岩心气水两相渗流曲线为X 形,部分学者已发现裂缝型储层气水两相相对渗透率曲线表现为凹型特征。笔者针对元坝气田实际储层岩心,分别开展不同测试方法及储层类型气驱水相对渗透率测试,推荐产水气藏不同开发阶段应选择不同的气驱水相对渗透率测试方法,同时明确元坝气田孔隙型、裂缝型储层气水两相渗流规律。

  • 1 元坝气田储层岩心孔渗测试

  • 元坝气田储层岩性主要以白云岩、生物礁岩为主。储层非均质性强,物性较差,气水关系复杂,平均孔隙度为 4.53%,平均渗透率为 0.34 mD,储层空间类型主要包括溶蚀次生孔和原生孔,微裂缝发育。气井投产初期主要产出返排液,水气比高,Ca2+ 及Cl-含量较高。目前多数气井产出凝析水,液气比为 0.15×10-4~0.20×10-4 m3 /m3,离子含量较低,总矿化度小于6 000 mg/L。试井曲线和水驱特征曲线判断水侵情况发现,部分气井出现底水锥进导致水锁、产水量高和动态储量减小等问题[12-17]。因此,研究流体在裂缝-孔隙中的渗流规律对深入认识元坝气田产水动态研究具有重要意义。

  • 采用元坝气田 9 口井储层的 18 块岩心,参照 GB/T29172—2012[18],开展岩心基础物性测试,得到岩心的孔隙度和渗透率。基于元坝气田同储层类型划分标准,将 18块岩心划分为孔隙型和裂缝型 2 种储层类型,其中,孔隙型又划分为 1 类(孔隙度>10%)、2 类(孔隙度为 5%~10%)、3 类(孔隙度<2%),裂缝型划分为小裂缝(渗透率为 1~2 mD)、中裂缝(渗透率为 5~10 mD)、大裂缝(渗透率>20 mD)。从每种类型挑选出 1 块岩心,共计 6 块岩心 (表1)用于实验测试。

  • 表1 气水互驱相对渗透率实验岩心基本参数

  • Table1 Basic parameters of cores for gas-water mutual-drive relative permeability test

  • 气驱水、水驱气相对渗透率实验的水样根据元坝气田 10-1H井的水质分析报告配制,总矿化度为 42 639 mg/L,水型为 NaHCO3型,阳离子 K+ 和 Na+ 的质量浓度为 15 090.72 mg/L,Ca2+ 和 Mg2+ 的质量浓度分别为 963.46 和 48.70 mg/L。阴离子 Cl-,SO4 2- 和 HCO3 2- 的质量浓度分别为 23 070.15,201.92 和 326.57 mg/L。气样采用工业用N2(纯度为99%)。

  • 参考 GB/T28912—2012 中的非稳态气驱水相对渗透率曲线测试方法[19],在常温常压条件下,对6块岩心采用美国岩心公司 103 型气水/油气/油水相对渗透率测定仪进行气水互驱条件下相对渗透率曲线的测定。岩心束缚水饱和度为10%~20%,每块岩心分别测试气驱水、水驱气2条相对渗透率曲线。

  • 2 实验测试结果及对比分析

  • 2.1 气驱水相对渗透率曲线

  • 由元坝气田6块岩心气驱水相对渗透率曲线对比结果(图1,表2)可以看出,元坝气田在气驱水相对渗透率实验过程中,孔隙型、裂缝型储层的残余水饱和度分别为 48.15%~49.51%,51.48%~69.59%,其对应的气相相对渗透率分别为 0.26~0.46,0.24~0.61,水相相对渗透率分别为 0.75~0.87,0.86~0.92;两相区饱和度分别为 50.49%~51.85%,30.44%~48.52%,驱替压差分别为 0.02~4.14,0.14~0.55 MPa。

  • 图1 气驱水相对渗透率曲线对比结果

  • Fig.1 Comparison between relative permeability curves by gas-drive-water method

  • 表2 气驱水相对渗透率实验的主要指标

  • Table2 Main indicators of relative permeability test experiment by gas-drive-water method

  • 对于裂缝型岩心,随物性改善,驱替压差越小,两相渗流区间越小、残余水饱和度越大;大裂缝储层水相更易流动。孔隙型储层中1类、2类及3类岩心的残余水饱和度、两相区饱和度均接近,但不同物性储层岩心的驱替压差不同,物性越差驱替压差越大。对于孔隙型岩心,相对渗透率曲线的饱和度端点差异不大。

  • 根据陈元千的相对渗透率曲线归一化方法[20],分别对元坝气田孔隙型、裂缝型储层的气驱水相对渗透率曲线进行归一化(图2)。由图2可知,与裂缝型岩心相比,孔隙型岩心相对渗透率曲线两相区饱和度范围更大,残余水饱和度更小,等渗点靠右,气驱水效率更高。裂缝型岩心由于存在裂缝,导致气体沿优势通道发生窜流,无法驱替孔隙中的水相,因而两相区范围窄,残余水饱和度偏大,气驱水效率低于孔隙岩心。从测试结果可以看出,裂缝型岩心的两相相对渗透率曲线并不是近似于 X 形,而是表现出类似于孔隙型岩心的凹形曲线特征;残余水条件下气相的端点相对渗透率(0.34~0.35)远低于水相的端点相对渗透率(0.81~0.90);对于实际气藏而言,一般属于亲水储层,受毛细管力的影响,水相以水膜或连续相形式占据小孔道、气相占据孔道中央,气相的渗流能力应远大于水相;同时,元坝气田束缚水饱和度小于 20%,气驱水相对渗透率确定的残余水饱和度远高于气藏实际。因此,采用气驱水测定的气驱水相对渗透率曲线与元坝气田实际渗流特征不一致,代表性较差。

  • 图2 孔隙型、裂缝型储层气驱水相对渗透率归一化曲线

  • Fig.2 Normalization curves of relative permeability in porous and fractured reservoirs by gas-drive-water method

  • 2.2 水驱气相对渗透率曲线

  • 由水驱气相对渗透率实验结果及关键指标对比(图3,表3)可以看出,元坝气田在水驱气相对渗透率实验过程中,孔隙型、裂缝型储层的束缚水饱和度分别为 11.28%~21.43%,19.41%~20.61%;残余气饱和度分别为 9.06%~31.91%,20.47%~28.24%;其对应的水相相对渗透率分别为 0.13~0.25,0.11~0.34;两相区饱和度分别在 56.81%~69.51%,52.35%~58.92%;驱替压差分别为 0.05~8.28,0.48~1.38 MPa。

  • 2 种岩心测试结果均表现为随渗透率的增加,驱替压差越小,其宏观规律与气驱水相对渗透率测试结果一致。

  • 由水驱气相对渗透率曲线归一化的结果(图4)可以看出,水驱气相对渗透率整体规律与气驱水相对渗透率曲线一致;与裂缝型岩心比较,孔隙型岩心同样表现出两相区饱和度范围更宽、束缚水饱和度、残余气饱和度更小和等渗点右移的特征。相同饱和度条件下,裂缝型岩心的水相相对渗透率偏大,气相相对渗透率下降快;研究分析认为,对于裂缝型岩心,由于裂缝优势渗流通道的存在,流体主要沿裂缝渗流,水相相对渗透率增加,气相相对渗透率降低明显。因此,对于元坝气田而言,当裂缝与生产井连通时,水侵速度快,气产量降低迅速,水的影响显著。水相的端点相对渗透率(0.2)低于气相的端点相对渗透率(0.45),且束缚水饱和度与元坝气田的束缚水饱和度(20%)基本吻合,水驱气相对渗透率测试方法与水驱气藏渗流物理过程一致。

  • 图3 水驱气相对渗透率实验结果对比

  • Fig.3 Comparison between experimental results of relative permeability by water-drive-gas method

  • 表3 水驱气相对渗透率实验的主要指标

  • Table3 Main indicators of relative permeability test experiment by water-drive-gas method

  • 图4 孔隙型、裂缝型储层水驱气相对渗透率归一化曲线

  • Fig.4 Normalization curves of relative permeability in porous and fractured reservoirs by water-drive-gas method

  • 2.3 气驱水与水驱气相对渗透率曲线对比

  • 由元坝气田2种不同相对渗透率曲线测试方法得到的归一化相对渗透率曲线对比(图5,表4)可以看出,2种不同类型的岩心,与水驱气相对渗透率比较,气驱水相对渗透率曲线整体偏右、残余水饱和度偏大、两相区饱和度范围偏窄;且水相的端点相对渗透率远大于气相、气相的端点相对渗透率偏低,气驱水过程残余气饱和度为0;气驱水法确定的相对渗透率曲线与现场实际渗流物理过程不一致,具体表现为:①相同物性岩心,拟单相相对渗透率流条件下,气相相对渗透率流能力大于水相。②水驱气藏,水窜后水淹区存在水封气。③气驱水确定的水相残余水饱和度偏大,与元坝气田现场实际不一致。

  • 图5 气驱水、水驱气相对渗透率归一化曲线

  • Fig.5 Normalization curves of relative permeability by gas-drive-water and water-drive-gas methods

  • 表4 气驱水、水驱气相对渗透率归一化曲线的关键参数

  • Table4 Key parameters of normalization curves of relative permeability by gas-drive-water and water-drive-gas methods

  • 研究分析认为,造成气驱水相对渗透率曲线不符合现场实际的主要原因是流体饱和历程不同。对于实际有水气藏而言,成藏阶段,储层充满水,然后气体充注至束缚水条件,形成气藏;开发阶段,水相侵入储层,驱替储层中的气相,表现为水驱气过程;而气驱水相对渗透率曲线测试过程,实际上描述的是成藏阶段气驱水过程,偏离气藏开发阶段渗流过程。

  • 3 结论

  • 通过不同测试方法测定的气水两相相对渗透率曲线发现,标准气驱水相对渗透率流体饱和历程与产水气藏开发渗流物理过程不一致,导致相对渗透率测试残余水饱和度偏大、两相渗流区窄、水相端点值偏大,推荐采用水驱气相对渗透率描述产水气藏早期气水两相渗流过程。但是对于水淹区气水两相相对渗透率曲线,建议采用气驱水相对渗透率测试方法。与裂缝型岩心比较,孔隙型岩心气驱水、水驱气相对渗透率、两相区饱和度范围大、束缚水和残余气饱和度小、水驱气效率高。裂缝型岩心气驱水相对渗透率曲线仍表现为凹型的曲线特征,并不是 X 形曲线;否则会高估水相的流动能力。元坝气田当裂缝与生产井沟通时,水沿裂缝渗流,气相相对渗透率降低迅速,应重视裂缝水侵问题。

  • 符号解释

  • Krg——气相相对渗透率,小数;

  • Krw——水相相对渗透率,小数。

  • 参考文献

    • [1] 钟晓,杜建芬.气水相渗特征与高温高压实验研究[J].重庆科技学院学报:自然科学版,2013,15(3):70-73.ZHONG Xiao,DU Jianfen.Gas-water permeability characteristics and high temperature and high pressure experimental study[J].Journal of Chongqing University of Science and Technology:Natu⁃ ral Sciences Edition,2013,15(3):70-73.

    • [2] 计玮.致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕 234-235 井区盒8段、山1段为例 [J].吉林大学学报:地球科学版,2019,49(6):1 540-1 551.JI Wei.Gas water relative flow of tight sandstone gas reservoirs and its influencing factors:Case study of Member8 of Permian Xiashihezi Formation and Member1 of Permian Shanxi Formation in Shaan Well234-235 area of Sulige gas-field in Ordos Basin [J].Journal of Jilin University:Earth Science Edition,2019,49(6):1 540-1 551.

    • [3] 易敏,郭平,孙良田.非稳态法水驱气相对渗透率曲线实验[J].天然气工业,2007,27(10):92-94.YI Min,GUO Ping,SUN Liangtian.An experimental study on rela⁃ tive permeability curve for unsteady-state gas displacement by water[J].Natural Gas Industry,2007,27(10):92-94.

    • [4] CAO R,XU J,YANG X,et al.Gas-water flow behaviour during mutual displacement in porous media[J].The Open Fuels & Ener⁃gy Science Journal,2017,10(1):13-22.

    • [5] 杨志兴,许馨月,陈自立,等.不同压力梯度下气水相渗曲线的实验和产能研究[J].科技与创新,2019,(23):39-40.YANG Zhixing,XU Xinyue,CHEN Zili,et al.Experimental and productivity research on gas-water relative permeability curves under different pressure gradients[J].Science and Technology & Innovation,2019,(23):39-40.

    • [6] 鲁瑞彬,王雯娟,胡琳,等.高温高压气藏衰竭开发气水相渗变化规律探讨[J].中国海上油气,2020,32(2):88-95.LU Ruibin,WANG Wenjuan,HU Lin,et al.Discussion on the change laws of gas-water relative permeability in the depletion development of HTHP gas reservoirs[J].China Offshore Oil and Gas,2020,32(2):88-95.

    • [7] 蒋光迹,郭平,邓兴梁,等.裂缝-孔隙型碳酸盐岩储层相渗曲线测试方法对比研究[C].成都:油气藏地质及开发工程国家重点实验室第五次国际学术研讨会,2009.JIANG Guangji,GUO Ping,DENG Xingliang,et al.Contrast study on relative permeability curve test methods for fracture-pore car⁃ bonate rock reservoir[C].Chengdu:Fifth International Academic Conference of the State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering,2009.

    • [8] 丁云宏,张倩,郑得文,等.微裂缝—孔隙型碳酸盐岩气藏改建地下储气库的渗流规律[J].天然气工业,2015,35(1):109-114.DING Yunhong,ZHANG Qian,ZHENG Dewen,et al.Seepage laws in coverting a microfissure-pore carbonate gas reservoir into a UGS[J].Natural Gas Industry,2015,35(1):109-114.

    • [9] 汪周华,肖阳,郭平,等.缝洞型碳酸盐岩气藏高温高压气水两相渗流特征[J].油气藏评价与开发,2017,7(2):47-52.WANG Zhouhua,XIAO Yang,GUO Ping,et al.Gas-water flowing characteristics under high temperature and high pressure in frac⁃ tured-cavity carbonate gas reservoir[J].Reservoir Evaluation and Development,2017,7(2):47-52.

    • [10] 李程辉,李熙喆,高树生,等.碳酸盐岩储集层气水两相渗流实验与气井流入动态曲线——以高石梯—磨溪区块龙王庙组和灯影组为例[J].石油勘探与开发,2017,44(6):930-938.LI Chenghui,LI Xizhe,GAO Shusheng,et al.Experiment on gaswater two-phase seepage and inflow performance curves of gas wells in carbonate reservoirs:A case study of Longwangmiao For⁃ mation and Dengying Formation in Gaoshiti-Moxi block,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2017,44(6):930-938.

    • [11] 万腾.碳酸盐岩气藏气水两相渗流特征及产能模拟研究[D].北京:中国石油大学(北京),2019.WAN Teng.Experimental investigation of two-phase seepage characteristics and deliverability of carbonate gas reservoir[D].Beijing:China University of Petroleum(Beijing),2019.

    • [12] 彭光明,刘言,李国蓉,等.元坝气田长兴组气藏生物礁相储集层发育特征[J].新疆石油地质,2014,35(5):511-516.PENG Guangming,LIU Yan,LI Guorong,et al.Development char⁃ acteristics of reef reservoir in Changxing gas pool,Yuanba gas field,northeastern Sichuan Basin[J].Xinjiang Petroleum Geolo⁃ gy,2014,35(5):511-516.

    • [13] 武恒志,李忠平,柯光明.元坝气田长兴组生物礁气藏特征及开发对策[J].天然气工业,2016,36(9):11-19.WU Hengzhi,LI Zhongping,KE Guangming.Characteristics of the Changxing Fm biohermal gas reservoir in the Yuanba Gas⁃ field,Sichuan Basin and development countermeasures[J].Natu⁃ ral Gas Industry,2016,36(9):11-19.

    • [14] 李宇平,范小军,郝景宇,等.元坝气田长兴组礁滩相气藏复杂气水关系成因[J].海相油气地质,2015,20(3):33-38.LI Yuping,FAN Xiaojun,HAO Jingyu,et al.Origin of complicat⁃ ed gas-water relation of upper Permian Changxing reef-shoal fa⁃ cies reservoirs in Yuanba gas field,Sichuan Basin[J].Marine Ori⁃ gin Petroleum Geology,2015,20(3):33-38.

    • [15] 任世林,徐守成,杨杰,等.元坝气田超深层生物礁气藏产水类型识别与开发对策[J].天然气勘探与开发,2020,43(1):36-43.REN Shilin,XU Shoucheng,YANG Jie,et al.Classification and develoment countermeasures on water production in extradeep bioreef gas reservoirs,Yuanba gasfield,Sichuan Basin[J].Natural Gas Exploration and Development,2020,43(1):36-43.

    • [16] 陈丹.川东北地区元坝气田与普光气田长兴组气藏特征对比分析[J].石油天然气学报,2011,33(10):11-14.CHEN Dan.Difference analysis of Changxin formation gas reser⁃ voir between Puguang gas field and Yuanba gas field in the north⁃ east of Sichuan area[J].Journal of Oil and Gas Technology,2011,33(10):11-14.

    • [17] 袁淋,陈曦,姜林希,等.礁滩相气藏气井早期水侵识别方法优选及应用[J].中外能源,2020,25(7):36-43.YUAN Lin,CHEN Xi,JIANG Linxi,et al.Optimization and appli⁃ cation of identification method of early water influx in gas wells of reef-flat facies gas reservoir[J].Sino-Global Energy,2020,25(7):36-43.

    • [18] 曲岩涛,戴志坚,李桂梅,等.岩心分析方法:GB/T 29172— 2012[S].北京:中华人民共和国国家质量监督检验检疫总局,2012.QU Yantiao,DAI Zhijian,LI Guimei,et al.Practices for core anal⁃ ysis:GB/T 29172-2012[S].Beijing:General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,2012.

    • [19] 张祖波,罗蔓莉,戴志坚,等.岩石中两相流体相对渗透率测定方法:GB/T 28912—2012[S].北京:中华人民共和国国家质量监督检验检疫总局,2012.ZHANG Zubo,LUO Manli,DAI Zhijian,et al.Test method for two phase relative permeability in rock:GB/T 28912-2012[S].Bei⁃ jing:General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,2012.

    • [20] 陈元千.油气藏工程计算方法(续篇)[M].北京:石油工业出版社,1991.CHEN Yuanqian.Petroleum reservoir engineering calculation methods(continuation)[M].Beijing:Petroleum Industry Press,1991.

  • 参考文献

    • [1] 钟晓,杜建芬.气水相渗特征与高温高压实验研究[J].重庆科技学院学报:自然科学版,2013,15(3):70-73.ZHONG Xiao,DU Jianfen.Gas-water permeability characteristics and high temperature and high pressure experimental study[J].Journal of Chongqing University of Science and Technology:Natu⁃ ral Sciences Edition,2013,15(3):70-73.

    • [2] 计玮.致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕 234-235 井区盒8段、山1段为例 [J].吉林大学学报:地球科学版,2019,49(6):1 540-1 551.JI Wei.Gas water relative flow of tight sandstone gas reservoirs and its influencing factors:Case study of Member8 of Permian Xiashihezi Formation and Member1 of Permian Shanxi Formation in Shaan Well234-235 area of Sulige gas-field in Ordos Basin [J].Journal of Jilin University:Earth Science Edition,2019,49(6):1 540-1 551.

    • [3] 易敏,郭平,孙良田.非稳态法水驱气相对渗透率曲线实验[J].天然气工业,2007,27(10):92-94.YI Min,GUO Ping,SUN Liangtian.An experimental study on rela⁃ tive permeability curve for unsteady-state gas displacement by water[J].Natural Gas Industry,2007,27(10):92-94.

    • [4] CAO R,XU J,YANG X,et al.Gas-water flow behaviour during mutual displacement in porous media[J].The Open Fuels & Ener⁃gy Science Journal,2017,10(1):13-22.

    • [5] 杨志兴,许馨月,陈自立,等.不同压力梯度下气水相渗曲线的实验和产能研究[J].科技与创新,2019,(23):39-40.YANG Zhixing,XU Xinyue,CHEN Zili,et al.Experimental and productivity research on gas-water relative permeability curves under different pressure gradients[J].Science and Technology & Innovation,2019,(23):39-40.

    • [6] 鲁瑞彬,王雯娟,胡琳,等.高温高压气藏衰竭开发气水相渗变化规律探讨[J].中国海上油气,2020,32(2):88-95.LU Ruibin,WANG Wenjuan,HU Lin,et al.Discussion on the change laws of gas-water relative permeability in the depletion development of HTHP gas reservoirs[J].China Offshore Oil and Gas,2020,32(2):88-95.

    • [7] 蒋光迹,郭平,邓兴梁,等.裂缝-孔隙型碳酸盐岩储层相渗曲线测试方法对比研究[C].成都:油气藏地质及开发工程国家重点实验室第五次国际学术研讨会,2009.JIANG Guangji,GUO Ping,DENG Xingliang,et al.Contrast study on relative permeability curve test methods for fracture-pore car⁃ bonate rock reservoir[C].Chengdu:Fifth International Academic Conference of the State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering,2009.

    • [8] 丁云宏,张倩,郑得文,等.微裂缝—孔隙型碳酸盐岩气藏改建地下储气库的渗流规律[J].天然气工业,2015,35(1):109-114.DING Yunhong,ZHANG Qian,ZHENG Dewen,et al.Seepage laws in coverting a microfissure-pore carbonate gas reservoir into a UGS[J].Natural Gas Industry,2015,35(1):109-114.

    • [9] 汪周华,肖阳,郭平,等.缝洞型碳酸盐岩气藏高温高压气水两相渗流特征[J].油气藏评价与开发,2017,7(2):47-52.WANG Zhouhua,XIAO Yang,GUO Ping,et al.Gas-water flowing characteristics under high temperature and high pressure in frac⁃ tured-cavity carbonate gas reservoir[J].Reservoir Evaluation and Development,2017,7(2):47-52.

    • [10] 李程辉,李熙喆,高树生,等.碳酸盐岩储集层气水两相渗流实验与气井流入动态曲线——以高石梯—磨溪区块龙王庙组和灯影组为例[J].石油勘探与开发,2017,44(6):930-938.LI Chenghui,LI Xizhe,GAO Shusheng,et al.Experiment on gaswater two-phase seepage and inflow performance curves of gas wells in carbonate reservoirs:A case study of Longwangmiao For⁃ mation and Dengying Formation in Gaoshiti-Moxi block,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2017,44(6):930-938.

    • [11] 万腾.碳酸盐岩气藏气水两相渗流特征及产能模拟研究[D].北京:中国石油大学(北京),2019.WAN Teng.Experimental investigation of two-phase seepage characteristics and deliverability of carbonate gas reservoir[D].Beijing:China University of Petroleum(Beijing),2019.

    • [12] 彭光明,刘言,李国蓉,等.元坝气田长兴组气藏生物礁相储集层发育特征[J].新疆石油地质,2014,35(5):511-516.PENG Guangming,LIU Yan,LI Guorong,et al.Development char⁃ acteristics of reef reservoir in Changxing gas pool,Yuanba gas field,northeastern Sichuan Basin[J].Xinjiang Petroleum Geolo⁃ gy,2014,35(5):511-516.

    • [13] 武恒志,李忠平,柯光明.元坝气田长兴组生物礁气藏特征及开发对策[J].天然气工业,2016,36(9):11-19.WU Hengzhi,LI Zhongping,KE Guangming.Characteristics of the Changxing Fm biohermal gas reservoir in the Yuanba Gas⁃ field,Sichuan Basin and development countermeasures[J].Natu⁃ ral Gas Industry,2016,36(9):11-19.

    • [14] 李宇平,范小军,郝景宇,等.元坝气田长兴组礁滩相气藏复杂气水关系成因[J].海相油气地质,2015,20(3):33-38.LI Yuping,FAN Xiaojun,HAO Jingyu,et al.Origin of complicat⁃ ed gas-water relation of upper Permian Changxing reef-shoal fa⁃ cies reservoirs in Yuanba gas field,Sichuan Basin[J].Marine Ori⁃ gin Petroleum Geology,2015,20(3):33-38.

    • [15] 任世林,徐守成,杨杰,等.元坝气田超深层生物礁气藏产水类型识别与开发对策[J].天然气勘探与开发,2020,43(1):36-43.REN Shilin,XU Shoucheng,YANG Jie,et al.Classification and develoment countermeasures on water production in extradeep bioreef gas reservoirs,Yuanba gasfield,Sichuan Basin[J].Natural Gas Exploration and Development,2020,43(1):36-43.

    • [16] 陈丹.川东北地区元坝气田与普光气田长兴组气藏特征对比分析[J].石油天然气学报,2011,33(10):11-14.CHEN Dan.Difference analysis of Changxin formation gas reser⁃ voir between Puguang gas field and Yuanba gas field in the north⁃ east of Sichuan area[J].Journal of Oil and Gas Technology,2011,33(10):11-14.

    • [17] 袁淋,陈曦,姜林希,等.礁滩相气藏气井早期水侵识别方法优选及应用[J].中外能源,2020,25(7):36-43.YUAN Lin,CHEN Xi,JIANG Linxi,et al.Optimization and appli⁃ cation of identification method of early water influx in gas wells of reef-flat facies gas reservoir[J].Sino-Global Energy,2020,25(7):36-43.

    • [18] 曲岩涛,戴志坚,李桂梅,等.岩心分析方法:GB/T 29172— 2012[S].北京:中华人民共和国国家质量监督检验检疫总局,2012.QU Yantiao,DAI Zhijian,LI Guimei,et al.Practices for core anal⁃ ysis:GB/T 29172-2012[S].Beijing:General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,2012.

    • [19] 张祖波,罗蔓莉,戴志坚,等.岩石中两相流体相对渗透率测定方法:GB/T 28912—2012[S].北京:中华人民共和国国家质量监督检验检疫总局,2012.ZHANG Zubo,LUO Manli,DAI Zhijian,et al.Test method for two phase relative permeability in rock:GB/T 28912-2012[S].Bei⁃ jing:General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,2012.

    • [20] 陈元千.油气藏工程计算方法(续篇)[M].北京:石油工业出版社,1991.CHEN Yuanqian.Petroleum reservoir engineering calculation methods(continuation)[M].Beijing:Petroleum Industry Press,1991.