-
自然界中的三角洲形态“丰富多彩、奇形怪状”,例如汇入墨西哥湾的密西西比河三角洲是典型的鸟足状三角洲,由多个指状砂坝组成;而阿拉法拉亚三角洲是典型的朵叶状三角洲,由于被多条分流河道分割,平面上形似多个巨型孤立的分流砂坝[1]。随着中国油气田滚动勘探开发的逐渐深入,储层构型理论成为指导开发井网部署的重要依据,河控三角洲砂体形态的研究就此拉开帷幕[2-6]。基于卫星影像,中国学者按照平面形态将河控三角洲划分为分流沙坝型和指状坝型,按照河口地貌划分为舌状、单指状、多指状和席状等[7-9]。然而,目前所报道的河控三角洲形态分类仅局限于定性的命名,对形态的定量化表征有待进一步研究。
-
沉积过程决定沉积体系的平面形态和剖面结构。随着遥感成像、物理模拟和数值模拟技术的不断发展,中外学者们总结出河控三角洲生长过程的控制因素,包括河流能量、沉积物粒度组成、泥质含量、地形坡度和基准面变化等[10-19]。较强的河流能量增加决口水道的数量和分流河道的宽度[20];沉积物组分特征控制着三角洲的圆度,例如富泥质三角洲整体上呈现扇状且不发育分流河道[21-24];地形坡度控制着分流河道的发散和汇聚[1,20];基准面变化控制着三角洲的延伸距离[25-26]。然而,在不同主控因素下针对河控三角洲形态对生长过程的响应缺乏系统的定量研究。
-
据此,基于分形几何学和控制变量的思路,利用构型尺度的沉积正演数值模拟方法,分析河控三角洲主体和河坝复合体朵叶的形态类型和特征 (值),明确了沉积物供给速率、沉积物组分和盆地水深对形态的控制作用,建立形态与生长过程主控因素之间的定量表征模型,旨在为中国含油气盆地岩性油气藏储层构型研究提供理论指导,也进一步丰富了三角洲沉积学和形态学理论体系。
-
1 河控三角洲形态学定义
-
1.1 三角洲主体
-
正常湖退背景下,河控三角洲生长-沉积-保存的动态过程可以概括为:前缘增生阶段是三角洲主要的生长期和沉积期,主分流河道向前进积和决口分叉建设前缘增生体(同一时期三角洲前缘的多个河坝复合体朵叶),河口坝快速“水下”充填,河道沿坝快速“水上”建造;平原改造阶段是三角洲主要的沉积期和保存期,主分流河道侧向迁移和陆上决口缓慢“水上”改造废弃前缘增生体,并建设自生的河道砂坝(图1a)。强制湖退背景下,强制湖退阶段形成的平原主分流河道使河坝复合体朵叶在平面上不连续(图1b)。三角洲主体是指河控三角洲生长过程中不断被平原改造的三角洲前缘增生体的总和,主要由主分流河道、前缘决口水道、平原决口水道和河口坝组成(表1)。其中,主分流河道(或长期活动河道)是指供源河流在初始河口处决口分叉形成的活动性较强的长期活动分流河道,一般贯穿三角洲主体,决口分叉、下切和侧向迁移能力较强,内部充填多期叠置的河道砂坝,测井曲线呈箱型;前缘决口水道(或前缘短期活动河道)是指前缘增生阶段三角洲前缘内主分流河道决口分叉形成的短期活动分流河道,一般不均匀地分布于主分流河道两侧,决口分叉、下切和侧向迁移能力较弱,内部充填泥质含量较高的砂质沉积物,测井曲线呈钟型; 平原决口水道(或平原短期活动河道)是指平原改造阶段主分流河道决口分叉轻微下切三角洲平原形成的富泥质分流河道,偶见于主分流河道的凸岸,活动时间较短且规模较小,不具备决口分叉和侧向迁移能力,在测井上很难与分流间湾泥区分。与平原决口水道不同,主分流河道和前缘决口水道在前缘增生阶段均下切于自生的河口坝中,平面上形成“河在坝间走”的格局,笔者将这种分流河道和河口坝的组合称为河坝复合体,测井曲线呈上箱型-下漏斗型或上钟型-下漏斗型(图1a,1b)。
-
1.2 河坝复合体朵叶
-
河坝复合体朵叶是指同一河口系统发育的前缘增生河坝复合体的集合,一般由 1 个主分流河道河坝复合体和1个或多个前缘决口水道河坝复合体组成,是三角洲主体分形几何学意义上的基本生长单元,多期河口系统处河坝复合体朵叶叠加成为三角洲主体(图2)。按照不同时期主分流河道的行为,可以将河坝复合体朵叶的生长过程划分为 4 个阶段:①初始河口坝阶段。低弯度主分流河道卸载河口坝,内部搬运不沉积(图2a)。②主分流河道建设阶段。低弯度主分流河道决口分叉,内部搬运不沉积,前缘决口水道初步形成,与主分流河道共同建设河口坝(图2b)。③主分流河道改造阶段。高弯度主分流河道侧向迁移,内部搬运并沉积,前缘决口水道活动性减弱并轻微变曲,河口坝继续建造 (图2c)。④准平原化阶段。高弯度主分流河道侧向迁移和平原决口,内部搬运并沉积,两侧的前缘决口水道被废弃充填,主分流河道继续建造河口坝,向物源方向形成地貌学意义上的心滩和河漫沼泽(图2d)。当前缘决口水道完全废弃且主分流河道完成路径选择时,标志着一期河坝复合体朵叶废弃,下一期河坝复合体朵叶开始生长。
-
图1 河控三角洲主体沉积演化模式
-
Fig.1 Sedimentary evolution model of river-dominated deltaic main bodies
-
图2 河控三角洲河坝复合体朵叶沉积演化模式
-
Fig.2 Sedimentary evolution model of CMCLs in the river-dominated deltas
-
2 河控三角洲形态类型和特征
-
2.1 形态类型
-
三角洲主体主要包括 2 种形态类型:河网砂坝型和分支间湾型(图3)。其中,河网砂坝型三角洲主分流河道数量多,水动力强,河道分叉汇聚呈网络,将三角洲主体切割成为多个相对独立的砂坝或砂泥复合坝(图3a,3c);分支间湾型三角洲主分流河道数量少且几乎不分叉,三角洲主体呈树枝状,常将湖泊包络形成分流间湾(图3b,3d)。
-
河坝复合体朵叶主要包括 3 种形态类型:Ⅰ型 (多水道复合指状朵叶)、Ⅱ型(少水道复合指状朵叶)和Ⅲ型(主河道椭圆状朵叶)(图4)。Ⅰ型河坝复合体朵叶在相同或临近河口处决口水道数量多,形成的河坝复合体数量多且呈指状,平面上呈复合指状(图4a,4d);Ⅱ型河坝复合体朵叶在相同或临近河口处决口水道数量少且呈指状,平面上呈单一或复合指状(图4b,4e);Ⅲ型河坝复合体朵叶以主分流河道为主,朵叶仅发育一个主分流河道河坝复合体,呈椭圆状(图4c,4f)。
-
2.2 形态特征
-
为了定量描述河控三角洲的形态特征,结合三角洲主体和河坝复合体朵叶的形态类型,引入以下 5种形态特征值:初始河口主分流河道间夹角、节点间距、单一河口或节点处河坝复合体数量、主分流河道数量和主分流河道比例,这 5 种形态特征值均与三角洲生长时间无关。其中,初始河口主分流河道间夹角反映了三角洲主体的收敛性或开度,夹角越小,三角洲主体收敛性越强,开度越小。节点是指前缘决口水道与主分流河道的交点。由于主分流河道不一定在每一个河口都发生决口,这意味着节点是指主分流河道发生决口的河口。节点间距是指节点在主分流河道轨迹上的距离,反映了三角洲主体的分叉程度。主分流河道比例是指主分流河道数量与所有河道和水道数量的比值(图5)。
-
图3 河控三角洲三角洲主体形态类型
-
Fig.3 Morphological types of river-dominated deltaic main bodies
-
图4 河控三角洲河坝复合体朵叶形态类型
-
Fig.4 Morphological types of CMCLs in river-dominated deltas
-
图5 河控三角洲形态特征值示意
-
Fig.5 Schematic diagram of morphological features of river-dominated deltas
-
3 不同主控因素下的生长过程对河控三角洲形态的控制作用
-
正常湖退背景下,在不考虑沿岸流和风浪对三角洲二次改造的情况下,基于构型尺度的Delft3D模型,运用控制变量法设计了 18 组(其中 A2,B3,C1均为对照组)沉积正演模拟实验,分别模拟不同沉积物供给速率、沉积物组分和盆地水深主控的河控三角洲生长过程,并利用含砂量来刻画三角洲的形态 (表2)。
-
3.1 沉积物供给速率
-
沉积物供给速率可以用沉积物流量表征,由供源河流流量和河流沉积物浓度的乘积决定。根据2002—2020年《中国河流泥沙公报》,中国大部分河流的径流量为 102~103 m3 /s,河流沉积物浓度为 0.01~10 kg/m3[27]。据此,设计 9组沉积正演模拟实验(A1—A9),以富细砂质三角洲为例,保持砂泥比、砂质沉积物粒度中值和地形坡度不变,改变河流流量、沉积物浓度和沉积物流量。
-
根据 A1—A9沉积正演模拟结果(图6),三角洲主体随着沉积物供给速率变化具有以下特征:①在河流沉积物浓度一定且数量级为0.01~0.1 kg/m3 的条件下,随着河流流量的增加,主分流河道数量逐渐增加,相同时间内三角洲主体的生长面积更大。 ②在河流沉积物浓度一定且数量级为 1 kg/m3 的条件下,随着河流流量的增加,主分流河道数量和三角洲主体的生长面积基本不变,而三角洲主体的次级分支逐渐减小。③在河流流量一定的条件下,随着河流沉积物浓度的增加,三角洲主体的平面含砂量和偏砂相面积逐渐减小,说明缓慢的生长速率是砂质沉积物富集的有利条件,三角洲主体由连片状或扇状向树枝状或指状转化,初始河口主分流河道间夹角逐渐增大。
-
图6 不同沉积物供给速率控制下三角洲主体的形态特征
-
Fig.6 Morphological features of deltaic main bodies controlled by different sediment supply rates
-
鄱阳湖西南缘赣江三角洲具有多条高流量主分流河道,不断改造前期的三角洲前缘,平面上呈扇状,形成“河多坝少、河在坝间”的格局,是典型的阿拉法拉亚河网砂坝型三角洲,与A4或A7模拟结果相似(图3a,图6)。同时,赣江三角洲也具有河流沉积物浓度小的特点,说明在河流流量较高且沉积物浓度较小的情况下极易形成河网砂坝型三角洲。相比之下,鄱阳湖东北缘章田河三角洲与A3模拟结果最为相似,三角洲主体呈多分支指状,且主分流河道数量较少,可以推测分支间湾型的章田河三角洲可能形成于低河流流量和高沉积物浓度的环境 (图3b,图6)。另外,当河流流量和沉积物浓度(1 kg/m3)均很高时,三角洲主体更形似冲积平原河流或深水水道,但本质上仍是三角洲沉积体系。
-
通过实时观测 A1—A9沉积正演模拟实验中不同沉积时期的河坝复合体朵叶,选取典型的朵叶并研究其形态。结果表明,河坝复合体朵叶随着沉积物供给速率变化具有以下特征(图7):①在河流沉积物浓度一定的条件下,随着河流流量的增加,河坝复合体朵叶的河坝复合体数量逐渐增加或保持不变。②在河流流量一定的条件下,随着河流沉积物浓度的增加,河坝复合体朵叶的河坝复合体数量逐渐减少且变化幅度较大。③随着沉积物流量的增加,河坝复合体朵叶的河坝复合体数量逐渐减少。
-
鄱阳湖西南缘赣江三角洲存在类似的现象,即主分流河道决口分叉较少导致前缘决口水道河坝复合体数量较少,说明随着沉积物供给速率的增大,主分流河道河坝复合体建造速度加快阻碍了主分流河道决口分叉机制,导致河坝复合体朵叶由Ⅰ 型向Ⅱ型转化(图4a,4b,图7)。
-
图7 不同沉积物供给速率控制下河坝复合体朵叶的形态特征
-
Fig.7 Morphological features of CMCLs controlled by different sediment supply rates
-
3.2 沉积物组分
-
沉积物组分特征包括砂质(非黏滞性)沉积物的粒度和泥质(黏滞性)沉积物的含量,可以用粒度中值和砂泥比反映。现代和古代沉积实例表明,河控三角洲的粒度最大可达砾石和粗砂级别,最小可以达到黏土级别[28-31]。据此,设计 6 组沉积正演模拟实验(B1—B6),保持河流流量、沉积物浓度、沉积物流量和地形坡度不变,改变粒度中值(B1—B5)和砂泥比(B4和B6),分析粗砂、中砂、细砂、粉细砂和粉砂质三角洲的形态。为了印证砂质和泥质三角洲的形态差异,引入 B4的对比模型 B6,两者砂泥比互为倒数。为了直观观察三角洲的平面形态和便于测量其形态特征值,选取 100 m3 /s 和 0.1 kg/m3 数量级的河流流量和沉积物浓度,防止高河流流量对三角洲的破坏,也防止河坝复合体朵叶的过多分叉。
-
根据 B1—B6沉积正演模拟实验结果(图8),三角洲主体随着沉积物组分变化具有以下特征:①在砂泥比一定的条件下,随着砂质沉积物粒度中值减小,三角洲主体由收敛向发散转化,初始河口主分流河道间夹角逐渐增大,节点数量逐渐减少,节点间距逐渐增加;三角洲主体向分支间湾型转化,河坝复合体朵叶向Ⅱ型转化,但是究其成因与沉积物流量主控不同,这是由于节点间距增大产生的视觉效果,并非同一河口处的河坝复合体数量减少。② 在砂质沉积物粒度中值一定的条件下,富泥质三角洲相同时间内生长速率更快,具有更大的初始河口主分流河道间夹角和节点间距,与砂质沉积物粒度中值减小的作用类似,这可能由于泥质沉积物扩散速率大,主分流河道的决口速率远远小于河道的进积建造速率,无法在相同或临近河口形成大规模决口,从而造成了节点的分散。这一结果说明鄱阳湖章田河三角洲亦可能形成于供源河流沉积物粒度较细或泥质含量较高的环境中(图4b)。③无论是粒度中值减小还是泥质含量增加,主分流河道侧向迁移和下切能力增强,主分流河道和前缘决口水道均趋于弯曲、平滑和圆润。
-
图8 不同沉积物组分特征控制下三角洲主体的形态特征
-
Fig.8 Morphological features of deltaic main bodies controlled by different sediment compositions
-
3.3 盆地水深
-
在基准面一定的情况下,盆地水深分布由基底地貌决定,与基底的地形坡度和非均质性有关。目前所报道的最大盆地坡度可达 5°,最小可达 0.03° [28-31]。据此,设计5个沉积正演模拟实验(C1— C5),保持砂泥比、砂质沉积物粒度中值、河流流量、沉积物浓度和沉积物流量不变,改变地形坡度。其中C1—C4沉积正演模拟实验的盆地水深是线性变化的,C5沉积正演模拟实验的盆地水深是非均质的。
-
根据 C1—C5沉积正演模拟实验结果(图9,图10),三角洲主体随着盆地水深变化具有以下特征: ①随着盆地坡度增加,盆地水深增大,相同时间内三角洲主体的生长面积减小,三角洲主体含砂量增加,主分流河道占比增加,前缘决口水道的数量减小,河口坝由指状向椭圆状转化,河坝复合体朵叶逐渐取代三角洲主体。②相同地形坡度的条件下,与线性变化盆地水深相比,非线性盆地水深条件下分流河道的生长方向受控于地形梯度,未改变主分流河道占总分流河道的比例,即水深的非均质性仅改变河道的流向。③垂向上,随着盆地坡度增加,分流河道的延伸距离更短,三角洲由顶积层主控向前积层主控转化,前积结构由隐性前积向叠瓦状前积和S型斜交前积转化。
-
现代青海湖布哈河三角洲远端最新一期河坝复合体朵叶呈椭圆状,被多条主分流河道下切,形态上类似于 C3正演模拟实验结果中初始河口坝阶段Ⅲ型河坝复合体朵叶(图4c,图9)。与Ⅰ型和Ⅱ 型朵叶不同的是,Ⅲ型朵叶不发育前缘决口水道,一般形成于低河流流量稳定岸线处、水体较深的河口处和供源河流初始河口处,与可容纳空间有关,说明较深的盆地水体不易形成大型的三角洲主体,而是形成规模较小的Ⅲ型河坝复合体朵叶。
-
4 河控三角洲形态的定量表征模型
-
基于回归分析,建立了河控三角洲形态特征值与生长过程主控因素之间的定量关系。结果表明(图11):①在沉积物浓度一定且数量级介于 0.01~0.1 kg/m3 的条件下,主分流河道数量与河流流量呈线性正相关,而沉积物浓度数量级大于 1 kg/m3 时,主分流河道数量保持不变。②河流流量一定的条件下,单一河口或节点处河坝复合体数量与沉积物浓度和沉积物流量呈线性负相关。③河流流量一定的条件下,初始河口主分流河道间夹角与沉积物浓度呈线性正相关,而与沉积物粒度中值呈线性负相关。④节点间距与沉积物粒度中值呈幂负相关。 ⑤主分流河道比例与盆地水深呈对数正相关。
-
图9 不同盆地水深控制下三角洲主体的形态特征
-
Fig.9 Morphological features of deltaic main bodies controlled by different basin bathymetry
-
图10 不同盆地水深控制下三角洲主体纵切面
-
Fig.10 Deltaic sections of deltaic main bodies controlled by different basin bathymetry
-
据此,将上述5个形态特征值作为端元,建立河控三角洲形态类型和特征的定量表征模型(图12)。总体上,随着河流流量增大且沉积物浓度较小时,三角洲主体由分支间湾型向河网砂坝型转化;随着沉积物流量增加或沉积物粒度减小,三角洲主体向分支间湾型转化且收敛性减弱,河坝复合体朵叶由 Ⅰ型向Ⅱ型转化;随着盆地水深增加,三角洲主体趋于单一的Ⅲ型河坝复合体朵叶。
-
图11 河控三角洲形态特征值与生长过程主控因素之间的定量关系
-
Fig.11 Quantitative relationships between values of river-dominated deltaic morphological features and dominant controlling factors of growth processes
-
值得一提的是,河控三角洲生长过程中的沉积物供给速率、沉积物组分特征和盆地水深并不是一成不变的,即三角洲的平面形态不仅取决于初始河口处的沉积物供给和盆地水深,也取决于三角洲生长过程中河坝复合体朵叶最新河口系统处的沉积物供给和盆地水深。反过来,三角洲主体和河坝复合体朵叶的平面形态也可以作为推测其构型尺度生长过程主控因素的证据。另外,这一模型仅适用于正常湖退模式,强制湖退模式下高频基准面变化使形态与发育过程控制因素之间的对应关系变得更为复杂[22]。
-
图12 河控三角洲形态的定量表征模型
-
Fig.12 Quantitative characterization model of river-dominated deltaic morphology
-
5 结论
-
河控三角洲主体的形态类型包括河网砂坝型和分支间湾型,河坝复合体朵叶的形态类型包括多水道复合指状朵叶、少水道复合指状朵叶和主河道椭圆状朵叶,其形态特征可以由初始河口主分流河道间夹角、节点间距、单一河口或节点处河坝复合体数量、主分流河道数量和主分流河道比例进行表征,受沉积物供给速率、沉积物组分特征和盆地水深共同控制。
-
主分流河道数量与河流流量呈线性正相关;单一河口或节点处河坝复合体数量与沉积物浓度和沉积物流量呈线性负相关;初始河口主分流河道间夹角与沉积物浓度呈线性正相关,与沉积物粒度中值呈线性负相关;节点间距与沉积物粒度中值呈幂负相关;主分流河道比例与盆地水深呈对数正相关。
-
随着河流流量增大且沉积物浓度较小时,三角洲主体由分支间湾型向河网砂坝型转化;随着沉积物流量增加或沉积物粒度减小,三角洲主体向分支间湾型转化且收敛性减弱,河坝复合体朵叶由多水道复合指状朵叶向少水道复合指状朵叶转化;随着盆地水深增加,三角洲主体趋于单一的主河道椭圆状朵叶。
-
参考文献
-
[1] OLARIU C,BHATTACHARYA J P.Terminal distributary chan⁃ nels and delta front architecture of river-dominated delta systems [J].Journal of Sedimentary Research,2006,76:212-233.
-
[2] 杜威,纪友亮,季梦瑶,等.渤海湾盆地饶阳凹陷早渐新世高精度年代地层格架建立及意义[J].中国石油大学学报:自然科学版,2020,44(4):142-151.DU Wei,JI Youliang,JI Mengyao,et al.Establishment and signifi⁃ cance of high-resolution Early Oligocene chronostratigraphic framework in Raoyang Sag,Bohai Bay Basin[J].Journal of China University of Petroleum:Edition of Natural Science,2020,44(4):142-151.
-
[3] 刘君龙,孙冬胜,纪友亮,等.川西晚侏罗世前陆盆地浅水三角洲砂体分布特征与叠置模式[J].石油与天然气地质,2018,39(6):1 164-1 178.LIU Junlong,SUN Dongsheng,JI Youliang,et al.Distribution characteristics and superimposition pattern of the Late Jurassic shallow water deltic sand body in the foreland basin of Western Si⁃ chuan Depression[J].Oil & Gas Geology,2018,39(6):1 164-1 178.
-
[4] 郝睿林,黄文辉,胡广成,等.南苏门答腊盆地J区中新统进积三角洲成因砂体叠置样式[J].油气地质与采收率,2020,27(4):52-62.HAO Ruilin,HUANG Wenhui,HU Guangcheng,et al.Superimpo⁃ sition patterns of sandbodies in Miocene progradational deltas in Block J,South Sumatra Basin[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(4):52-62.
-
[5] 吕端川,宋金鹏.浅水三角洲前缘砂体沉积及渗流特征精细表征——以松辽盆地大庆长垣杏树岗油田为例[J].石油实验地质,2020,42(1):88-94,102.LÜ Duanchuan,SONG Jinpeng.Characterization of sedimentary and flow characteristics of shallow water delta front sand bodies:Xingshugang Oil Field,Daqing placanticline,Songliao Basin[J].Petroleum Geology and Experiment,2020,42(1):88-94,102.
-
[6] DU Wei,JI Youliang,CHEN Guo,et al.Cyclostratigraphy and as⁃ tronomical tuning during the Oligocene in the Jizhong Depression,Bohai Bay Basin,northeastern China[J].Palaeogeography,Palaeo⁃ climatology,Palaeoecology,2020,554:1-14.
-
[7] 吴胜和,徐振华,刘钊,等.河控浅水三角洲沉积构型[J].古地理学报,2019,21(2):202-215.WU Shenghe,XU Zhenhua,LIU Zhao,et al.Depositional architec⁃ ture of fluvial-dominated shoal water delta[J].Journal of Palaeo⁃ geography,2019,21(2):202-215.
-
[8] 李元昊,宋放新,韩鹏,等.构造稳定时期河控三角洲三元控砂模式[J].古地理学报,2019,21(3):397-406.LI Yuanhao,SONG Fangxin,HAN Peng,et al.A ternary sand con⁃ trol model of river-dominated delta in tectonic stability period[J].Journal of Palaeogeography,2019,21(3):397-406.
-
[9] 吴穹螈,穆朋飞,孙广义,等.浅水三角洲分流砂坝精细刻画新方法[J].断块油气田,2020,27(2):176-181.WU Qiongyuan,MU Pengfei,SUN Guangyi,et al.New method for fine characterization of distributary bar in shallow water delta[J].Fault-Block Oil and Gas Field,2020,27(2):176-181.
-
[10] 魏康强,焦朝维,王振,等.三角洲分流河道与朵叶体形成过程的物理模拟[J].科学技术与工程,2017,17(23):155-160.WEI Kangqiang,JIAO Chaowei,WANG Zhen,et al.Physical sim⁃ ulation of delta distributary channel and the formation process of leaf body[J].Science Technology and Engineering,2017,17(23):155-160.
-
[11] 张文彪,段太忠,刘彦锋,等.定量地质建模技术应用现状与发展趋势[J].地质科技情报,2019,38(3):264-275.ZHANG Wenbiao,DUAN Taizhong,LIU Yanfeng,et al.Applica⁃ tion status and development trend of quantitative geological mod⁃ eling[J].Geological Science and Technology Information,2019,38(3):264-275.
-
[12] 杜威,纪友亮,李其海,等.不同沉积过程尺度下正演数值模拟研究进展及油气地质意义[J].油气地质与采收率,2020,27(2):62-71.DU Wei,JI Youliang,LI Qihai,et al.Sedimentary forward numeri⁃ cal modeling at different sedimentary scales:Progress and hydro⁃ carbon significance[J].Petroleum Geology and Recovery Efficien⁃ cy,2020,27(2):62-71.
-
[13] 徐伟,房磊,张新叶,等.乌干达K油田扇三角洲沉积正演模拟与应用[J].地球科学,2019,44(2):513-523.XU Wei,FANG Lei,ZHANG Xinye,et al.Sedimentary forward simulation and application of fan delta in K oil field in Uganda [J].Earth Science,2019,44(2):513-523.
-
[14] 王鹏飞,霍春亮,叶小明,等.伊拉克BU油田碳酸盐岩储层沉积过程数值模拟[J].油气地质与采收率,2019,26(4):56-61.WANG Pengfei,HUO Chunliang,YE Xiaoming,et al.Numerical simulation of sedimentary process for carbonate reservoir in BU Oilfield,Iraq[J].Petroleum Geology and Recovery Efficiency,2019,26(4):56-61.
-
[15] 张文彪,段太忠,刘彦锋,等.综合沉积正演与多点地质统计模拟碳酸盐岩台地——以巴西Jupiter油田为例[J].石油学报,2017,38(8):925-934.ZHANG Wenbiao,DUAN Taizhong,LIU Yanfeng,et al.Integrat⁃ ed sedimentary forward modeling and multipoint geostatistics in carbonate platform simulation:a case study of Jupiter oilfield in Brazil[J].Acta Petrolei Sinica,2017,38(8):925-934.
-
[16] 王韬,李婷,郭文建,等.沉积正演模拟在准噶尔盆地吉木萨尔凹陷东斜坡二叠系梧桐沟组中的应用[J].特种油气藏,2021,28(1):34-41.WANG Tao,LI Ting,GUO Wenjian,et al.Application of sedimen⁃ tary forward modeling of the Permian Wutonggou Formation in the east slope of Jimusar Sag,Junggar Basin[J].Special Oil & Gas Reservoirs,2021,28(1):34-41.
-
[17] 何文军,刘敏珠,吴俊军,等.准噶尔盆地阜东斜坡阜19井区三叠系韭菜园子组沉积正演模拟[J].油气地质与采收率,2018,25(6):7-15.HE Wenjun,LIU Minzhu,WU Junjun,et al.Forward modeling of sedimentation in the Triassic Jiucaiyuanzi Formation in Well Fu19 area of the Fudong slope,Junggar Basin[J].Petroleum Geol⁃ ogy and Recovery Efficiency,2018,25(6):7-15.
-
[18] 张宪国,张育衡,张涛,等.基于沉积数值模拟的辫状河心滩演化[J].中国石油大学学报:自然科学版,2020,44(2):1-9.ZHANG Xianguo,ZHANG Yuheng,ZHANG Tao,et al.Analysis of braided bar evolution based on numerical simulation of deposi⁃ tion process[J].Journal of China University of Petroleum:Edition of Natural Science,2020,44(2):1-9.
-
[19] GELEYNSE N,STORMS J E A,STIVE M J F,et al.Controls on river delta formation:Insights from numerical modeling[J].Earth Planetary Science Letter,2011,302(1/2):217-226.
-
[20] 宋亚开,尹太举,张昌民,等.分支河道型三角洲的数值模拟 [J].大庆石油地质与开发,2021,40(3):42-50.SONG Yakai,YIN Taiju,ZHANG Changmin,et al.Numerical sim⁃ ulation of a branch-channel delta[J].Petroleum Geology & Oil⁃ field Development in Daqing,2021,40(3):42-50.
-
[21] EDMONDS D A,SLINGERLAND R L.Significant effect of sedi⁃ ment cohesion on delta morphology[J].Nature Geoscience,2010,3(2):105-109.
-
[22] CALDWELL R L,EDMONDS D A.The effects of sediment proper⁃ ties on deltaic processes and morphologies:A numerical modeling study[J].Journal of Geophysical Research-Earth Surface,2014,119(5):961-982.
-
[23] 杜威,纪友亮,张艺楼,等.湖泊缓坡带细粒河控三角洲沉积演化和形态特征——沉积正演数值模拟和现代沉积实例的启示 [J].石油学报,2021,42(1):33-44.DU Wei,JI Youliang,ZHANG Yilou,et al.Depositional evolution and geometrical features of lacustrine fine-grained river-dominat⁃ ed deltas at the gentle slope zone:insights from sedimentary for⁃ ward numerical modeling and modern case analyses[J].Acta Petrolei Sinica,2021,42(1):33-44.
-
[24] KLAUSEN T G,TORLAND J A,EIDE C H,et al.Clinoform devel⁃ opment and topset evolution in a mud-rich delta-the Middle Tri⁃ assic Kobbe Formation,Norwegian Barents Sea[J].Sedimentolo⁃ gy,2018,65(4):1 132-1 169.
-
[25] MARTIN J,SHEETS B,PAOLA C,et al.Influence of steady baselevel rise on channel mobility,shoreline migration,and scaling properties of a cohesive experimental delta[J].Journal of Geophys⁃ ical Research-Earth Surface,2009,114:126-137.
-
[26] 曾灿,尹太举,宋亚开.相对湖平面升降对浅水三角洲影响的沉积数值模拟实验[J].地球科学,2017,42(11):2 095-2 104.ZENG Can,YIN Taiju,SONG Yakai.Experimental on numerical simulation of the impact of lake level plane fluctuation on shallow water delta[J].Earth Science,2017,42(11):2 095-2 104.
-
[27] 中华人民共和国水利部.中国河流泥沙公报:2014-2019[M].北京:中国水利水电出版社.Ministry of Water Resources of the People’s Republic of China.China river sediment bulletin:2014-2019[M].Beijing:China Wa⁃ ter & Power Press.
-
[28] XIA J,CHEN Z,HUANG G H,et al.An integrated hydro-ecologi⁃ cal modeling approach applied to the Lake Bositeng Basin in Chi⁃ na[J].Water International,2001,26(1):105-118.
-
[29] HUA G,HU Q,TONG J.Annual and seasonal streamflow respons⁃ es to climate and land-cover changes in the Poyang Lake Basin,China[J].Journal of Hydrology,2008,355(1/4):106-122.
-
[30] 刘超,姜在兴,陈骥.青海湖北部冲积扇沉积特征、演化过程及控制因素[J].油气地质与采收率,2017,24(5):1-9.LIU Chao,JIANG Zaixing,CHEN Ji.Sedimentary characteristics,evolution and controlling factors of the alluvial fans,the north of Qinghai Lake[J].Petroleum Geology and Recovery Efficiency,2017,24(5):1-9.
-
[31] PENG Y,XIAO J,NAKAMURA T,et al.Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribu⁃ tion of core sediments of Daihai Lake in Inner Mongolia of northcentral China[J].Earth and Planetary Science Letters,2005,233(3/4):467-479.
-
摘要
针对不同因素控制下河控三角洲形态对其生长过程的响应缺乏系统的定量研究。基于分形几何和控制变量的思路,利用构型尺度沉积正演数值模拟方法,确定河控三角洲主体和河坝复合体朵叶的形态类型和特征,明确沉积物供给速率、沉积物组分和盆地水深对形态的控制作用,建立形态特征值与生长过程主控因素之间的定量表征模型。结果表明,三角洲主体和河坝复合体朵叶的形态可以由初始河口主分流河道间夹角、节点间距、单一河口或节点处河坝复合体数量、主分流河道数量和主分流河道比例进行表征。随着河流流量增大且沉积物浓度较小时,三角洲主体由分支间湾型向河网砂坝型转化;随着沉积物流量增加或沉积物粒度减小,三角洲主体向分支间湾型转化且收敛性减弱,河坝复合体朵叶由多水道复合指状朵叶向少水道复合指状朵叶转化;随着盆地水深增加,三角洲主体趋于单一的主分流河道椭圆状河坝复合体朵叶。
Abstract
Dominated by different controlling factors,the response of river-dominated deltaic morphology to its growth pro- cesses is short of systematic quantitative study. On the basis of fractal geometry and variable controlling,we utilized sedi- mentary forward numerical modeling at an architecture scale to extract morphological types and features of river-dominated deltaic main bodies and channel-mouth bar complex lobes(CMCLs)and verify the controlling effects of sediment supply rates,sediment compositions,and basin bathymetry on morphology. Also,we established a quantitative characterization model relating the values of morphological features to dominant controlling factors of growth processes. The results indicate that the morphology of deltaic main bodies and CMCLs can be characterized by included angles between main distributary channels at initial river mouths,joint distance,the number of channel-mouth bar complexes at a river mouth or a joint,and the number and proportion of main distributary channels. In the case of low sediment concentration,deltaic main bodies are transformed from branching deltas with inter-distributary bays to sand-bar deltas with distributary networks when the river discharge rises. With the increase in the sediment discharge and the decrease in the sediment grain size,deltaic main bod- ies turn into branching deltas with inter-distributary bays and have weakened convergence,and CMCLs are transformed from complex finger lobes with multiple channels to complex finger lobes with few channels. Deltaic main bodies tend to be oval CMCLs with main distributary channels when the basin bathymetry increase.