-
原油中除主要以烃类化合物形式存在的碳、氢元素之外,还存在多种其他元素,尤以氮、硫和氧元素居多,尽管在原油总量中占比较少,但其形成的化合物对于原油的开采、运输和利用都具有不利影响。含硫化合物是原油中含量较多的一类杂原子化合物,根据官能团特征一般可分为 6 类,即硫化氢、单质硫、硫醇、硫化物、多硫化物和噻吩[1-3]。沉积型有机硫是岩石和沉积物中仅次于黄铁矿的第二大还原硫库[4],在烃源岩沉积演化过程中,其通过 S—S键或 C—S键与干酪根或沥青骨架结合形成有机硫化合物[5-7]。有机质硫化作用是一个全球性的重要生物化学过程,对增加有机质的聚集量和某些脂类化合物的保存具有积极作用[8-9],有机质颗粒在沉降过程中的快速硫化作用也被认为是富有机质岩石中高 S/C 值的成因[10]。伴随着生烃过程,烃源岩中的硫元素进入生成的原油中形成各类含硫化合物。原油含硫量差异较大,最低可低于0.05%,最高可达14%以上[11]。一般将含硫量超过2%的原油称为高硫原油,海相沉积盆地中高硫原油普遍发育,而在陆相沉积盆地中,高硫原油往往与蒸发岩和碳酸盐岩密切相关[12-13]。中国的含油盆地中江汉盆地和渤海湾盆地等地区发现有高硫原油[14-17]。高硫原油的形成包括原生和次生成因 2 种,其中原生成因主要包括沉积物中高硫干酪根热降解形成和岩石中富硫分散沥青聚集形成 2 种观点[18],而次生成因主要包括生物降解和硫酸盐热化学还原作用2 种方式[19-21]。
-
济阳坳陷勘探历程悠久、油气资源丰富、原油物性特征变化复杂,其中东营凹陷南部斜坡带(南坡)东段是济阳坳陷重要的油气勘探区带之一,发现了乐安、王家岗、八面河等多个油田。南坡东段发现的原油含硫量变化范围大,并且在多个油田、多套层位中发现高硫原油[22]。研究区发育淡水、半咸水和咸水沉积环境的多套烃源岩[23],油气藏形成经历了复杂的运移、生物降解、水洗等作用[24-25],复杂的油气来源和成藏作用使得该区具备高硫原油地球化学特征和成因研究的有利条件。基于研究区原油含硫量空间分布特征,笔者系统分析原油的物性特征、族组分相对含量、族组分碳同位素特征、饱和烃和芳香烃特征等,进而分析原油含硫量的空间差异及高硫原油的成因,以期进一步丰富研究区油气成因和成藏的认识。
-
1 区域地质背景
-
东营凹陷位于济阳坳陷的东南部,属于中、新生代断陷复合盆地,具有北断南超(剥)、西断东超 (剥)的不对称复式半地堑形态。凹陷内部发育一系列二级构造单元,包括北部陡坡带、中央断裂背斜带(中央隆起带)、牛庄洼陷、利津洼陷、博兴洼陷、民丰洼陷以及南部斜坡带(图1)。东营凹陷南坡整体构造较为简单,主要表现为单斜和鼻状构造,发育同生断裂体系[22],断层活动相对较弱,落差较小。纯化-草桥断裂带将东营凹陷南坡分隔成沉积、构造特征不同的东、西两段,其中东段西邻纯化镇构造,东至八面河断裂带,南起广饶凸起,北连牛庄洼陷和利津洼陷,勘探面积约为 500 km2,依据构造特征东段又可分为广饶凸起、王家岗鼻状断裂带、八面河断裂带、广利断裂背斜带 4 个正向构造带。东营凹陷南坡纵向上发育太古界、古生界、中生界、新生界4套不同的岩石序列,其东段油气资源丰富,发现了奥陶系、孔店组、沙四段和沙三段等多套含油气层系[22];同时发育沙三段和沙四段 2 套烃源岩,其中沙三段为一套淡水—半咸水湖相烃源岩,沙四段为一套咸化湖-盐湖相烃源岩[23]。研究区油气藏类型多样,油气富集程度差异明显,原油物理性质和地球化学特征变化范围广,反映了原油来源和聚集过程的复杂性。
-
图1 东营凹陷构造单元划分
-
Fig.1 Tectonic units of Dongying Sag
-
2 原油含硫量空间分布特征
-
作为原油中的重要元素组成之一,硫元素在原油中的含量变化较大,通常将含硫量小于 1% 的原油称为低硫原油,含硫量大于 2% 的原油为高硫原油,介于二者之间的为含硫原油[26]。东营凹陷南坡东段原油含硫量为0.03%~3.91%,分布范围较广,同时包含了低硫、含硫和高硫原油,反映了其成因的复杂性。
-
由图2 可以看出,研究区原油含硫量平面上呈有序性分布特征。紧邻洼陷中心的牛庄油田原油含硫量低,普遍低于 1%,属于低硫原油;向凹陷边缘,原油含硫量呈现出明显增加的趋势,广利、纯化油田以含硫原油为主;而靠近凸起的乐安、八面河、王家岗油田南部则以含硫原油和高硫原油为主。
-
图2 东营凹陷南坡东段原油含硫量分布特征
-
Fig.2 Distribution of sulfur content of crude oil in eastern section of south slope,Dongying Sag
-
原油含硫量与埋深同样具有良好的相关性(图3),当埋深大于 3 000 m 时,原油含硫量较低,主要为低硫原油;当埋深为 2 000~3 000 m 时,以低硫原油为主,同时有含硫原油和少部分高硫原油;当埋深为1 500~2 000 m时,原油含硫量特征复杂,低硫、含硫和高硫原油比例相近,且含硫量最高样品出现在这一埋深范围内;当埋深小于 1 500 m 时,以含硫原油和高硫原油为主,低硫原油少见。分析认为油藏埋深影响原油生物降解作用,原油含硫量与埋深的相关性也表明生物降解作用对含硫量的控制作用。
-
图3 东营凹陷南坡东段原油含硫量垂向分布特征
-
Fig.3 Vertical distribution of sulfur content of crude oil in eastern section of south slope,Dongying Sag
-
3 不同含硫量原油特征
-
3.1 物性特征
-
除含硫量外,原油物性还包括密度、黏度、含蜡量和凝固点等,为进一步明确高硫原油成因,分析了东营凹陷南坡东段原油密度、黏度、凝固点特征及其与含硫量的关系(图4)。
-
图4 东营凹陷南坡东段原油含硫量与其他物性的关系
-
Fig.4 Relationships of sulfur content with other physical properties of crude oil in eastern section of south slope,Dongying Sag
-
研究区原油密度为 0.80~1.10 g/cm3,其中牛庄、纯化和广利油田原油密度分布范围较窄,主要为 0.85~0.95 g/cm3;乐安油田原油密度相对最高,多为 0.95 g/cm3 以上;八面河油田原油密度分布范围也较窄,主要为 0.90~1.00 g/cm3;王家岗油田原油密度为 0.80~1.00 g/cm3,分布范围广但低值集中于该油田。由图4a 可以看出,含硫量与密度具有显著的正相关,但不同油田二者具有不同的趋势,反映了原油成因的差异性。研究区原油黏度分布范围广,其中牛庄油田整体黏度较低,乐安油田整体黏度高,其他油田黏度分布范围跨度大。由图4b可以看出,高硫原油都为稠油以上级别(黏度>100 mPa•s),同时高含硫量对应着高黏度,但高黏度并不总对应着高含硫量,反映了高硫原油成因的复杂性。
-
原油凝固点指其失去流动能力的最高温度,与含蜡量和烷烃碳原子数具有正相关性[26]。研究区原油凝固点为-30~60℃,其中乐安和八面河油田原油凝固点普遍较低;纯化和广利油田原油凝固点为 20~40℃;王家岗和牛庄油田原油凝固点范围较宽,存在凝固点高于40℃的高凝油。由图4c可以看出,除王家岗油田原油含硫量与凝固点有较弱的负相关性之外,其他油田二者相关性较差。
-
3.2 族组分特征
-
由东营凹陷南坡东段原油族组分相对含量(图5)可以看出,饱和烃与非烃+沥青质含量变化较大,其中饱和烃含量最低为 21%,最高可达 79%,非烃+ 沥青质含量为 9%~59%,芳香烃含量差异不大,为 12%~33%。整体来看,低硫原油饱和烃含量较高,多为40%以上,而含硫原油和高硫原油饱和烃含量相对较低,主要为20%~30%。
-
图5 东营凹陷南坡东段原油族组分相对含量
-
Fig.5 Relative content of group components of crude oil in eastern section of south slope,Dongying Sag
-
原油中含硫化合物主要分布在非烃和沥青质组分中,因此非烃+沥青质含量高的原油含硫量也较高,从含硫量与非烃+沥青质含量的关系(图6)也可以看出这种趋势。
-
不同沉积环境下发育的烃源岩生成的原油,其族组分碳同位素差异较大,沉积水体盐度越高,对应的原油族组分碳同位素越重,不同族组分碳同位素分馏也越小,最大分馏常出现在饱和烃和芳香烃之间[27]。由原油族组分碳同位素特征(图7)可以看出,东营凹陷南坡东段原油饱和烃碳同位素为-30.0‰~-28.0‰,饱和烃、芳香烃、非烃和沥青质碳同位素依次变重且 δ13C 差值较小,表明族组分之间碳同位素分馏较小。低硫原油族组分碳同位素最轻,含硫原油族组分碳同位素略重,而高硫原油族组分碳同位素最重。
-
图6 东营凹陷南坡东段原油含硫量与非烃+沥青质含量的关系
-
Fig.6 Relationship of sulfur content with non-hydrocarbon and asphaltene content of crude oil in eastern section of south slope,Dongying Sag
-
图7 东营凹陷南坡东段原油族组分碳同位素特征
-
Fig.7 Carbon isotopes of group components of crude oil in eastern section of south slope,Dongying Sag
-
3.2.1 饱和烃
-
研究区不同油田和埋深的原油饱和烃特征具有较明显的差异,由图8可以看出,王家岗油田原油样品基线平直,正构烷烃系列分布完整,没有明显的生物降解特征,而乐安油田原油样品基线隆起,具有明显的UCM(未分离复杂混合物)峰,正构烷烃和异构烷烃都受到一定程度的影响,表现出典型的生物降解特征。研究区原油样品普遍具有植烷优势,姥植比(Pr/Ph)多小于1,指示了烃源岩形成时较还原的沉积环境。萜烷类生物标志物特征显示:所有原油样品普遍具有长链三环萜烷含量较低的特征,C21 三环萜烷(C21TT)含量低于 C23 三环萜烷 (C23TT);伽马蜡烷(G)含量较高,尤以王家岗油田高硫原油突出,伽马蜡烷指数(GI)大于 0.5;部分高硫原油升藿烷指数(C3522S/C3422S)大于1,显示出清晰的翘尾特征。甾烷特征差异较大,所有样品都以规则甾烷为主,乐安油田降解原油具有较高含量的重排甾烷,其他油田原油重排甾烷含量则相对较低, C27,C28和C29规则甾烷相对含量差异较大,多数样品 C27规则甾烷含量占优势,部分样品 C27规则甾烷含量低于C29规则甾烷或二者相当。
-
图8 东营凹陷南坡东段原油生物标志物特征
-
Fig.8 Biomarkers of crude oil in eastern section of south slope,Dongying Sag
-
甾烷异构化参数 C2920S/(20S + 20R)和 C29ββ/ (ββ+αα)常用于表征成熟度,随着成熟度增加, C2920S/(20S+20R)值和 C29ββ/(ββ+αα)值增加。由图9a可以看出,王家岗和乐安油田高硫原油具有较大的差异,其中王家岗油田高硫原油 C2920S/(20S+ 20R)值和 C29ββ/(ββ+αα)值均低于 0.35,表现出明显的低成熟特征,而乐安油田高硫原油 C2920S/ (20S+20R)值和 C29ββ/(ββ+αα)值均高于 0.4,说明成熟度较高。伽马蜡烷指数和升藿烷指数都与沉积水体盐度具有相关性,高值代表了较高盐度的沉积水体。由图9b可以看出,研究区伽马蜡烷指数和升藿烷指数具有良好的相关性,但不同地区参数分布范围存在差异,其中王家岗和乐安油田的高硫原油具有显著差异,王家岗油田多数样品 GI>1.0 且 C3522S/C3422S>1.2,而乐安油田多数样品 GI<0.8 且 C3522S/C3422S<1.0。
-
图9 东营南坡东段原油生物标志物参数相关关系
-
Fig.9 Relationships among biomarker parameters of crude oil in eastern section of south slope,Dongying Sag
-
3.2.2 芳香烃
-
研究区原油样品芳香烃组分中检测出包括萘系列、菲系列、噻吩系列、脱羟基维生素 E(MTTCs) 系列、三芳甾烷(TAS)系列等多种化合物(图10)。萘系列化合物包括萘(N)、甲基萘(MN)、二甲基萘 (DMN)、三甲基萘(TMN)等,其整体含量相对较低,且多以 DMN 和 TMN 为主。菲系列化合物包括菲 (P)、甲基菲(MP)、二甲基菲(DMP)等,其含量变化大,多以P和MP为主。噻吩系列化合物是原油中硫元素的主要赋存形式,研究区原油样品中可见丰富的噻吩系列化合物,包括二苯并噻吩(DBT)、甲基二苯并噻吩(MDBT)、二甲基二苯并噻吩(DMDBT)等。 MTTCs系列是维生素E脱去一个羟基后形成的一类化合物,根据苯核上甲基侧链的位置不同分为 4 种类型,分别为 α-MTTC,β-MTTC,γ-MTTC 和 δ-MTTC,这类化合物在咸水沉积环境形成的烃源岩中含量较高,随着成熟度增加,α-MTTC/γ-MTTC值和β-MTTC/γ-MTTC值增大,当热演化程度较高时,这类化合物消失[28-29]。TAS系列可能来源于甾烷芳构化,其化合物具有多种异构体,是芳香烃中抗生物降解能力最强的化合物[30],在研究区广泛出现且具有较高含量。高含量的 MTTCs 和 TAS 系列化合物一方面是盐湖相原油的特征,另一方面也反映原油成熟度较低。
-
与饱和烃特征相同,王家岗油田样品多数未遭受明显的生物降解作用,各类化合物保持完整,而乐安油田样品普遍遭受了生物降解作用,且有相当一部分样品具有再次充注的特征。以官120井为代表的一部分王家岗油田原油样品具有较低含量 DBT和 MTTCs系列化合物的特点,指示了沉积水体盐度较低,甲基菲指数和甲基二苯并噻吩比值较低指示原油成熟度低。以王955井为代表的一部分王家岗油田原油样品具有高含量 DBT 和 MTTCs 系列化合物的特点,表明较高的沉积水体盐度,较高 DBT/P 值也表征了母源富硫的沉积环境,低甲基菲指数和甲基二苯并噻吩比值同样表明成熟度较低。以王 958 井为代表的一部分王家岗油田原油样品 DBT含量中等,MTTCs系列化合物含量较低,TAS系列化合物含量较高,较高的甲基菲指数和甲基二苯并噻吩比值表明成熟度较高。乐安油田原油样品基线上飘,表现出生物降解的特征,其中以草105井代表的原油样品 TAS系列化合物含量占绝对优势,其他化合物明显缺失,反映了强烈的生物降解作用,而以草古 100 井代表的原油样品总离子流图除具有明显的生物鼓包,同时含有完整的芳烃类化合物,表明原油降解之后发生了再次充注,整体来看乐安油田原油样品都具有较高的成熟度。
-
4 高硫原油成因分析
-
4.1 源岩沉积环境
-
根据干酪根中 S/C 原子比的差异,干酪根可以分为高硫干酪根(S/C原子比大于0.04)、中硫干酪根 (S/C原子比为0.02~0.04)和低硫干酪根(S/C原子比小于0.02)[31]。原油含硫量与API密度常呈负相关,同时前人研究表明含硫量和API密度可用以判断形成原油的烃源岩中干酪根含硫特征[31]。由图11 可以看出,研究区低硫原油和大部分含硫原油均来源于低硫Ⅱ型干酪根,少部分含硫原油和大部分高硫原油来源于中硫Ⅱ型干酪根,而王家岗油田部分高硫原油来源于高硫Ⅱ型干酪根。
-
图10 东营凹陷南坡东段原油芳香烃总离子流图和质量色谱图
-
Fig.10 Total ion chromatograms and mass chromatograms of aromatic hydrocarbons in crude oil in eastern section of south slope,Dongying Sag
-
东营凹陷主要发育沙四段和沙三段 2 套烃源岩,其中沙四段形成于咸化湖-盐湖环境,沙三段形成于淡水—半咸水还原环境,沙四段以发育膏盐岩和膏质盐质泥岩为典型特征,反映了沉积时期水体盐度较高。沙四段烃源岩具有姥植比低、伽马蜡烷含量高、4-甲基甾烷发育、MTTCs系列化合物和TAS 系列化合物含量高等特征,沙三段烃源岩则主要表现为姥植比高、伽马蜡烷含量低、重排甾烷含量高等特征。前人研究认为东营凹陷南坡东段牛庄油田同时具有沙四段和沙三段烃源岩的贡献,而其他油田的原油则主要为沙四段烃源岩演化形成[22]。综上所述,研究区原油样品中普遍较低的姥植比、 β-胡萝卜烷的检出、高含量伽马蜡烷、升藿烷翘尾现象、高含量 MTTCs和 TAS系列化合物也进一步验证了这一观点,指示了以沙四段为主的油气来源。
-
图11 东营凹陷南坡东段原油含硫量与API密度的关系
-
Fig.11 Relationship of sulfur content with API gravity of crude oil in eastern section of south slope,Dongying Sag
-
烃源岩中的硫元素是形成原油中含硫化合物的物质基础,主要以高硫沥青质和高硫干酪根的形式存在。在强还原的膏盐岩和碳酸盐岩沉积环境中,硫酸盐被细菌转换为还原硫(主要为硫化氢),由于缺少黏土矿物水解形成的金属离子,还原硫无法形成金属硫化物,大部分在同生阶段进入沉积类脂物分子中形成高硫沥青质。在高硫沥青质形成的过程中,有机硫也加入干酪根中形成了高硫干酪根。高硫沥青质和高硫干酪根构成了高盐度沉积环境下特有的生油母质,因此富硫的还原沉积水体对于富硫生油母质的形成具有重要作用。沙四段沉积时期水体具有高盐度的特征以及烃源岩中发育的黄铁矿都反映了该时期水体的强还原条件。扫描电镜观察表明东营凹陷南坡东段沙四段烃源岩中发育了大量黄铁矿,尤以草莓状黄铁矿居多,其粒径较小,多为5~8 μm,且粒径分布较为集中(图12a,12b),指示了沉积时期缺氧-硫化的水体环境[32-33]。
-
有机硫化物通过 C—S键或 S—S键与干酪根或沥青相连接,由于 C—S键和 S—S键相比 C—C键的键能低,在热作用过程中更容易断裂生烃[34-35],加之石膏、盐岩等的催化作用,沙四段烃源岩具有早期生烃的特征,可形成低成熟度原油,且其具有饱和烃含量相对低,非烃+沥青质含量较高,密度和黏度较大的特征。干酪根在生油窗早期阶段会丢失一半甚至更多的有机硫[36]。王家岗油田高硫原油具有成熟度相对较低、伽马蜡烷含量较高、MTTCs 和 TAS 系列化合物含量高等特点,属于典型的受母源条件控制的高硫原油,且其主要分布在沙四段,表现出近源运聚成藏的特征。
-
图12 东营凹陷南坡东段典型烃源岩样品扫描电镜下黄铁矿特征
-
Fig.12 Pyrites in typical source rock samples from eastern section of south slope,Dongying Sag, under scanning electron microscope
-
4.2 生物降解作用
-
原油中含硫化合物主要赋存在非烃和沥青质中,生物降解作用过程中饱和烃和芳香烃含量降低,非烃+沥青质含量相对增加,从而含硫量增加。随油藏温度的增加,生物降解作用强度降低,一般认为当油藏温度达到 80℃时,生物降解作用停止[37]。由东营凹陷南坡东段油藏温度和埋深关系 (图13)可以看出,当埋深为1 700 m左右时,油藏温度已达到 80℃,因此认为埋深小于 1 700 m 的油藏具备生物降解的条件。同时东营凹陷南坡东段浅部属于常压开放流体系统,地层水以大气渗入水为主,矿化度较低且适宜细菌生存[38],利于生物降解作用的发生。因此,从油藏埋深特征来看,乐安油田普遍具有发生生物降解作用的条件,八面河油田大部分地区和王家岗油田少部分地区具有发生生物降解作用的条件,其他油田则因为埋深较大不具有发生生物降解作用的条件。
-
生物降解作用是一个阶段性的过程,不同类化合物具有不同的抗生物降解能力。一般来讲,随生物降解程度增加,正构烷烃、异构烷烃、规则甾烷、藿烷、芳香甾烷、重排甾烷和三环萜烷依次被降解,因此可以根据原油中化合物的特征判断其生物降解级别[30]。东营凹陷南坡东段生物降解原油集中在王家岗和八面河油田,原油生物降解程度变化范围较大,少数生物降解原油中尽管正构烷烃含量相对较低,但具有完整的系列,表明其生物降解程度低于 3 级(图14);部分原油样品总离子流图中正构烷烃和异构烷烃系列都难以检出,含量低于β-胡萝卜烷,具有明显的 UCM 峰且存在 25-降藿烷系列,表明原油生物降解程度高,为 6 级以上;还有较多样品显示出生物降解后再次充注的特征,其总离子流图上既有明显的 UCM 峰和 β-胡萝卜烷,同时存在 25-降藿烷系列,又有完整的正构烷烃系列。基于生物标志物绝对含量的分析也确定了乐安油田具有多期充注的特征[39]。从原油含硫量和埋深关系(图3)可以看出,当埋深小于 1 700 m 时,原油含硫量普遍大于1%;当埋深大于1 700 m时,大量样品原油含硫量则低于 1%,同时从原油含硫量与密度、黏度关系也可以看出高硫原油普遍具有较高密度和黏度,因此生物降解作用在高硫原油的形成过程中发挥了重要作用。从不同油田原油含硫量特征也可以看出,含硫量相对最高的样品都出现在王家岗油田,而乐安和八面河油田尽管高硫原油发育,但含硫量均小于 3%,可能是低硫原油充注到生物降解形成的高硫原油中的结果。
-
图13 东营凹陷南坡东段油藏温度与埋深的关系
-
Fig.13 Relationship of temperature with burial depth of oil reservoirs in eastern section of south slope,Dongying Sag
-
4.3 TSR作用
-
硫酸盐热化学还原(TSR)是高硫原油形成的一种重要机理,是指硫酸盐在热化学作用下与烃类发生的氧化还原反应,原油在反应过程中会形成硫醇、苯并噻吩和四氢噻吩等含硫化合物,从而增加原油含硫量。TSR 作用的发生需要 2 个必备条件,分别是硫酸盐的存在和较高的油藏温度,一般认为发生TSR作用的最低温度为120℃[40]。根据TSR作用发生的条件推断,广利和王家岗油田沙四段高硫原油的形成可能有 TSR 作用的贡献,因为一方面沙四段中普遍发育了石膏等硫酸盐岩[41-42],另一方面油藏埋深普遍大于2 500 m,油藏温度达到了TSR作用所需的条件(图13)。考虑到 TSR 作用发生的条件相对严苛,其在研究区高硫原油形成过程中所起的贡献相对局限。
-
4.4 综合分析
-
研究区高硫原油都具有较高的密度和黏度,多属于重质稠油以上级别,但高密度和高黏度的成因却不尽相同,除了乐安和八面河油田普遍的生物降解作用外,母源性质的差异性导致的低熟生烃也是其重要原因,而无论是富硫的生油母质特征还是生物降解作用都可造成原油中硫元素的富集,形成高硫原油。前已述及,研究区多数油田均为沙四段烃源岩供烃,沙四段沉积时期整体具有比沙三段沉积时期明显高的水体盐度和强的水体还原性。就沙四段而言,其沉积过程中经历了气候背景和水体环境的周期性变化[42],导致沙四段烃源岩垂向特征的差异性,在相对更高盐度、更强还原条件下发育的沙四段烃源岩中更为富集硫元素,其形成的原油含硫量也更高,这也是同为沙四段烃源岩供烃但含硫量有所差异的一个重要原因。烃源岩的幕式生排烃作用决定了油藏普遍具有多期充注的特征,后期充注的石油具有更高的成熟度,对于富硫的生油母质,低成熟阶段形成的石油具有比中、高成熟阶段形成的石油更高的含硫量,因此乐安、王家岗等油田经历了生物降解和再次充注的油藏含硫量反而会更低一些。TSR 作用对反应条件较为苛刻,在研究区不具备普遍性,但仍不失为局部地区可能形成硫元素富集的一个原因。可以看出,烃源岩沉积环境是控制陆相盆地中高硫原油形成的重要基础,在缺氧的硫化环境下,硫元素更容易与干酪根结合,从而进入烃源岩中并在生烃过程中形成富硫的原油。而其他的次生作用如生物降解和 TSR 则对于硫元素的进一步富集具有积极作用。
-
5 结论
-
东营凹陷南坡东段是一个典型的陆相断陷盆地高硫原油发育区,原油含硫量变化大,从凹陷中心向凹陷边缘、从深部向浅部总体具有含硫量增大的趋势,不同含硫量原油呈现出有序分布的特征。高硫原油具有高密度、高黏度、高非烃+沥青质含量、族组分碳同位素偏重的特征,指示其是由高盐度沉积水体下发育的烃源岩生成的。研究区发育2 类典型的高硫原油,一类具有成熟度高、水体盐度高、埋深较小的特征;另一类具有成熟度低、水体盐度更高、埋深较大的特征,生物降解作用在前一类高硫原油形成过程中发挥了主要作用,而后一类高硫原油形成的主控因素则是硫化还原水体中形成的富硫生油母质的低熟成烃作用。因此,陆相盆地高硫原油的形成依赖还原环境下发育的富硫生油母质和原油的生物降解作用,沙四段上亚段烃源岩供烃区和埋藏较浅的圈闭是高硫原油富集的主要区域。
-
图14 东营凹陷南坡东段不同生物降解程度原油生物标志物特征
-
Fig.14 Biomarkers of crude oil with different biodegradation degrees in eastern section of south slope,Dongying Sag
-
参考文献
-
[1] WU J X,ZHANG W L,MA C,et al.Isolation and characterization of sulfur compounds in a lacustrine crude oil[J].Fuel,2019,253:1 482-1 489.
-
[2] DIJKMANS T,DJOKIC M R,GEEM K M V,et al.Comprehensive compositional analysis of sulfur and nitrogen containing com⁃ pounds in shale oil using GC×GC-FID/SCD/NCD/TOF-MS[J].Fuel,2015,140:398-406.
-
[3] HOFMANN I C,HUTCHISON J,ROBSON J N,et al.Evidence for sulphide links in a crude oil asphaltene and kerogens from reduc⁃ tive cleavage by lithium in ethylamine[J].Organic Geochemistry,1992,19(4/6):371-387.
-
[4] WERNE J P,HOLLANDER D J,LYONS T W,et al.Organic sul⁃ fur biogeochemistry:Recent advances and future research direc⁃ tions[J].Special Paper of the Geological Society of America,2004,379:135-150.
-
[5] SINNINGHE-DAMSTE J S.Organic sulfur in macromolecular sed⁃ imentary organic matter:I.Structure and origin of sulfur-contain⁃ ing moieties in kerogen,asphaltenes and coal as revealed by flash pyrolysis[J].Geochimica et Cosmochimica Acta,1989,53(4):873-889.
-
[6] SINNINGHE-DAMSTE J S,RIJPSTRA W I C,LEEUW J W D,et al.Origin of organic sulfur compounds and sulfur-containing high molecular weight substances in sediments and immature crude oils[J].Organic Geochemistry,1988,13(4/6):593-606.
-
[7] SINNINGHE-DAMSTE J S,LEEUW J W D.Analysis,structure and geochemical significance of organically-bound sulfur in the geosphere:State of the art and future research[J].Organic Geo⁃ chemistry,1990,16(4/6):1 077-1 101.
-
[8] DONGEN B E V,SCHOUTEN S,BAAS M,et al.An experimental study of the low-temperature sulfurization of carbohydrates[J].Or⁃ ganic Geochemistry,2003,34(8):1 129-1 144.
-
[9] DONGEN B E V,SCHOUTEN S,SINNINGHE-DAMSTE J S.Sul⁃ furization of carbohydrates results in a sulfur-rich,unresolved complex mixture in kerogen pyrolysates[J].Energy & Fuels,2003,17(4):1 109-1 118.
-
[10] TRIBOVILLARD N,RIBOULLEAU A,LYONS T,et al.Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales[J].Chemical Ge⁃ ology,2004,213(4):385-401.
-
[11] SINNINGHE-DAMSTE J S,LEEUW J W D,KOCK-VAN DALEN A C,et al.The occurrence and identification of series of organic sulfur compounds in oils and sediment extracts.I.A study of Rozel Point Oil(U.S.A.)[J].Geochimica et Cosmochimica Ac⁃ ta,1987,51(9):2 369-2 391.
-
[12] CAI C F,WORDEN R H,WOLFF G A,et al.Origin of sulfur rich oils and H2S in Tertiary lacustrine sections of the Jinxian Sag,Bo⁃ hai Bay Basin,China[J].Applied Geochemistry,2005,20(7):1 427-1 444.
-
[13] FU J M,SHENG G Y,PENG P A.Peculiarities of salt lake sedi⁃ ments as potential source rocks in China[J].Organic Geochemis⁃ try,1986,10(1/3):119-126.
-
[14] 刘琼,何生.江汉盆地西南缘原油中含硫化合物的分布特征及其地球化学意义[J].地质科技情报,2008,27(2):56-62.LIU Qiong,HE Sheng.Distribution characteristics and geochemi⁃ cal significance of organic sulfur compounds from crude oils in the southwestern Jianghan Basin[J].Geological Science and Tech⁃ nology Information,2008,27(2):56-62.
-
[15] 宋一涛,廖永胜,王忠.济阳坳陷盐湖沉积环境高硫稠油的特征及成因[J].石油学报,2007,28(6):52-58,65.SONG Yitao,LIAO Yongsheng,WANG Zhong.Genesis and char⁃ acteristics of sulfur-rich heavy oil in salt lake depositional envi⁃ ronment of Jiyang Depression[J].Acta Petrolei Sinica,2007,28(6):52-58,65.
-
[16] 傅强,刘彬彬,夏庆龙,等.黄河口凹陷 BZ35/36构造高硫原油特征及运聚方向[J].石油学报,2013,34(1):37-46.FU Qiang,LIU Binbin,XIA Qinglong,et al.Characteristics and migration-accumulation directions of sulfur-rich oils in BZ35/36 structures in Huanghekou sag,Bohai Bay Basin[J].Acta Petrolei Sinica,2013,34(1):37-46.
-
[17] 汤国民,王飞龙,王清斌,等.渤海海域莱州湾凹陷高硫稠油成因及其成藏模式[J].石油与天然气地质,2019,40(2):284-293.TANG Guomin,WANG Feilong,WANG Qingbin,et al.Genesis and accumulation models of sulfur-rich heavy oil in Laizhou Bay Sag,Bohai Sea[J].Oil & Gas Geology,2019,40(2):284-293.
-
[18] 彭平安,盛国英,傅家谟,等.高硫未成熟原油非干酪根成因的证据[J].科学通报,1998,43(6):636-638.PENG Ping’an,SHENG Guoying,FU Jiamo,et al.Evidence for non-kerogen origin of immature high-sulfur crude oil[J].Chinese Science Bulletin,1998,43(6):636-638.
-
[19] WANG G L,WANG T G,SIMONEIT B R T,et al.Sulfur rich pe⁃ troleum derived from lacustrine carbonate source rocks in Bohai Bay Basin,East China[J].Organic Geochemistry,2010,41(4):340-354.
-
[20] HE N N,GRICE K,GREENWOOD P F.The distribution and δ34S values of organic sulfur compounds in biodegraded oils from Peace River(Alberta Basin,western Canada)[J].Organic Geo⁃ chemistry,2019,128:16-25.
-
[21] ZHU G Y,WANG H T,WENG N.TSR-altered oil with highabundance thiaadamantanes of a deep-buried Cambrian gas con⁃ densate reservoir in Tarim Basin[J].Marine and Petroleum Geolo⁃ gy,2016,69:1-12.
-
[22] 王建伟,宋书君,李向博,等.东营凹陷南斜坡东段原油的地球化学特征[J].新疆石油地质,2007,28(3):320-323.WANG Jianwei,SONG Shujun,LI Xiangbo,et al.Geochemical characteristic of crude oil in eastern part of south slope of Dongy⁃ ing Sag[J].Xinjiang Petroleum Geology,2007,28(3):320-323.
-
[23] 刘庆,张林晔,沈忠民,等.东营凹陷湖相盆地类型演化与烃源岩发育[J].石油学报,2004,25(4):42-45.LIU Qing,ZHANG Linye,SHEN Zhongmin,et al.Evolution of lake-basin types and occurrence of hydrocarbon source rocks in Dongying Depression[J].Acta Petrolei Sinica,2004,25(4):42-45.
-
[24] 常象春,韩作振,鄢程鹏.东营凹陷南斜坡沙四段混源油地球化学与成藏特征[J].吉林大学学报:地球科学版,2012,42(3):672-680.CHANG Xiangchun,HAN Zuozhen,YAN Chengpeng.Geochemis⁃ try and accumulation characteristics of Es4 mixed oils in the south slope of Dongying Sag[J].Journal of Jilin University:Earth Sci⁃ ence Edition,2012,42(3):672-680.
-
[25] 王圣柱,梁毅,钱克兵,等.东营凹陷南斜坡深层成藏特征及主控因素分析[J].沉积学报,2007,25(3):474-481.WANG Shengzhu,LIANG Yi,QIAN Kebing,et al.Characteristics and main controls for deep hydrocarbon accumulation in the south slope of Dongying Depression[J].Acta Sedimentologica Sinica,2007,25(3):474-481.
-
[26] 柳广弟.石油地质学[M].北京:石油工业出版社,2009.LIU Guangdi.Petroleum Geology[M].Beijing:Petroleum Industry Press,2009.
-
[27] 徐永昌,沈平,刘文汇,等.未熟—低熟油的同位素组成特征及判识标志[J].科学通报,2001,46(10):867-872.XU Yongchang,SHEN Ping,LIU Wenhui,et al.Isotopic composi⁃ tion and identification marks of immature and low-mature oil[J].Chinese Science Bulletin,2001,46(10):867-872.
-
[28] 包建平,王铁冠,干一女.脱羟基维生素E及其地球化学意义 [J].江汉石油学院学报,1989,11(3):11-18.BAO Jianping,WANG Tieguan,GAN Yinü.Dehydroxytocopherol and its geochemical significances[J].Journal of Jianghan Petro⁃ leum Institute,1989,11(3):11-18.
-
[29] 马军,李水福,胡守志,等.芳烃化合物组成及其在油气地球化学中的应用[J].地质科技情报,2010,29(6):73-79.MA Jun,LI Shuifu,HU Shouzhi,et al.The composition of aromat⁃ ic hydrocarbon and its application in petroleum geochemistry[J].Geological Science and Technology Information,2010,29(6):73-79.
-
[30] PETERS K E,WALTERS C C,MOLDOWAN J M.The biomarker guide[M].2nd ed.New York:Cambridge University Press,2005.
-
[31] ORR W L.Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils[J].Organic Geochemistry,1986,10(1/3):499-516.
-
[32] 常晓琳,黄元耕,陈中强,等.沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J].沉积学报,2020,38(1):150-165.CHANG Xiaolin,HUANG Yuangeng,CHEN Zhongqiang,et al.The microscopic analysis of pyrite framboids and application in paleo-oceanography[J].Acta Sedimentologica Sinica,2020,38(1):150-165.
-
[33] WILKIN R T,BARNES H L,BRANTLEY S L.The size distribu⁃ tion of framboidal pyrite in modern sediments:An indicator of re⁃ dox conditions[J].Geochimica et Cosmochimica Acta,1996,60(20):3 897-3 912.
-
[34] LEWAN M D,KOTARBA M J,CURTIS J B,et al.Oil-generation kinetics for organic facies with Type-Ⅱand-ⅡS kerogen in the Menilite Shales of the Polish Carpathians[J].Geochimica et Cos⁃ mochimica Acta,2006,70(13):3 351-3 368.
-
[35] TOMIĆ J,BEHAR F,VANDENBROUCKE M,et al.Artificial mat⁃ uration of Monterey kerogen(TypeⅡ-S)in a closed system and comparison with TypeⅡkerogen:implications on the fate of sulfur [J].Organic Geochemistry,1995,23(7):647-660.
-
[36] FRENCH K L,BIRDWELL J E,LEWAN M D.Trends in thermal maturity indicators for the organic sulfur-rich Eagle Ford Shale [J].Marine and Petroleum Geology,2020,118:104459.
-
[37] HEAD I M,JONES D M,LARTER S R.Biological activity in the deep subsurface and the origin of heavy oil[J].Nature,2003,426(6964):344-352.
-
[38] 孙向阳,解习农.东营凹陷地层水化学特征与油气聚集关系 [J].石油实验地质,2001,23(3):291-296.SUN Xiangyang,XIE Xinong.Relationship between the chemical characteristics of formation water and hydrocarbon accumulation in the Dongying Sag[J].Petroleum Geology & Experiment,2001,23(3):291-296.
-
[39] 牛君,黄海平,蒋文龙,等.乐安油田多期充注及生物降解作用对稠油黏度的影响分析[J].地球化学,2016,45(5):441-450.NIU Jun,HUANG Haiping,JIANG Wenlong,et al.Factors such as multi⁃stage charge mixing and biodegradation affecting the vis⁃ cosity of heavy oil in the Le’an oilfield[J].Geochimica,2016,45(5):441-450.
-
[40] 蔡春芳,赵龙.热化学硫酸盐还原作用及其对油气与储集层的改造作用:进展与问题[J].矿物岩石地球化学通报,2016,35(5):851-859. CAI Chunfang,ZHAO Long.Thermochemical sulfate reduction and its effects on petroleum composition and reservoir quality:Ad⁃ vances and problems[J].Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(5):851-859.
-
[41] 陈中红,查明,金强.典型蒸发岩与泥岩共生沉积体系中元素及烃类物质响应——以东营凹陷沙河街组四段为例[J].地质学报,2009,83(3):435-444.CHEN Zhonghong,ZHA Ming,JIN Qiang.Response of mineral el⁃ ements,carbon isotope and hydrocarbon in typical sedimentary system of evaporate and mudstone:A case study of the Dongying Sag,Bohai Bay Basin[J].Acta Geologica Sinica,2009,83(3):435-444.
-
[42] 马义权,杜学斌,刘惠民,等.东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化[J].地球科学,2017,42(7):1 195-1 208.MA Yiquan,DU Xuebin,LIU Huimin,et al.Characteristics,depo⁃ sitional processes,and evolution of shale lithofacies of the upper submember of Es4 in the Dongying Depression[J].Earth Science,2017,42(7):1 195-1 208.
-
摘要
东营凹陷南部斜坡带(南坡)东段原油含硫量分布具有明显的规律性,平面上原油含硫量从洼陷中心向边缘逐渐降低,垂向上含硫量较高的原油主要发育在中浅层。研究区发育典型的陆相高硫原油,整体呈高密度和高黏度的特征,非烃和沥青质在族组分中占比较高,族组分碳同位素相对较重。原油地球化学特征揭示高硫原油来源于盐度较高、还原性强的沉积水体下发育的烃源岩。不同地区高硫原油生物标志物的差异反映了成因主控因素的不同,以乐安油田为代表的高硫原油埋深浅、成熟度高、水体盐度较高、生物降解程度高,而以王家岗油田为代表的高硫原油埋深较大、成熟度较低、水体盐度更高、生物降解程度低。前者的成因是生物降解作用过程中硫元素的相对富集,原油降解后的再次充注导致含硫量降低,而后者是还原水体中形成的富硫生油母质早期生烃的结果,硫酸盐热化学还原反应可能在局部地区发挥部分作用。因此,在陆相盆地中,强还原环境下形成的富硫生油母质是高硫原油形成的基础,生物降解、硫酸盐热化学还原等次生作用是原油含硫量进一步升高的重要因素。
Abstract
The sulfur content of crude oil in the eastern section of the southern slope belt(south slope)of Dongying Sag is regularly distributed:The sulfur content of crude oil gradually decreases from the center of the subsag to the edge in the pla- nar direction,whereas high-sulfur crude oil is mainly developed in the middle-shallow formations in the vertical direction. Typical continental high-sulfur crude oil is developed in the study area,with high density and high viscosity on the whole, high proportions of non-hydrocarbons and asphaltenes in group components,and heavier carbon isotopes in group compo- nents. The geochemical characteristics of crude oil reveal that high-sulfur crude oil originates from source rocks developed under sedimentary water bodies with high salinity and great reducibility. Differences in biomarkers of high-sulfur crude oil in different regions reflect different main genesis of the crude oil. The high-sulfur crude oil represented by that in Le’an Oilfield has small burial depth,high maturity,high water body salinity,and high degree of biodegradation,while the high-sulfur crude oil represented by that in Wangjiagang Oilfield is characterized by large burial depth,low maturity,higher wa- ter body salinity,and low degree of biodegradation. The main genesis of the former type of high-sulfur crude oil is that the relative enrichment of sulfur during biodegradation and refilling after crude oil degradation lead to reduced sulfur content. In contrast,the latter type is the result of hydrocarbon generation at an early stage from high-sulfur hydrocarbon-generating parent materials deposited in a reducing water body. Thermochemical sulfate reduction(TSR)reaction may have played a role locally. Thus,in a continental basin,the high-sulfur hydrocarbon-generating parent materials formed in a highly reduc- ing environment are the basis for the formation of high-sulfur crude oil,and secondary actions such as biodegradation and TSR are important factors for the further increase in the sulfur content of crude oil.