en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王增林(1964—),男,山东潍坊人,正高级工程师,博士,从事油气开采工程方面的研究与管理工作。E-mail:wangzenglin.slyt@sinopec.com。

通讯作者:

张贵才(1966—),男,山东东营人,教授,博导。E-mail:13706368080@VIP.163.com。

中图分类号:TE32+7

文献标识码:A

文章编号:1009-9603(2022)05-0075-08

DOI:10.13673/j.cnki.cn37-1359/te.202106032

参考文献 1
崔传智,李松,杨勇,等.特高含水期油藏平面分区调控方法 [J].石油学报,2018,39(10):1 155-1 161.CUI Chuanzhi,LI Song,YANG Yong,et al.Planar zoning regula⁃ tion and control method of reservoir at ultra-high water cut stage [J].Acta Petrolei Sinica,2018,39(10):1 155-1 161.
参考文献 2
武毅,石利华,阴艳芳,等.辽河油田注水开发技术与实践[J].特种油气藏,2020,27(6):40-46.WU Yi,SHI Lihua,YIN Yanfang,et al.Technologies and practice of water-flooding development in Liaohe Oilfield[J].Special Oil & Gas Reservoirs,2020,27(6):40-46.
参考文献 3
周宗良,蔡明俊,张凡磊,等.高含水油藏多介质驱替剩余油赋存状态与时移特征[J].断块油气田,2020,27(5):608-612.ZHOU Zongliang,CAI Mingjun,ZHANG Fanlei,et al.Residual oil occurrence state and time-shift characteristics of multi-media displacement of high water-cut reservoirs[J].Fault-Block Oil and Gas Field,2020,27(5):608-612.
参考文献 4
王增林.胜利油田分层注水工艺技术研究与实践[J].油气地质与采收率,2018,25(6):1-6.WANG Zenglin.Research and practice of separated layer water in⁃ jection technology in Shengli Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(6):1-6.
参考文献 5
李阳,薛兆杰,程喆,等.中国深层油气勘探开发进展与发展方向[J].中国石油勘探,2020,25(1):45-57.LI Yang,XUE Zhaojie,CHENG Zhe,et al.Progress and develop⁃ ment directions of deep oil and gas exploration and development in China[J].China Petroleum Exploration,2020,25(1):45-57.
参考文献 6
李阳.陆相高含水油藏提高水驱采收率实践[J].石油学报,2009,30(3):396-399.LI Yang.Study on enhancing oil recovery of continental reservoir by water drive technology[J].Acta Petrolei Sinica,2009,30(3):396-399.
参考文献 7
梁文福.大庆萨南油田特高含水期水驱注采结构优化调整方法[J].大庆石油地质与开发,2020,39(4):53-58.LIANG Wenfu.Optimizing and adjusting methods of the water⁃ flooding injection-production structure at extra-high watercut stage for Daqing Sanan Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):53-58.
参考文献 8
熊春明,刘玉章,黄伟,等.深部液流转向与调驱技术现状与对策[J].石油钻采工艺,2016,38(4):504-509.XIONG Chunming,LIU Yuzhang,HUANG Wei,et al.Status and solutions of deep fluid diversion and profile control technique[J].Oil Drilling & Production Technology,2016,38(4):504-509.
参考文献 9
刘玉章,熊春明,罗健辉,等.高含水油田深部液流转向技术研究[J].油田化学,2006,23(3):248-251.LIU Yuzhang,XIONG Chunming,LUO Jianhui,et al.Studies on indepth fluid diverting in oil reservoirs at high water cut stages [J].Oilfield Chemistry,2006,23(3):248-251.
参考文献 10
袁谋,尹文军.大面积堵水调剖技术工业化应用研究[J].石油勘探与开发,2003,30(2):88-90.YUAN Mou,YIN Wenjun.Industrial application in large-scale multiple water plugging and profiling technology[J].Petroleum Exploration and Development,2003,30(2):88-90.
参考文献 11
朱丽红,杜庆龙,姜雪岩,等.陆相多层砂岩油藏特高含水期三大矛盾特征及对策[J].石油学报,2015,36(2):210-216.ZHU Lihong,DU Qinglong,JIANG Xueyan,et al.Characteristics and strategies of three major contradictions for continental facies multi-layered sandstone reservoir at ultra-high water cut stage [J].Acta Petrolei Sinica,2015,36(2):210-216.
参考文献 12
黄迎松.胜利油区整装油田非均质油层分类及评价[J].石油勘探与开发,2007,34(6):729-733.HUANG Yingsong.Classification and evaluation of heterogeneous reservoirs of uncompartmentalized oilfields in Shengli Oilfield[J].Petroleum Exploration and Development,2007,34(6):729-733.
参考文献 13
王洪光,蒋明,张继春,等.高含水期油藏储集层物性变化特征模拟研究[J].石油学报,2004,25(6):53-58.WANG Hongguang,JIANG Ming,ZHANG Jichun,et al.Simula⁃ tion on variation of physical properties in high water-cut reservoir [J].Acta Petrolei Sinica,2004,25(6):53-58.
参考文献 14
张祖波,罗蔓莉,戴志坚,等.岩石中两相流体相对渗透率测定方法:GB/T 28912—2012[S].北京:中国标准出版社,2012.ZHANG Zubo,LUO Manli,DAI Zhijian,et al.Test method for two phase relative permeability in rock:GB/T 28912-2012[S].Bei⁃ jing:Standards Press of China,2012.
参考文献 15
THOMAS S,徐雅莉,邸秀莲.稠油开采的化学方法[J].特种油气藏,2003,10(2):94-97.THOMAS S,XU Yali,DI Xiulian.Chemical methods for heavy oil production[J].Special Oil & Gas Reservoirs,2003,10(2):94-97.
参考文献 16
靳彦欣,史树彬,黄志宏,等.一种判断特高含水带形成时间的方法及系统:中国,CN 201910547496.7[P].2019-06-24.JIN Yanxin,SHI Shubin,HUANG Zhihong,et al.A method and system for judging the formation time of ultra-high water cut zone:China,CN 201910547496.7[P].2019-06-24.
参考文献 17
陈元千,邹存友,张枫,等.预测水驱体积波及系数方法的推导、对比与应用——兼评胡罡的“新方法”[J].新疆石油地质,2014,35(3):293-298.CHEN Yuanqian,ZOU Cunyou,ZHANG Feng,et al.Derivation,comparison and application of forecasting water drive volume sweep efficiency methods with comments on Hu Gang’s“new method”[J].Xinjiang Petroleum Geology,2014,35(3):293-298.
参考文献 18
王增林,张贵才,靳彦欣,等.水驱油田采收率与注入孔隙体积的定量关系[J].中国石油大学学报:自然科学版,2021,45(1):94-100.WANG Zenglin,ZHANG Guicai,JIN Yanxin,et al.Quantitative characterization of oil recovery and pore volume of water injected in water flooding[J].Journal of China University of Petroleum:Edition of Natural Science,2021,45(1):94-100.
参考文献 19
俞启泰.几种重要水驱特征曲线的油水渗流特征[J].石油学报,1999,20(1):56-60.YU Qitai.Characteristics of oil-water seepage flow for several im⁃ portant water drive curves[J].Acta Petrolei Sinica,1999,20(1):56-60.
参考文献 20
宋辉.利用丙型水驱曲线计算油田储量的方法[J].大庆石油学院学报,2009,33(4):58-62.SONG Hui.Calculation of oil reserves by means of C-type waterflooding curve[J].Journal of Daqing Petroleum Institute,2009,33(4):58-62.
参考文献 21
崔传智,徐建鹏,王端平,等.特高含水阶段新型水驱特征曲线 [J].石油学报,2015,36(10):1 267-1 271.CUI Chuanzhi,XU Jianpeng,WANG Duanping,et al.A new water flooding characteristic curve at ultra-high water cut stage[J].Ac⁃ ta Petrolei Sinica,2015,36(10):1 267-1 271.
参考文献 22
张超,郑川江,肖武,等.特高含水期提液效果影响因素及提高采收率机理——以胜坨二区沙二段74-81单元为例[J].油气地质与采收率,2013,20(5):88-91.ZHANG Chao,ZHENG Chuanjiang,XIAO Wu,et al.Research on the influencing factors and functional mechanism of enhanced liq⁃ uid result in ultra-high water cut stage-case of 74-81 unit of Es2 in the block No.2 of Shengtuo oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(5):88-91.
参考文献 23
孙焕泉,王海涛,吴光焕,等.稠油油藏注 CO2提高采收率影响因素研究[J].石油实验地质,2020,42(6):1 009-1 013,1 023.SUN Huanquan,WANG Haitao,WU Guanghuan,et al.CO2 EOR factors in heavy oil reservoirs[J].Petroleum Geology & Experi⁃ ment,2020,42(6):1 009-1 013,1 023.
参考文献 24
刘华林,熊伟,高树生,等.压裂水平井水驱油物理模拟[J].新疆石油地质,2010,31(2):171-173.LIU Hualin,XIONG Wei,GAO Shusheng,et al.Physical model⁃ ing of water-oil displacement in hydraulic fractured horizontal wells[J].Xinjiang Petroleum Geology,2010,31(2):171-173.
目录contents

    摘要

    胜利油区主力整装油田经过长期注水开发,已进入注水开发后期,其综合含水率超过 98%,但采收率仅为 41%,仍具有较大剩余油储量和提高采收率潜力。通过对胜利整装油田取心井岩心分析,发现各整装油田特高含水期均出现了剩余油饱和度小于残余油饱和度的极端水洗井段,同时也存在含油饱和度大于水驱前缘含油饱和度的弱水驱井段。提出了特高含水储层极端水洗带、强水淹带和弱水驱带的定义和划分标准。研究注入量、驱替速度和渗透率等因素对极端水洗带形成的影响,结果表明,随着注入量的增加,注入水优先突破的区域中,含油饱和度逐步降低、水相渗透率逐步增大、注水分流量逐步提高、驱替速度逐步上升,导致该区域剩余油饱和度低于残余油饱和度,从而形成极端水洗带。建立了不同级次水驱带体积计算方法,并用孤东、孤岛和埕东3个整装油田生产动态数据进行了验证计算,证明所建立的方法是科学、准确的,且具有需要数据易得和计算简单的优势。

    Abstract

    The main uncompartmentalized oilfields in Shengli Petroleum Province have entered the late waterflooding stage after long-term development. Their comprehensive water cut has reached more than 98%,but the recovery rate is only 41%,and thus the oilfields still have large residual oil reserves and enhanced oil recovery(EOR)potential. Through the core analysis of cored wells in uncompartmentalized oilfields,it was found that in the ultra-high water cut stage,there were extreme waterflooding intervals with the saturation of remaining oil less than that of residual oil as well as weak waterflood- ing intervals with the oil saturation greater than the oil saturation of waterflood front in all uncompartmentalized oilfields. Therefore,this paper proposed the definition and classification criteria of the extreme waterflooding zone,strong waterflood- ing zone,and weak waterflooding zone of an ultra-high water cut reservoirs. The influence of water injection,displacement rate,and permeability on the formation of the extreme waterflooding zone was studied. The research results reveal that with the increase in injected water volume,in the priority breakthrough area of the injected water,oil saturation gradually de- creases with the gradual rise in water phase permeability,water fractional flow,and displacement rate. As a result,the re- maining oil saturation in this area is lower than the residual oil remaining oil saturation,and thus the extreme waterflooding zone is formed. The volume calculation method for different graded waterflooding zones was established,and the dynamic production data of Gudong,Gudao,and Chengdong oilfields were used to verify the calculation. It is proved that the estab- lished method is scientific and accurate and has the advantage of easy access to required data and simple calculations.

  • 截至2016年底,中国石化整装油藏动用地质储量为 13.24×108 t,占老油田总动用储量的 22.0%,累积产油量为5.14×108 t,为中国石化持续发展作出重要贡献。胜坨、埕东、孤东和孤岛是胜利油区最具代表性的 4 个整装油田,也是胜利油区开发的主力油藏,2016 年底,胜利整装油田总开井数为 6 910 口。其中,含水率大于 95%的油井 3 773口,占开井数的54.6%,综合含水率为98.2%。高含水率导致水油比急剧上升,吨油成本大幅增加,效益开发难度越来越大。但是,在“两特一高”开发阶段,胜利整装油田采收率为 41%,而俄罗斯罗马什金油田采收率为 53.3%,大庆喇萨杏油田采收率为 53.4%,说明胜利整装油田采收率较低,仍具有较大剩余油储量和提高采收率潜力[1-5]。从 20 世纪 80 年代末开始,国外的石油公司一直把改善水驱作为油田经济开发的主要手段,道达尔等几家公司的整装油田水驱采收率已提高至 70%[6],其改善水驱的重要技术之一是深部调驱技术[7-9]。科学高效的优化设计技术是深部调驱技术成功的关键,但特高含水期油藏水驱状况日趋复杂,层间、层内和平面矛盾更加突出[10-13]。不同级次水驱带平面分散、纵向交错、相互影响,分布异常复杂,定量识别与描述难度大。现有深部调驱优化设计方法已不能满足特高含水油藏深部调驱的需求。为此,笔者在对胜利油区 4 个整装油田取心井资料分析统计和特高含水油藏水驱规律研究的基础上,建立基于油藏开发动态数据的不同级次水驱带划分标准与体积计算方法,并用现场数据验证了方法的准确性,以期为改善中国石化整装油田水驱效果提供参考和依据。

  • 1 基于取心井的特高含水期水驱特征

  • 1.1 胜利整装油田取心井岩心分析

  • 1.1.1 取心井数据处理方法

  • 基于不同级次水驱带划分的需求,对取心井数据的处理方法包括:①对取心井残余油饱和度取平均值,得到残余油饱和度。②利用相对渗透率曲线,按切线法获取岩心驱替的前缘含水饱和度(图1)。将由典型相对渗透率曲线得到的前缘含水饱和度平均值作为前缘含水饱和度。③计算岩心前缘驱替效率和实际储层水驱前缘含油饱和度,其计算公式分别为:

  • Edf=Soi*-1-SwfSoi*
    (1)
  • Sof =Soi1-Edf
    (2)
  • ④对岩心的含油饱和度从小到大排序,按SoSorSor <So <SofSoSof 分为 3 组统计岩心数量,计算各组岩心数量占总岩心数的比例。

  • 图1 坨30-J1井相对渗透率曲线

  • Fig.1 Relative permeability curve of Well Tuo30-J1

  • 1.1.2 统计结果

  • 根据建立的取心井数据处理方法,统计分析胜坨、孤东、孤岛和埕东 4 个整装油田的 15 口取心井的资料,结果(表1)表明:①特高含水期均出现了含油饱和度小于残余油饱和度的井段,11口特高含水期取心井含油饱和度小于等于残余油饱和度的极端水洗井段厚度占比为 5.2%~40.0%,平均为 19.95%。这说明储层中某些特定区域经历了快速、大过水量的极端水洗。②整装油田综合含水率低于 82.1% 时,未出现极端水洗井段,说明在中、低含水期由于水驱强度较低,极端水洗井段没有完全形成。③随着综合含水率的上升,含油饱和度大于前缘含油饱和度的弱水驱井段厚度占比呈明显下降趋势(图2),11 口特高含水期取心井极弱水驱井段厚度占比为0~20.9%,平均为9.21%。

  • 1.2 基于剩余油饱和度的不同级次水驱带的划分标准

  • 取心井岩心分析统计结果表明,胜利特高含水整装油田均存在极端水洗井段和弱水驱井段,储层存在典型的不同级次水驱带。因此,可按剩余油饱和度将特高含水整装油田储层划分为极端水洗带、强水淹带和弱水驱带3个不同级次水驱带,其剩余油饱和度分别为0—SorSorSofSofSoi

  • 表1 胜利整装油田取心井岩心分析统计结果

  • Table1 Statistical core analysis results of cored wells of uncompartmentalized oilfields in Shengli Petroleum Province

  • 图2 弱水驱井段厚度占比

  • Fig.2 Thickness proportion of weak waterflooding interval

  • 2 极端水洗带的形成及影响因素

  • 恒速(或恒压)岩心水驱油实验结果表明,岩心残余油饱和度为一固定值。但特高含水期取心井岩心分析统计结果表明,各油田中均出现了含油饱和度低于残余油饱和度的井段,不同含水期取心井极端水洗带占比与取心时区块综合含水率呈指数关系(图3),其表达式为:

  • Be=1.0894×10-14e0.3584fw
    (3)
  • 图3 不同含水期取心井极端水洗带占比

  • Fig.3 Proportion of extreme waterflooding zone in cored wells at different water cut stages

  • 由(3)式计算可得:当综合含水率分别为 89.7%,95.0%,98.0% 和 98.5% 时,极端水洗带占比分别为 1.00%,6.66%,19.55% 和 23.38%。分析该结果可以看出:①出现明显极端水洗带(Be=1)时,综合含水率为 89.7%,说明胜利整装油田随着注水开发的深入,水驱油效率不断提高,逐步由弱水驱到强水淹,当进入特高含水期后极端水洗带开始形成。 ②随着综合含水率的上升,极端水洗带的体积增加,当综合含水率为 98.0% 时,极端水洗带占比为 19.55%,这与表1现场取心分析结果是相符的。

  • 毛管数定义式为:

  • Nc,m=vμwσowcosθμwμo0.4
    (4)
  • 由(4)式可以看出,导致常规水驱油藏剩余油饱和度低于残余油饱和度的原因包括:①储层部分井段实际驱替速度大于岩心实验驱替速度。②注水开发过程中储层渗透率和孔隙结构发生了变化。 ③注水开发过程中储层润湿性发生改变。考虑到岩心驱替过程中润湿性同样会发生变化这一事实,笔者认为润湿性不是导致剩余油饱和度低于残余油饱和度的主要原因。

  • 根据水驱油理论,残余油饱和度由毛管数决定,从理论上来说与水驱程度无关,不随注入量的增大发生改变。为验证以上推断,采用坨 30-J1 井 S2 3+4 小层1 912~1 916 m井段岩心,通过直馏煤油与该井原油配制黏度为63.94 mPa·s的模拟油,在实验温度为50℃的条件下,参照GB∕T28912—2012[14] 进行岩心驱替实验,研究注入量、驱替速度和渗透率对剩余油饱和度的影响。

  • 2.1 注入量与剩余油饱和度的关系

  • 实验岩心直径为 22.495 cm,长度为 8.47 cm,渗透率为 4 040 mD,在驱替速度为 0.2 mL/min 的条件下,不同注入量时的岩心剩余油饱和度测定结果 (图4)表明,岩心剩余油饱和度随注入量的增加先快速下降,而后缓慢降低至恒定值,其变化方程为:

  • So=Sor-SoinPVnPV+α+Soi
    (5)
  • 图4 不同注入量时的岩心剩余油饱和度

  • Fig.4 Remaining oil saturation of cores at different water injection volumes

  • 分析(5)式可知,随着注入量的增大,剩余油饱和度逐步趋近于残余油饱和度,但不会小于残余油饱和度。该结果与水驱油理论一致,即残余油饱和度由毛管数决定[15],一定毛管数条件下残余油饱和度为定值,不随水驱程度变化。但当注入量达到某一较大值时,剩余油饱和度才能等于残余油饱和度。

  • 2.2 驱替速度对剩余油饱和度的影响

  • 实验用岩心参数见表2。不同驱替速度下渗透率相近岩心的剩余油饱和度变化(图5)表明,极端水洗带可以在某一高驱替速度下,由超大注水量冲洗形成,驱替速度与剩余油饱和度呈对数下降关系,即:

  • So=-0.021lnv+0.2385
    (6)
  • 表2 驱替速度实验岩心参数

  • Table2 Core parameters of displacement rate experiment

  • 图5 驱替速度与剩余油饱和度关系

  • Fig.5 Relationship between displacement rate and remaining oil saturation

  • 坨30-J1井沙二段储层平均驱替速度为0.97 m/ d,残余油饱和度为 24.2%,取心井最小含油饱和度为 12.0%,小于等于残余油饱和度的井段占比为 7.37%。剩余油饱和度为 24.2% 时,按(6)式计算的最小驱替速度为0.847 m/d,说明按该储层平均驱替速度,经足够大量的水驱替即可使剩余油饱和度达到残余油饱和度。剩余油饱和度为12.0%时,按(6) 式计算的最小驱替速度为282.2 m/d,是该油田平均驱替速度的 291 倍。由此可以推断,胜利整装油田水驱开发过程中,纵向上某些井段存在高速、大过水量的水驱,注入水绝大部分从这些井段通过,是导致纵向非均匀驱替的主要原因。

  • 2.3 渗透率对剩余油饱和度的影响

  • 将坨 30-J1、孤东 7-29-246、埕东 7-J9 和孤岛中 10-J413 井不同渗透率岩心的剩余油饱和度作图,由图6可以看出,剩余油饱和度随着渗透率的增加呈下降趋势,但下降幅度较小,可见注水冲刷引发的渗透率增加不是剩余油饱和度低于残余油饱和度的主要原因。

  • 图6 坨30-J1等4口井渗透率与剩余油饱和度关系

  • Fig.6 Relationship between permeability and remaining oil saturation in four wells such as Well Tuo30-J1

  • 综上所述,特高含水期部分井段剩余油饱和度低于残余油饱和度的原因是储层部分井段实际驱替速度远大于平均驱替速度,即储层非均匀驱替是主要原因。

  • 2.4 不同级次水驱带的定义

  • 基于以上研究结果,对不同级次水驱带定义如下:极端水洗带是水驱油藏中,经高速、大过水量水驱,逐步形成的剩余油饱和度小于等于残余油饱和度的区域。强水淹带是水驱油藏中,经较低水驱速度、较小过水量水驱,逐步形成的剩余油饱和度介于残余油饱和度和前缘含油饱和度之间的区域。弱水驱带是水驱油藏中,驱替水未整体突破、且剩余油饱和度大于等于前缘含油饱和度的区域。三类水驱带剩余油饱和度计算式分别为:

  • SeSor
    (7)
  • Sost=Sor+Sof 2
    (8)
  • Sow=Sof +Soi2
    (9)
  • 3 不同级次水驱带体积计算方法

  • 以取心井岩心分析和驱替实验研究结果为基础,基于剩余油分布情况,将特高含水期储层分为极端水洗带、强水淹带和弱水驱带3个级次水驱带,对于认识油藏、改善水驱和提高采收率有重要意义。但由于取心井存在数量少、投资大和代表性差等问题,不同级次水驱带参数(体积、剩余油饱和度和渗透率等)的获取一直是改善水驱的难题。笔者在对胜利油区孤东、孤岛和埕东 3 个整装油田数据充分研究的基础上,建立了基于油田开发动态数据的不同级次水驱带体积计算方法。

  • 3.1 极端水洗带体积计算

  • 当油藏进入特高含水期时,含油饱和度逐步降低、水相渗透率逐步增大、注水分流量逐步提高、驱替速度逐步上升,导致该区域剩余油饱和度低于残余油饱和度,极端水洗带形成;且由于极端水洗带的形成需要高速、大过水量的水驱,因此,极端水洗带应产生在最先形成水连续相驱替的区域,即水驱前缘从油井突破时水波及区域是极端水洗带的“前驱体”。随着含水率增加,极端水洗带体积增大。通过水驱前缘从油井突破时间的确定及不同时间注入水波及体积的计算,最终得到极端水洗带的体积。

  • 第1步,确定水驱前缘从油井突破时间(te)。按照《一种判断特高含水带形成时间的方法及系统》[16] 来确定。

  • 第 2 步,计算不同开发阶段注入水波及系数。水驱油藏体积波及系数定义式为:

  • Ev=EREd
    (10)
  • 其中 EREd 按文献[17]计算,其计算式分别为:

  • ER=NPN
    (11)
  • Ed=ERmax1+anPVb
    (12)
  • 第 3 步,计算极端水洗带体积。通过计算获得的te时刻的Ev,计算得到极端水洗带“前驱体”体积,其计算式为:

  • Vemax=VPEv
    (13)
  • 将(3)式与(10)式联立,计算获得不同开发阶段极端水洗带体积,其计算式为:

  • Ve=BeVemax=1.0894×10-14e0.3584fwVemax
    (14)
  • 3.2 强水淹带体积计算

  • 水驱油藏达到某一高含水期后水驱曲线呈直线,水驱可采储量趋于定值[18-19],说明水驱油藏进入剥蚀采油阶段,注入水波及体积进入缓慢变化阶段[20-24]。水驱曲线最后直线段的起始点即为强水淹带(含极端水洗带)完全形成时间(tst)(图7)。因此, tst时的注水波及体积,即极端水洗带和强水淹带体积之和,则强水淹带体积计算式为:

  • Vst=Vst*-Ve
    (15)
  • 图7 孤东七区Ng63+4 试验区水驱曲线

  • Fig.7 Waterflooding curve of Ng63+4 test area in Gudong District7

  • 3.3 弱水驱带体积计算

  • 综合上述研究,弱水驱带体积计算式为:

  • Vw=VP-Vst-Ve
    (16)
  • 3.4 实例验证

  • 通过建立的不同级次水驱带体积计算方法,分别对孤东七区 Ng63+4、孤岛中一区 Ng5 和埕东西区南块三个试验区不同级次水驱带进行计算,试验区基本开发参数如表3所示。依据不同级次水驱带的定义,按照(7)—(9)式计算不同级次水驱带剩余油饱和度,根据不同级次水驱带剩余油饱和度和体积可计算得到不同级次水驱带产油量和总累积产油量。通过试验区实际累积产油量与得到的计算值的相对误差判断不同级次水驱带体积计算方法的准确性。

  • 计算结果(表4)表明,新建方法计算得到不同级次水驱带体积与取心井岩心分析统计结果接近,且试验区实际累积产油量与计算总产油量的相对误差为-5.0%~2.5%,小于取心井岩心分析统计结果的误差(-3.6%~7.5%),说明所建的不同级次水驱带划分与体积计算方法是科学和准确的。

  • 4 结论

  • 11口取心井岩心分析结果表明:整装油田特高含水期均出现了剩余油饱和度小于残余油饱和度的极端水洗井段,平均厚度占比为 19.95%;同时也存在含油饱和度大于前缘含油饱和度的弱水驱井段,平均厚度占比为9.21%。

  • 表3 试验区基本开发参数

  • Table3 Basic development parameters of test area

  • 表4 不同级次水驱带体积计算结果与试验区实际累积产油量对比

  • Table4 Difference between calculated volume of different graded waterflooding zones and actual oil production in test area

  • 极端水洗带的形成过程是:在不断水驱条件下,含油饱和度逐步降低、水相渗透率逐步增加、注水分流量逐步提高,导致该区域注水驱替速度逐步上升,当油藏进入特高含水期时,极端水洗带明显形成,且极端水洗带体积随含水率的增加而增大。

  • 建立了基于开发动态数据的不同级次水驱带划分标准和体积计算方法,并用孤东、孤岛和埕东三个油田的生产动态数据进行了验证计算,通过计算结果与取心井统计结果和油藏实际累积产油量的比较,证明所建方法是科学和准确的。

  • 符号解释

  • a——常数,无量纲;

  • b——常数,无量纲;

  • Be——极端水洗带占比,小数;

  • Ed——水驱洗油效率,小数;

  • Edf ——前缘驱替效率,小数;

  • ER——水驱采收率,小数;

  • ER max——最大水驱采收率,小数;

  • Ev——水驱油藏体积波及系数,小数;

  • fw——综合含水率,小数;

  • LP——累积产液量,104 t;

  • NP——累积产油量,104 t;

  • nPV——注入量,PV;

  • N——原始原油地质储量,104 t;

  • Nc,m——毛管数,无量纲;

  • Se——极端水洗带剩余油饱和度,小数;

  • So——剩余油饱和度,小数;

  • Sof ——储层水驱前缘含油饱和度,小数;

  • Soi ——储层原始含油饱和度,小数;

  • S* oi ——岩心原始含油饱和度,小数;

  • Sor ——残余油饱和度,小数;

  • Swf ——前缘含水饱和度,小数;

  • Sst o——强水淹带剩余油饱和度,小数;

  • Sw o——弱水驱带剩余油饱和度,小数;

  • te——水驱前缘从油井突破时间,d;

  • tst ——强水淹带完全形成时间,d;

  • v——驱替速度,m/d;

  • Ve——极端水洗带体积,m3

  • Ve max——极端水洗带“前驱体”体积,m3

  • VP——油藏孔隙体积,m3

  • Vst ——强水淹带体积,m3

  • V * st ——强水淹带总体积,m3

  • Vw——弱水驱带体积,m3

  • α——常数,无量纲;

  • θ——接触角,(°);

  • μo——地面原油黏度,mPa·s;

  • μw——地面水黏度,mPa·s;

  • σow——油水界面张力,mN/m。

  • 参考文献

    • [1] 崔传智,李松,杨勇,等.特高含水期油藏平面分区调控方法 [J].石油学报,2018,39(10):1 155-1 161.CUI Chuanzhi,LI Song,YANG Yong,et al.Planar zoning regula⁃ tion and control method of reservoir at ultra-high water cut stage [J].Acta Petrolei Sinica,2018,39(10):1 155-1 161.

    • [2] 武毅,石利华,阴艳芳,等.辽河油田注水开发技术与实践[J].特种油气藏,2020,27(6):40-46.WU Yi,SHI Lihua,YIN Yanfang,et al.Technologies and practice of water-flooding development in Liaohe Oilfield[J].Special Oil & Gas Reservoirs,2020,27(6):40-46.

    • [3] 周宗良,蔡明俊,张凡磊,等.高含水油藏多介质驱替剩余油赋存状态与时移特征[J].断块油气田,2020,27(5):608-612.ZHOU Zongliang,CAI Mingjun,ZHANG Fanlei,et al.Residual oil occurrence state and time-shift characteristics of multi-media displacement of high water-cut reservoirs[J].Fault-Block Oil and Gas Field,2020,27(5):608-612.

    • [4] 王增林.胜利油田分层注水工艺技术研究与实践[J].油气地质与采收率,2018,25(6):1-6.WANG Zenglin.Research and practice of separated layer water in⁃ jection technology in Shengli Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(6):1-6.

    • [5] 李阳,薛兆杰,程喆,等.中国深层油气勘探开发进展与发展方向[J].中国石油勘探,2020,25(1):45-57.LI Yang,XUE Zhaojie,CHENG Zhe,et al.Progress and develop⁃ ment directions of deep oil and gas exploration and development in China[J].China Petroleum Exploration,2020,25(1):45-57.

    • [6] 李阳.陆相高含水油藏提高水驱采收率实践[J].石油学报,2009,30(3):396-399.LI Yang.Study on enhancing oil recovery of continental reservoir by water drive technology[J].Acta Petrolei Sinica,2009,30(3):396-399.

    • [7] 梁文福.大庆萨南油田特高含水期水驱注采结构优化调整方法[J].大庆石油地质与开发,2020,39(4):53-58.LIANG Wenfu.Optimizing and adjusting methods of the water⁃ flooding injection-production structure at extra-high watercut stage for Daqing Sanan Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):53-58.

    • [8] 熊春明,刘玉章,黄伟,等.深部液流转向与调驱技术现状与对策[J].石油钻采工艺,2016,38(4):504-509.XIONG Chunming,LIU Yuzhang,HUANG Wei,et al.Status and solutions of deep fluid diversion and profile control technique[J].Oil Drilling & Production Technology,2016,38(4):504-509.

    • [9] 刘玉章,熊春明,罗健辉,等.高含水油田深部液流转向技术研究[J].油田化学,2006,23(3):248-251.LIU Yuzhang,XIONG Chunming,LUO Jianhui,et al.Studies on indepth fluid diverting in oil reservoirs at high water cut stages [J].Oilfield Chemistry,2006,23(3):248-251.

    • [10] 袁谋,尹文军.大面积堵水调剖技术工业化应用研究[J].石油勘探与开发,2003,30(2):88-90.YUAN Mou,YIN Wenjun.Industrial application in large-scale multiple water plugging and profiling technology[J].Petroleum Exploration and Development,2003,30(2):88-90.

    • [11] 朱丽红,杜庆龙,姜雪岩,等.陆相多层砂岩油藏特高含水期三大矛盾特征及对策[J].石油学报,2015,36(2):210-216.ZHU Lihong,DU Qinglong,JIANG Xueyan,et al.Characteristics and strategies of three major contradictions for continental facies multi-layered sandstone reservoir at ultra-high water cut stage [J].Acta Petrolei Sinica,2015,36(2):210-216.

    • [12] 黄迎松.胜利油区整装油田非均质油层分类及评价[J].石油勘探与开发,2007,34(6):729-733.HUANG Yingsong.Classification and evaluation of heterogeneous reservoirs of uncompartmentalized oilfields in Shengli Oilfield[J].Petroleum Exploration and Development,2007,34(6):729-733.

    • [13] 王洪光,蒋明,张继春,等.高含水期油藏储集层物性变化特征模拟研究[J].石油学报,2004,25(6):53-58.WANG Hongguang,JIANG Ming,ZHANG Jichun,et al.Simula⁃ tion on variation of physical properties in high water-cut reservoir [J].Acta Petrolei Sinica,2004,25(6):53-58.

    • [14] 张祖波,罗蔓莉,戴志坚,等.岩石中两相流体相对渗透率测定方法:GB/T 28912—2012[S].北京:中国标准出版社,2012.ZHANG Zubo,LUO Manli,DAI Zhijian,et al.Test method for two phase relative permeability in rock:GB/T 28912-2012[S].Bei⁃ jing:Standards Press of China,2012.

    • [15] THOMAS S,徐雅莉,邸秀莲.稠油开采的化学方法[J].特种油气藏,2003,10(2):94-97.THOMAS S,XU Yali,DI Xiulian.Chemical methods for heavy oil production[J].Special Oil & Gas Reservoirs,2003,10(2):94-97.

    • [16] 靳彦欣,史树彬,黄志宏,等.一种判断特高含水带形成时间的方法及系统:中国,CN 201910547496.7[P].2019-06-24.JIN Yanxin,SHI Shubin,HUANG Zhihong,et al.A method and system for judging the formation time of ultra-high water cut zone:China,CN 201910547496.7[P].2019-06-24.

    • [17] 陈元千,邹存友,张枫,等.预测水驱体积波及系数方法的推导、对比与应用——兼评胡罡的“新方法”[J].新疆石油地质,2014,35(3):293-298.CHEN Yuanqian,ZOU Cunyou,ZHANG Feng,et al.Derivation,comparison and application of forecasting water drive volume sweep efficiency methods with comments on Hu Gang’s“new method”[J].Xinjiang Petroleum Geology,2014,35(3):293-298.

    • [18] 王增林,张贵才,靳彦欣,等.水驱油田采收率与注入孔隙体积的定量关系[J].中国石油大学学报:自然科学版,2021,45(1):94-100.WANG Zenglin,ZHANG Guicai,JIN Yanxin,et al.Quantitative characterization of oil recovery and pore volume of water injected in water flooding[J].Journal of China University of Petroleum:Edition of Natural Science,2021,45(1):94-100.

    • [19] 俞启泰.几种重要水驱特征曲线的油水渗流特征[J].石油学报,1999,20(1):56-60.YU Qitai.Characteristics of oil-water seepage flow for several im⁃ portant water drive curves[J].Acta Petrolei Sinica,1999,20(1):56-60.

    • [20] 宋辉.利用丙型水驱曲线计算油田储量的方法[J].大庆石油学院学报,2009,33(4):58-62.SONG Hui.Calculation of oil reserves by means of C-type waterflooding curve[J].Journal of Daqing Petroleum Institute,2009,33(4):58-62.

    • [21] 崔传智,徐建鹏,王端平,等.特高含水阶段新型水驱特征曲线 [J].石油学报,2015,36(10):1 267-1 271.CUI Chuanzhi,XU Jianpeng,WANG Duanping,et al.A new water flooding characteristic curve at ultra-high water cut stage[J].Ac⁃ ta Petrolei Sinica,2015,36(10):1 267-1 271.

    • [22] 张超,郑川江,肖武,等.特高含水期提液效果影响因素及提高采收率机理——以胜坨二区沙二段74-81单元为例[J].油气地质与采收率,2013,20(5):88-91.ZHANG Chao,ZHENG Chuanjiang,XIAO Wu,et al.Research on the influencing factors and functional mechanism of enhanced liq⁃ uid result in ultra-high water cut stage-case of 74-81 unit of Es2 in the block No.2 of Shengtuo oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(5):88-91.

    • [23] 孙焕泉,王海涛,吴光焕,等.稠油油藏注 CO2提高采收率影响因素研究[J].石油实验地质,2020,42(6):1 009-1 013,1 023.SUN Huanquan,WANG Haitao,WU Guanghuan,et al.CO2 EOR factors in heavy oil reservoirs[J].Petroleum Geology & Experi⁃ ment,2020,42(6):1 009-1 013,1 023.

    • [24] 刘华林,熊伟,高树生,等.压裂水平井水驱油物理模拟[J].新疆石油地质,2010,31(2):171-173.LIU Hualin,XIONG Wei,GAO Shusheng,et al.Physical model⁃ ing of water-oil displacement in hydraulic fractured horizontal wells[J].Xinjiang Petroleum Geology,2010,31(2):171-173.

  • 参考文献

    • [1] 崔传智,李松,杨勇,等.特高含水期油藏平面分区调控方法 [J].石油学报,2018,39(10):1 155-1 161.CUI Chuanzhi,LI Song,YANG Yong,et al.Planar zoning regula⁃ tion and control method of reservoir at ultra-high water cut stage [J].Acta Petrolei Sinica,2018,39(10):1 155-1 161.

    • [2] 武毅,石利华,阴艳芳,等.辽河油田注水开发技术与实践[J].特种油气藏,2020,27(6):40-46.WU Yi,SHI Lihua,YIN Yanfang,et al.Technologies and practice of water-flooding development in Liaohe Oilfield[J].Special Oil & Gas Reservoirs,2020,27(6):40-46.

    • [3] 周宗良,蔡明俊,张凡磊,等.高含水油藏多介质驱替剩余油赋存状态与时移特征[J].断块油气田,2020,27(5):608-612.ZHOU Zongliang,CAI Mingjun,ZHANG Fanlei,et al.Residual oil occurrence state and time-shift characteristics of multi-media displacement of high water-cut reservoirs[J].Fault-Block Oil and Gas Field,2020,27(5):608-612.

    • [4] 王增林.胜利油田分层注水工艺技术研究与实践[J].油气地质与采收率,2018,25(6):1-6.WANG Zenglin.Research and practice of separated layer water in⁃ jection technology in Shengli Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(6):1-6.

    • [5] 李阳,薛兆杰,程喆,等.中国深层油气勘探开发进展与发展方向[J].中国石油勘探,2020,25(1):45-57.LI Yang,XUE Zhaojie,CHENG Zhe,et al.Progress and develop⁃ ment directions of deep oil and gas exploration and development in China[J].China Petroleum Exploration,2020,25(1):45-57.

    • [6] 李阳.陆相高含水油藏提高水驱采收率实践[J].石油学报,2009,30(3):396-399.LI Yang.Study on enhancing oil recovery of continental reservoir by water drive technology[J].Acta Petrolei Sinica,2009,30(3):396-399.

    • [7] 梁文福.大庆萨南油田特高含水期水驱注采结构优化调整方法[J].大庆石油地质与开发,2020,39(4):53-58.LIANG Wenfu.Optimizing and adjusting methods of the water⁃ flooding injection-production structure at extra-high watercut stage for Daqing Sanan Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):53-58.

    • [8] 熊春明,刘玉章,黄伟,等.深部液流转向与调驱技术现状与对策[J].石油钻采工艺,2016,38(4):504-509.XIONG Chunming,LIU Yuzhang,HUANG Wei,et al.Status and solutions of deep fluid diversion and profile control technique[J].Oil Drilling & Production Technology,2016,38(4):504-509.

    • [9] 刘玉章,熊春明,罗健辉,等.高含水油田深部液流转向技术研究[J].油田化学,2006,23(3):248-251.LIU Yuzhang,XIONG Chunming,LUO Jianhui,et al.Studies on indepth fluid diverting in oil reservoirs at high water cut stages [J].Oilfield Chemistry,2006,23(3):248-251.

    • [10] 袁谋,尹文军.大面积堵水调剖技术工业化应用研究[J].石油勘探与开发,2003,30(2):88-90.YUAN Mou,YIN Wenjun.Industrial application in large-scale multiple water plugging and profiling technology[J].Petroleum Exploration and Development,2003,30(2):88-90.

    • [11] 朱丽红,杜庆龙,姜雪岩,等.陆相多层砂岩油藏特高含水期三大矛盾特征及对策[J].石油学报,2015,36(2):210-216.ZHU Lihong,DU Qinglong,JIANG Xueyan,et al.Characteristics and strategies of three major contradictions for continental facies multi-layered sandstone reservoir at ultra-high water cut stage [J].Acta Petrolei Sinica,2015,36(2):210-216.

    • [12] 黄迎松.胜利油区整装油田非均质油层分类及评价[J].石油勘探与开发,2007,34(6):729-733.HUANG Yingsong.Classification and evaluation of heterogeneous reservoirs of uncompartmentalized oilfields in Shengli Oilfield[J].Petroleum Exploration and Development,2007,34(6):729-733.

    • [13] 王洪光,蒋明,张继春,等.高含水期油藏储集层物性变化特征模拟研究[J].石油学报,2004,25(6):53-58.WANG Hongguang,JIANG Ming,ZHANG Jichun,et al.Simula⁃ tion on variation of physical properties in high water-cut reservoir [J].Acta Petrolei Sinica,2004,25(6):53-58.

    • [14] 张祖波,罗蔓莉,戴志坚,等.岩石中两相流体相对渗透率测定方法:GB/T 28912—2012[S].北京:中国标准出版社,2012.ZHANG Zubo,LUO Manli,DAI Zhijian,et al.Test method for two phase relative permeability in rock:GB/T 28912-2012[S].Bei⁃ jing:Standards Press of China,2012.

    • [15] THOMAS S,徐雅莉,邸秀莲.稠油开采的化学方法[J].特种油气藏,2003,10(2):94-97.THOMAS S,XU Yali,DI Xiulian.Chemical methods for heavy oil production[J].Special Oil & Gas Reservoirs,2003,10(2):94-97.

    • [16] 靳彦欣,史树彬,黄志宏,等.一种判断特高含水带形成时间的方法及系统:中国,CN 201910547496.7[P].2019-06-24.JIN Yanxin,SHI Shubin,HUANG Zhihong,et al.A method and system for judging the formation time of ultra-high water cut zone:China,CN 201910547496.7[P].2019-06-24.

    • [17] 陈元千,邹存友,张枫,等.预测水驱体积波及系数方法的推导、对比与应用——兼评胡罡的“新方法”[J].新疆石油地质,2014,35(3):293-298.CHEN Yuanqian,ZOU Cunyou,ZHANG Feng,et al.Derivation,comparison and application of forecasting water drive volume sweep efficiency methods with comments on Hu Gang’s“new method”[J].Xinjiang Petroleum Geology,2014,35(3):293-298.

    • [18] 王增林,张贵才,靳彦欣,等.水驱油田采收率与注入孔隙体积的定量关系[J].中国石油大学学报:自然科学版,2021,45(1):94-100.WANG Zenglin,ZHANG Guicai,JIN Yanxin,et al.Quantitative characterization of oil recovery and pore volume of water injected in water flooding[J].Journal of China University of Petroleum:Edition of Natural Science,2021,45(1):94-100.

    • [19] 俞启泰.几种重要水驱特征曲线的油水渗流特征[J].石油学报,1999,20(1):56-60.YU Qitai.Characteristics of oil-water seepage flow for several im⁃ portant water drive curves[J].Acta Petrolei Sinica,1999,20(1):56-60.

    • [20] 宋辉.利用丙型水驱曲线计算油田储量的方法[J].大庆石油学院学报,2009,33(4):58-62.SONG Hui.Calculation of oil reserves by means of C-type waterflooding curve[J].Journal of Daqing Petroleum Institute,2009,33(4):58-62.

    • [21] 崔传智,徐建鹏,王端平,等.特高含水阶段新型水驱特征曲线 [J].石油学报,2015,36(10):1 267-1 271.CUI Chuanzhi,XU Jianpeng,WANG Duanping,et al.A new water flooding characteristic curve at ultra-high water cut stage[J].Ac⁃ ta Petrolei Sinica,2015,36(10):1 267-1 271.

    • [22] 张超,郑川江,肖武,等.特高含水期提液效果影响因素及提高采收率机理——以胜坨二区沙二段74-81单元为例[J].油气地质与采收率,2013,20(5):88-91.ZHANG Chao,ZHENG Chuanjiang,XIAO Wu,et al.Research on the influencing factors and functional mechanism of enhanced liq⁃ uid result in ultra-high water cut stage-case of 74-81 unit of Es2 in the block No.2 of Shengtuo oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(5):88-91.

    • [23] 孙焕泉,王海涛,吴光焕,等.稠油油藏注 CO2提高采收率影响因素研究[J].石油实验地质,2020,42(6):1 009-1 013,1 023.SUN Huanquan,WANG Haitao,WU Guanghuan,et al.CO2 EOR factors in heavy oil reservoirs[J].Petroleum Geology & Experi⁃ ment,2020,42(6):1 009-1 013,1 023.

    • [24] 刘华林,熊伟,高树生,等.压裂水平井水驱油物理模拟[J].新疆石油地质,2010,31(2):171-173.LIU Hualin,XIONG Wei,GAO Shusheng,et al.Physical model⁃ ing of water-oil displacement in hydraulic fractured horizontal wells[J].Xinjiang Petroleum Geology,2010,31(2):171-173.