-
截至 2020 年底,中国石油储量、产量的 70% 以上仍来自水驱老油田[1],老油田亟待挖潜增储上产和降本增效[2];以大庆、胜利为代表的东部油田经过几十年的开发,已整体进入高含水或特高含水开发阶段,受储层非均质性及开发方式的影响,地下油水分布关系更加复杂,挖潜对象从相对富集、大片连续的剩余油逐步转变为高度分散、挖潜难度更大的剩余油。因此,剩余油空间分布表征成为制约特高含水期油田高效开发的关键问题之一,对于特高含水期剩余油有效挖潜动用具有重要的矿场指导意义。
-
韩大匡提出特高含水期剩余油呈高度分散、局部富集的格局,并综合考虑储层非均质性、构造形态以及井网注采关系,将特高含水期剩余油分为 8 大类[3-4]。耿站立等提出了优势潜力丰度概念,利用其对特高含水期剩余油潜力分布进行了量化表征[5]。丁帅伟等构建了优势生产潜力指标,定量化表征了高含水期剩余油分布潜力,并与储量丰度法及优势潜力丰度法进行了对比[6]。王友启在水驱极限驱油效率和渗流力学的基础上,建立了特高含水期油田“四点五类”剩余油分类方法[7]。王振鹏等建立了砾岩油藏水驱开发潜力指标集,并开展了开发潜力分级评价[8]。目前,针对特高含水期剩余油分类评价的系统性研究较少[9],剩余油宏观量化分类评价指标较为单一,常用的剩余油饱和度、剩余油地质储量、剩余油储量丰度、剩余油可采储量丰度等表征指标主要应用在剩余油分布规律及富集区分析方面,无法表征特高含水期剩余油宏观可动用性及耗水特征等,难以综合反映储层中剩余油的流动能力以及赋存特征,并且已有剩余油分类方法具有较强的人为主观性。
-
因此,针对上述问题,在综合考虑特高含水期剩余油空间分布、富集程度、耗水特征及经济可动性等因素的基础上,构建了适用于特高含水期剩余油特征分类的综合评价指标集,并基于 Xie-Beni指数[10] 改进了模糊 C 均值聚类算法,消除了聚类过程中的人为主观性,建立了一种新的特高含水期剩余油分类评价方法,实现了特高含水期剩余油的无监督聚类评价,可为特高含水期剩余油挖潜提供有效指导。
-
1 剩余油分类评价指标的构建
-
1.1 剩余油潜力评价指标集的筛选
-
经过长期注水开发,特高含水期油藏非均质性更加显著,油水分流能力差异更大,导致地下剩余油分布愈加复杂,剩余油开发潜力主要受剩余油储量、油水流动能力等影响。为综合反映特高含水期剩余油特征,筛选构建了可反映特高含水期剩余油空间分布、富集规模及程度、耗水特征以及可动性的分类评价指标集。
-
剩余油地质储量丰度 剩余油地质储量丰度[11] 综合反映了储层有效厚度、孔隙度、含油饱和度、原油密度、原油体积系数等参数的影响,可在一定程度上表征地下剩余油分布,其计算公式为:
-
油水流度比 油水流度比[12]可反映特高含水期油藏的耗水特征与高倍相渗特征。为表征特高含水期特殊的油水流动关系[13],将特高含水期非线性相对渗透率关系拟合式[14] 代入到流度比计算式中,得到新的油水流度比表征关系式为:
-
可动剩余油驱油效率 可动性为剩余油挖潜的关键[15],为表征各单元剩余油的可动程度,构建了可动剩余油驱油效率参数,定义为驱替出的可动剩余油体积与波及范围内的总可动油体积之比,其计算公式为:
-
1.2 剩余油分类评价综合指标的构建
-
基于剩余油赋存空间差异、油藏开发动态数据以及油藏储层物性,以实际油藏地质模型网格为单元,确定剩余油空间分布并提取特征参数。为减少特征向量维数,提高聚类准确性,综合考虑特高含水期油藏剩余油储量、油相流动能力以及地层物性的差异,基于筛选出的剩余油潜力评价指标集,构建了特高含水期剩余油分类评价综合指标:剩余油可动用系数与剩余油可采潜力因子,可用来综合表征不同区域的剩余油开发潜力。
-
剩余油可动用系数为剩余油地质储量丰度、驱油效率与油水流度比的乘积,既可反映地下剩余油可采储量与驱油效率的大小,又可反映特高含水期储层内油水分流能力的差别,其计算公式为:
-
剩余油可采潜力因子主要考虑油藏剩余可采储量、储层物性的影响,可表征不同分布区域所具有的潜在剩余油生产能力,其计算公式为:
-
2 剩余油分类评价方法的建立
-
与中低含水期相比,特高含水期油藏随着长时间的水驱冲刷,油藏物性表现出较强的非均质性,剩余油分布具有显著的差异性。随着开发历程的不断推进,储层间油水变化更加复杂,储量动用不均衡等问题日益突出[16]。在特高含水期,通过对不同空间区域的综合评价指标进行聚类分析,可以揭示特高含水期空间剩余油分类变化特征。
-
2.1 模糊C均值聚类算法的改进
-
目前基于目标函数的聚类算法中,FCM 算法理论基础最为完善,具有较强的稳定性及准确性。 FCM 算法将综合评价指标构成的集合划分为不同的簇或类,通过不断聚类迭代,利用欧氏距离判断评价指标间的相关性与差异性,可以捕捉不同空间上剩余油的变化特征。为此,基于FCM算法对特高含水期剩余油综合评价指标进行模糊聚类,进而综合评价剩余油开发潜力、精准定位剩余油富集部位并提出针对性的高效挖潜措施。
-
FCM 算法通过目标函数求解样本点间特征值隶属度矩阵来确定每个数据点与各个聚类类别之间的亲疏关系,是对传统硬聚类算法的改进[17]。该算法可将实际油藏划分的 n 个网格单元作为数据集 X={x1,x2,···,xn},由(4)—(5)式计算得到的综合评价指标作为每个数据的特征值,划分为 c 个模糊组(2≤c≤n),划分结果可表示为第 j 个数据属于第 i 类的模糊隶属度矩阵 U= {uij},且 uij ∈ [ 0,1],。FCM 算法通过不断迭代更新聚类中心矩阵以及隶属度矩阵以使目标函数达到最优解,目标函数[18] 表达式为:
-
FCM 算法需人为确定聚类数以对其聚类中心初始化,所以输入的初始类别数对最终聚类效果影响明显,然而,FCM算法并不规定数据集的结构,为得到最佳的聚类结果,利用有效性函数对聚类结果进行有效性验证以及质量评价是必要的。Xie-Beni 指数是一种划分矩阵及数据定义的聚类有效性函数[21],对类与类之间的差异捕捉更敏感,分别采用耦合度、分离度评价类内相似程度与类间差异性,其中,类间分离度越大,不同类间的数据差异性越大;类内耦合度越小,同一类中数据相似度越大,聚类效果越好,即 Xie-Beni 指数越小,评价结果越准确,其计算公式为:
-
引入Xie-Beni指数改进FCM算法的实质为:以目标函数Jm(U,V)最小值及Xie-Beni指数VXB(U,V, c)最小值为约束条件,求隶属度矩阵 U 和聚类中心 V。改进的 FCM 算法可在未预先给定标识的情况下,采取聚类中心合并与有效性函数评价的方法,自动给出最佳聚类数与聚类结果。
-
2.2 剩余油分类评价方法的建立
-
在特高含水期剩余油综合评价指标构建的基础上,基于改进的FCM算法对区域剩余油进行无监督聚类分析,通过 Xie-Beni指数确定最佳剩余油分类数目,并利用空间隶属度对各个单元与剩余油类别间的亲疏关系进行评价,得到最佳的剩余油聚类结果,由此形成了特高含水期剩余油分类评价新方法。
-
该评价方法的具体步骤为:①基于综合评价指标(4)—(5)式构建样本集 X={x1,x2,···,xn},确定模糊加权指数m以及迭代阈值ε,其缺省值分别为2和 10-5,设置初始分类数为 2,最大分类数 。 ②初始化隶属度矩阵,设置最大迭代次数。③利用 (7)—(8)式迭代更新模糊隶属度矩阵 U 及聚类中心V,计算目标函数Jm。④若目标函数≤ ε停止迭代;否则,转到步骤③。⑤计算 Xie-Beni指数 VXB(U,V,c)并储存,若 c<cmax,令 c=c+1,转到步骤 ②。⑥找出与最小值VXBmin对应类别数,将其作为最佳类别数,输出最佳类别数下的聚类结果。
-
特高含水期剩余油分类评价新方法可有效实现特高含水期剩余油分类评价、自动确定最佳剩余油分类数目,解决了剩余油分类数目确定存在的人为主观性以及不确定性等问题,可有效指导特高含水期剩余油挖潜优势区域的识别以及挖潜调整方案的制定。
-
3 实例应用
-
以孤岛油田西区北为例,该油藏位于孤岛披覆背斜构造西翼,其北界、西界被孤岛 1 号大断层遮挡,南界和东界分别与西区 Ng3-6单元和中一区相邻,东高西低,油藏埋深为 1 180~1 300 m,含油面积为3.26 km2,属于高孔高渗透、常温常压的构造岩性层状油藏。
-
1990—2020 年,Ng31-41 上层系采用北偏西 30° 行列井网,Ng42-44 下层系采用北偏东10°行列井网。开发井网长期未调整导致注采流线固定、高耗水条带发育,剩余油驱替均衡性较差,两套层系间动用状况、水淹程度差异较大。从油藏开发过程中综合含水率变化(图1)可以看出,截至2020年底,综合含水率高达98.1%,为典型的特高含水期油藏。
-
图1 油藏综合含水率变化
-
Fig.1 Comprehensive water cut curve of reservoir
-
以孤岛油田西区北主力层 Ng35 和 Ng44 为研究对象,开展特高含水期剩余油分类评价。从图2 可以看出,主力层平面剩余油分布差异大,发育多条高耗水层带,注水效率较低[22],储层存在驱替不均衡的问题,剩余油分布呈现“高度分散、局部富集” 的特征。此外,主力层Ng35 和Ng44 的高耗水层带发育特征存在明显差异:Ng35 层综合含水率为98.1%,采出程度为50.3%,剩余油分布整体较为连续,中西部水淹严重,高耗水层带沿注水井排(NW—SE 向) 及注采主流线方向分布,高耗水层带发育区域面积占比为 15.5%;Ng44 层综合含水率为 98.2%,采出程度为53.1%,剩余油分布较为分散,较上层系水淹更为严重,高耗水层带沿水井排(NE—SW 向)及注采主流线方向分布,高耗水层带发育区域面积占比为 17.8%。
-
图2 主力层Ng35 和Ng44 剩余油分布场
-
Fig.2 Distribution field of remaining oil in main layers Ng35 and Ng44
-
孤岛 X5-XJ131取心井位于上层系注采井间的非主流线上,但位于下层系注采井间的主流线上。从表1可以看出,上、下层系间的剩余油饱和度以及流线分布差异较大;其中,取自Ng35 主力层的128块样品的平均含油饱和度为 41.0%,驱油效率为 33.9%,为非主流线区域;而取自 Ng44主力层的 48 块样品的平均含油饱和度为 25.2%,驱油效率为 60.9%,为主流线区域,驱油效率较 Ng35 层提高 27%。
-
从主力层 Ng35 和 Ng44 的剩余油可动用系数分布场(图3)和剩余油可采潜力因子分布场(图4)可以看出,剩余油整体分布受构造东高西低的影响,东部高部位的可动用剩余油局部呈连片状富集,受上、下层系开发井网差异的影响,Ng35 层中东部的可动用剩余油呈 NW—SE向条带状分布,而 Ng44 层中西部的可动用剩余油呈 NE—SW 向条带状分布。受开发井网及局部构造、微相的影响,部分剩余油位于砂体边缘附近、局部高部位和油井间,可动用剩余油呈现斑点状的富集形式。
-
为表征特高含水期剩余油的耗水特征、油水流动关系、地质储量以及可动性等差异,基于剩余油可动用系数、剩余油可采潜力因子评价指标,应用新方法开展了特高含水期剩余油无监督聚类分析,确定自适应最佳类别数为 4,将剩余油分为Ⅰ类— Ⅳ类(表2)。
-
图3 主力层Ng35 和Ng44 剩余油可动用系数分布场
-
Fig.3 Distribution field of recoverability coefficients of remaining oil in main layers Ng35 and Ng44
-
图4 主力层Ng35 和Ng44 剩余油可采潜力因子分布场
-
Fig.4 Distribution field of recoverable potential factor of remaining oil in main layers Ng35 and Ng44
-
依据剩余油潜力分级评价结果(图5),进一步结合油藏地质构造特征以及开发动态数据,对各类剩余油的潜力分布特征进行了分析,提出了各类剩余油下一步的挖潜方案[23-25]。结合图5 可以看出,Ⅰ类剩余油局部富集,多呈孤岛状分布于构造高部位、砂体边部封闭区域以及油井排油井之间,可动用潜力高,后期可采取补射孔、局部加密以及流场重整等措施;Ⅱ类剩余油分布广泛并且分散,多呈条带状分布于油井排油井之间或构造高部位,后期可采用层系井网重组、转流线调整以及局部井网加密等措施;Ⅲ类剩余油分布最为广泛,多位于注采井间或水井间,剩余油可动性一般,后期可进行调剖堵水、细分层系以及储层改造等;Ⅳ类剩余油分布广泛且高度分散,所在区域水淹程度高或储层物性极差,导致剩余油可采潜力极低,多位于砂体边缘或尖灭处,并非特高含水后期挖潜的重点对象。
-
图5 主力层Ng35 和Ng44 剩余油分类评价结果
-
Fig.5 Classification and evaluation results of remaining oil in the main layers Ng35 and Ng44
-
结合各类剩余油的属性对比(图6)可知,从Ⅰ 类至Ⅳ类剩余油的平均含油饱和度依次降低,分别为 54.6%,47.4%,37.2% 和 25.4%,但采出程度依次增高,分别为 17.27%,28.77%,43.73% 和 60.59%;从剩余地质储量占比来看,Ⅰ类—Ⅳ类剩余油分别占 23.04%,36.76%,23.29% 和 16.91%,其中Ⅰ和Ⅱ类剩余油的总剩余地质储量占比较大,达到59.8%,且分布相对集中,这部分剩余油为特高含水期挖潜的重点对象。
-
图6 各类剩余油属性对比
-
Fig.6 Attribute comparison of various remaining oils
-
基于Ng35 和Ng44 主力层的Ⅰ类、Ⅱ类剩余油分布特征及挖潜措施分析,开展了上、下层系间井网互换、转流线调整。基于储层内部构型以及高耗水层带发育特征,充分利用老井、高效封堵等工艺技术,将上层系井网下返至下层系,由230 m×200 m井网转变为 300 m×175 m 井网;将下层系井网上返至上层系,由 300 m×175 m 井网转变为 230 m×200 m 井网,其中实施老井换层系工作量 89 井次,实现了上、下层系注采流线方向转变47°(图7)。
-
图7 井网层系互换示意
-
Fig.7 Schematic diagram of well pattern system exchange between strata
-
措施调整后单元日产液量降低,由 6 289 t/d 降至 5 650 t/d,下降 639 t/d;单元日注入量由 6 277 m3 / d 下降到 4 308 m3 /d,下降 1 969 m3 /d;单元日产油量由 122 t/d 升至 176 t/d,上升 54 t/d;综合含水率由 98.1% 降至 96.9%,下降 1.2%;耗水率从 51.6% 下降到31.3%,下降20.3%;吨油运行成本由735元/t下降到 552元/t,下降 183元/t,提高采收率 2.1个百分点,可采储量增加 29×104 t,实现了孤岛油田西区北特高含水期油藏采收率进一步的提高。
-
4 结论
-
针对特高含水期剩余油分布高度复杂、难以确定剩余油富集特征的问题,在剩余油可动用系数和剩余油可采潜力因子2个综合评价指标构建的基础上,基于改进的 FCM 算法,对特高含水期油藏剩余油进行无监督聚类分析评价,形成了特高含水期剩余油分类评价新方法。以孤岛西区北单元为例,采用特高含水期剩余油分类评价新方法,开展了孤岛西区北Ng35 和Ng44 主力层的剩余油分类评价,进一步结合油藏地质构造特征以及开发动态,重点针对 Ⅰ类、Ⅱ类剩余油挖潜区域,开展了上、下层系间井网互换转流线调整,调整后单元增油降水效果显著,综合含水率下降 1.2%,提高采收率 2.1 个百分点,可采储量增加 29×104 t,实现了特高含水期油藏剩余油分类评价、分类施策、综合挖潜,新方法可有效指导特高含水期油藏剩余油挖潜。
-
符号解释
-
A,B,C——拟合系数;
-
Bo——原油体积系数,m3 /m3;
-
c——聚类类别数;
-
Eϕ——可动剩余油驱油效率,%;
-
h——储层单元有效厚度,m;
-
i——下标,i∈(1,2,···,c);
-
IR——剩余油可采潜力因子;
-
j——下标,j∈(1,2,···,n);
-
Jm——目标函数;
-
——x,y方向渗透率平均值,mD;
-
Kro——油相相对渗透率;
-
Krw——水相相对渗透率;
-
Kz ——z方向渗透率,mD;
-
m——模糊加权指数;
-
M——油水流度比;
-
n——油藏网格单元总数量;
-
No——剩余油可动用系数;
-
So——含油饱和度,%;
-
Soi——原始含油饱和度,%;
-
Sor——残余油饱和度,%;
-
Sw——含水饱和度,%;
-
t——迭代次数;
-
uij ——第j个数据属于第i类的模糊隶属度;
-
U——模糊隶属度矩阵;
-
V——聚类中心;
-
vi ——第i类的聚类中心;
-
vj ——第j类的聚类中心;
-
VXB(U,V,c)——Xie-Beni指数;
-
xj ——第j个剩余油单元特征参数;
-
xn——第n个剩余油单元特征参数;
-
X——样本集;
-
ε——迭代阈值;
-
μo——油相黏度,mPa·s;
-
μw——水相黏度,mPa·s;
-
ρo——地面原油密度,kg/m3;
-
ϕ——孔隙度,%;
-
Ωor ——剩余油地质储量丰度,104 t/km2;
-
|| ⋅ ||——欧式距离。
-
参考文献
-
[1] 张莉.中国石化东部老油田提高采收率技术进展及攻关方向 [J].石油与天然气地质,2022,43(3):717-723.ZHANG Li.Progress and research direction of EOR technology in eastern mature oilfields of Sinopec[J].Oil & Gas Geology,2022,43(3):717-723.
-
[2] 张抗,张立勤.21 世纪初中国原油储量、产量构成变化分析及启示[J].中国石油勘探,2019,24(3):280-296.ZHANG Kang,ZHANG Liqin.The analysis on the composition changes of China’s crude oil reserves and production in early 21st century and its enlightenment[J].China Petroleum Exploration,2019,24(3):280-296.
-
[3] 韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5):47-55.HAN Dakuang.An approach to deep development of high watercut oil fields to improve oil recovery[J].Petroleum Exploration and Development,1995,22(5):47-55.
-
[4] 韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究[J],石油学报,2007,28(2):73-78.HAN Dakuang.Precisely predicting abundant remaining oil and improving the secondary recovery of mature oilfields[J].Acta Petrolei Sinica,2007,28(2):73-78.
-
[5] 耿站立,姜汉桥,陈民锋,等.高含水期油藏剩余油潜力定量化表征新方法[J].油气地质与采收率,2007,14(6):100-102.GENG Zhanli,JIANG Hanqiao,CHEN Minfeng,et al.A new method for quantitative characterization on remaining oil potential in high water cut oil reservoirs[J].Petroleum Geology and Recov⁃ ery Efficiency,2007,14(6):100-102.
-
[6] 丁帅伟,姜汉桥,周代余,等.中高含水期油藏剩余油潜力定量化评价新方法及其应用[J].复杂油气藏,2016,9(1):41-45.DING Shuaiwei,JIANG Hanqiao,ZHOU Daiyu,et al.A new meth⁃ od for quantitatively evaluating the remaining oil potential of res⁃ ervoir at medium-high water-cut stage and its application[J].Complex Hydrocarbon Reservoirs,2016,9(1):41-45.
-
[7] 王友启.特高含水期油田"四点五类"剩余油分类方法[J].石油钻探技术,2017,45(2):76-80.WANG Youqi“.Four Points and Five Types”remaining oil classi⁃ fication in oilfields with ultra-high water cut[J].Petroleum Drill⁃ ing Techniques,2017,45(2):76-80.
-
[8] 王振鹏,陈民锋,尹承哲.砾岩油藏水驱开发潜力分级评价[J].岩性油气藏,2018,30(5):109-115.WANG Zhenpeng,CHEN Minfeng,YIN Chengzhe.Development potential classification evaluation for water-flooding in conglom⁃ erate reservoir[J].Lithologic Reservoirs,2018,30(5):109-115.
-
[9] 石磊,黄学斌,刘景亮,等.保有石油预测储量升级潜力评价方法及升级策略[J].石油实验地质,2021,43(1):176-183.SHI Lei,HUANG Xuebin,LIU Jingliang,et al.Evaluation of up⁃ grading potential and strategy for inferred initially in-place petro⁃ leum[J].Petroleum Geology & Experiment,2021,43(1):176-183.
-
[10] XIE Xuanli Lisa,BENI Gerardo.A validity measure for fuzzy clus⁃ tering[J].IEEE Transactions on Pattern Analysis and Machine In⁃ telligence,1991,13(8):841-847.
-
[11] 王晖,刘振坤,胡晓庆,等.基于SAGD开发的油砂储层综合评价——以加拿大长湖西南区块开发优化项目为例[J].中外能源,2021,26(1):40-47.WANG Hui,LIU Zhenkun,HU Xiaoqing,et al.Comprehensive reservoir evaluation of oil sands developed by Steam-Assisted Gravity Drainage(SAGD)-A case study of development optimiza⁃ tion project of southwestern block,Long Lake,Canada[J].SinoGlobal Energy,2021,26(1):40-47.
-
[12] 李玉梅.水驱砂岩油藏高含水期剩余油综合潜力评价方法研究[D].成都:西南石油学院,2003.LI Yumei.Study on evaluation method of residual oil comprehen⁃ sive potential in water-driven sandstone reservoir at high watercut stage[D].Chengdu:Southwest Petroleum Institute,2003.
-
[13] 常涛,程大勇,李振鹏,等.新型水驱效果评价图版建立及应用 [J].断块油气田,2019,26(1):66-69.CHANG Tao,CHENG Dayong,LI Zhenpeng,et al.Establishment and application of evaluation chart of new water flooding effect [J].Fault-Block Oil and Gas Field,2019,26(1):66-69.
-
[14] 刘浩瀚,颜永勤.特高含水期相渗关系表征新理论与实践[J].西南石油大学学报:自然科学版,2019,41(2):127-136.LIU Haohan,YAN Yongqin.New theory and practice of character⁃ izing phase infiltration relationships in ultra-high water-cut peri⁃ od[J].Journal of Southwest Petroleum University:Science & Technology Edition,2019,41(2):127-136.
-
[15] 李浩,陆建林,王保华,等.渤海湾盆地东濮凹陷陆相页岩油可动性影响因素与资源潜力[J].石油实验地质,2020,42(4):632-638.LI Hao,LU Jianlin,WANG Baohua,et al.Controlling factors of continental shale oil mobility and resource potential in Dongpu Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2020,42(4):632-638.
-
[16] 刘丽杰.胜坨油田特高含水后期矢量开发调整模式及应用[J].油气地质与采收率,2016,23(3):111-115.LIU Lijie.Vector development adjustment modes and its applica⁃ tion in late extra-high water cut stage of Shengtuo oilfield[J].Pe⁃ troleum Geology and Recovery Efficiency,2016,23(3):111-115.
-
[17] 赵国生,牛贞贞,刘永光,等.基于自适应模糊C均值聚类算法的电力负荷特性分类[J].郑州大学学报:工学版,2015,36(6):56-60.ZHAO Guosheng,NIU Zhenzhen,LIU Yongguang,et al.Power load characteristic classification technology research based on an optimal fuzzy C-means clustering algorithm[J].Journal of Zheng⁃ zhou University:Engineering Science,2015,36(6):56-60.
-
[18] 王伟,康胜松,高峰,等.基于模糊C均值聚类与Bayes判别的致密油储层分类评价[J].特种油气藏,2020,27(5):118-124.WANG Wei,KANG Shengsong,GAO Feng,et al.Classification and evaluation of tight oil reservoirs based on fuzzy C-means clus⁃ tering and Bayes discrimination[J].Special Oil & Gas reservoirs,2020,27(5):118-124.
-
[19] 宫改云,高新波,伍忠东.FCM 聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148.GONG Gaiyun,GAO Xinbo,WU Zhongdong.An optimal choice method of parameter m in FCM clustering algorithm[J].Fuzzy Sys⁃ tems and Mathematics,2005,19(1):143-148.
-
[20] 丁帅伟,姜汉桥,陈民锋,等.基于模糊C均值聚类算法和贝叶斯判别函数研究深水油藏分类评价[J].西安石油大学学报:自然科学版,2014,29(2):43-49.DING Shuaiwei,JIANG Hanqiao,CHEN Minfeng,et al.Classifica⁃ tion and evaluation of deepwater oil reservoirs by combining clus⁃ tering algorithm based on fuzzy C-mean with Bayesian discrimi⁃ nation function[J].Journal of Xi’an Shiyou University:Natural Science Edition,2014,29(2):43-49.
-
[21] 朴尚哲,超木日力格,于剑.模糊C均值算法的聚类有效性评价[J].模式识别与人工智能,2015,28(5):452-461.PIAO Shangzhe,Chaomurilige,YU Jian.Cluster validity indexes for FCM clustering algorithm[J].Pattern Recognition and Artifi⁃ cial Intelligence,2015,28(5):452-461.
-
[22] 刘博,张荣达,张伊琳,等.双河油田高耗水条带影响因素及治理对策可行性研究[J].油气藏评价与开发,2020,10(6):96-102.LIU Bo,ZHANG Rongda,ZHANG Yilin,et al.Influencing factors and countermeasures feasibility of high water consumption strip in Shuanghe Oilfield[J].Reservoir Evaluation and Development,2020,10(6):96-102.
-
[23] 赵秀娟,左松林,吴家文,等.大庆油田特高含水期层系井网重构技术研究与应用[J].油气地质与采收率,2019,26(4):82-87.ZHAO Xiujuan,ZUO Songlin,WU Jiawen,et al.Study and appli⁃ cation of strata & well pattern reconstruction technique at extra high water cut stage in Daqing oilfield[J].Petroleum Geology and Recovery Efficiency,2019,26(4):82-87.
-
[24] 王友启.胜利油田高含水期油藏水驱精细调整技术方向[J].石油钻探技术,2011,39(1):101-104.WANG Youqi.Fine adjustment direction of water flooding in highwater cut oil reservoirs of Shengli oilfield[J].Petroleum Drilling Techniques,2011,39(1):101-104.
-
[25] 王端平,杨勇,牛栓文,等.东辛复杂断块油藏层块分类评价方法与调整对策[J].油气地质与采收率,2012,19(5):84-87.WANG Duanping,YANG Yong,NIU Shuanwen,et al.Layer block classification evaluation and adjustment of complicated fault block oil reservoir[J].Petroleum Geology and Recovery Efficien⁃ cy,2012,19(5):84-87.
-
摘要
特高含水期剩余油分布日趋复杂,挖潜难度越来越大,明确剩余油开发潜力是特高含水期油藏提高采收率的基础。综合考虑特高含水期剩余油空间分布、富集程度、耗水特征及经济可动性,从剩余油可动用资源、区域可开发潜力等方面,提出了剩余油可动用系数以及剩余油可采潜力因子2个综合评价指标,构建了特高含水期剩余油分类评价综合指标集;在此基础上,利用Xie-Beni指数改进了模糊C均值聚类(FCM)算法,对特高含水期油藏剩余油进行无监督聚类评价,形成了特高含水期剩余油分类评价新方法。以孤岛油田西区北为例,开展了特高含水期剩余油分类评价以及挖潜调整研究。结果表明:该方法可精准确定剩余油潜力优势部位,针对孤岛油田西区北Ng3-4 单元的各类剩余油潜力评价结果,分别提出了相应的挖潜措施,指导了单元层系井网互换转流线调整工作,措施调整后单元提高采收率2.1%,可采储量增加29×104 t。
Abstract
The underground distribution of remaining oil in the ultra-high water cut stage is growing complex,and it is more and more difficult to tap the potential. Clarifying the development potential of the remaining oil is the basis for enhanc- ing the oil recovery of reservoirs in the ultra-high water cut stage. Considering the spatial distribution,enrichment,water consumption characteristics,and economic mobility of the remaining oil in the ultra-high water cut stage,the recoverability coefficient and recoverable potential factor of the remaining oil were proposed from the aspects of recoverable resources of remaining oil and regional development potential to construct a comprehensive index set for the classification and evalua- tion of remaining oil in the ultra-high water cut stage. On this basis,the fuzzy C-means clustering(FCM)algorithm was im- proved by the Xie-Beni function to conduct an unsupervised clustering evaluation of the remaining oil in the ultra-high wa- ter cut stage. As a result,a new classification and evaluation method of the remaining oil in the ultra-high water cut stage was formed. With the north of the west area of Gudao Oilfield as an example,the research on classification,evaluation,and potential adjustment of remaining oil in the ultra-high water cut stage was carried out. The results show that this method can accurately determine the dominant position of the remaining oil potential. According to the evaluation results of various remaining oil potential of north Ng3-4 unit,corresponding potential tapping measures were proposed respectively,which guide the well pattern exchange and flow line adjustment between unit strata. After the adjustment,the recovery of this unit increases 2.1%,and the recoverable reserves increases 29×104 t.