-
提高采收率是老油田开发的永恒主题,尤其是在保障国家能源安全、大力提升油气勘探开发力度背景下,老油田进一步提高采收率更为重要。以孤岛油田为代表的中国东部老油田大都经历注水二次开发和注聚合物等三次采油,面临着储层非均质性更强、剩余油分布更加零散、综合含水率高、采出程度较低的问题,实现经济有效持续开发的难度大。为进一步提高聚合物驱后油藏采收率,在胜利油区孤岛油田中一区Ng3开展了非均相复合驱的先导试验[1-2]。非均相复合驱是一种提高采收率的化学驱技术,其驱油体系主要包括黏弹性颗粒驱油剂 (PPG)、表面活性剂和聚合物[3-5],该体系既能有效的扩大波及体积,又能提高洗油效率[2,6-7],进而实现进一步提高采收率的目的。
-
孤岛油田中一区 Ng3 先导试验区自 2010 年实施非均相复合驱以来,综合含水率由 98.3% 降至 79.8%,单元日产油量由 4.5 t/d 增至 81.2 t/d[1],累积产油量为10.4×104 t,采出程度由52.3%增至60.8%,取得了良好的开发效果。但是,非均相复合驱后剩余油分布特征、微观赋存形态、非均相复合驱前后剩余油变化规律尚不明确,从而影响非均相复合驱开发效果精准评价和规模化的推广实施。为此,基于孤岛油田中一区 Ng3油藏地质特征及开发动态,笔者综合研究非均相复合驱后密闭取心井剩余油分布特征和微观赋存形态,并与非均相复合驱前密闭取心井剩余油分布进行对比,分析非均相复合驱前后剩余油变化规律,为非均相复合驱的矿场实施提供技术支撑。
-
1 研究区概况
-
孤岛油田是发育在古生界潜山之上的大型披覆构造,中一区位于孤岛油田中部,其 Ng3 埋深为 1 175~1 220 m,共发育 Ng31,Ng32,Ng33,Ng34 和 Ng35等 5 个小层,其中 Ng33和 Ng35为主力含油小层,单层砂体厚度多为 8~12 m,为曲流河沉积的疏松砂岩正韵律储层[8-9]。经岩石薄片鉴定,Ng3储层的石英含量为 40%~48%,长石含量为 20%~39%,岩屑含量为10%~35%,岩性为岩屑长石砂岩或长石岩屑砂岩。Ng3储层物性较好,平均孔隙度为 33.5%,渗透率为180~3 500 mD;其平均孔喉半径主要为6~15 μm,最大平均孔喉半径超过 30 μm,孔喉结构类型以大孔中喉型和大孔粗喉型为主。
-
孤岛油田中一区 Ng3 于 1971 年 9 月投产开发,先后经历了天然能量开发、注水开发、聚合物驱开发和后续水驱开发阶段。2010年10月,孤岛油田中一区 Ng3 开展了井网调整非均相复合驱的先导试验。先导试验区通过油井间加密水井、水井间加密油井,排间加密新井和隔井转注,井网由270 m×300 m的行列井网调整为135 m×150 m的变流线强波及加密井网[10]。采用的非均相复合驱油体系由 1 200 mg/L的聚合物、1 200 mg/L的PPG和0.2%的石油磺酸盐等构成[3,11],油藏工程方案计划注入 0.35 PV。实施非均相复合驱后,注入井的压力普遍上升 2~3 MPa,油藏渗流阻力增加,生产井的降水增油效果显著[1]。为了研究非均相复合驱前后剩余油分布,孤岛油田中一区先后完钻了4口密闭取心井(图1),其中中 13-斜检 9、中 14-检 10 和中 14-斜检 11 井是 2008年完钻且未实施非均相复合驱,分别位于原井网的油井排、排间和油井排上;而中12-斜检3011井是2018年完钻并实施了非均相复合驱,位于非均相复合驱井网的分流线上。中12-斜检3011井总取心进尺为 67.07 m,共收获 65.77 m 的岩心,从中选取 235块岩心样品开展储层物性、含油性、微观孔喉结构等20余项的分析化验测试。
-
图1 孤岛油田中一区非均相复合驱前后密闭取心井分布
-
Fig.1 Distribution of sealed cored wells before and after heterogeneous combination flooding in Zhongyi area,Gudao Oilfield
-
2 非均相复合驱后剩余油分布特征
-
2.1 宏观分布特征
-
2.1.1 剩余油饱和度
-
分析中 12-斜检 3011 井 143 块岩心样品,测试结果表明 Ng3 有效储层平均剩余油饱和度为 24.77%,最高为 41.9%;其中 74.1% 的样品剩余油饱和度为16%~32%;剩余油饱和度大于30%的样品有 58块,占比为 40.6%(图2)。考虑到降压脱气、泥浆侵入等因素造成岩心样品剩余油饱和度的损失,实验剩余油饱和度与油藏实际剩余油饱和度存在一定差异,需对取心井的剩余油饱和度进行校正[12-13]。剩余油饱和度的校正量为2%~5%,校正后剩余油饱和度主要为20%~36%,平均值为28.3%。
-
2.1.2 剩余油垂向分布
-
受储层韵律性及夹层的控制,非均相复合驱后剩余油垂向上主要分布在正韵律储层顶部和夹层附近。中 12-斜检 3011 井 Ng3 钻遇了 Ng33 和 Ng35 两套含油小层,Ng34 不发育有效储层。
-
Ng33 剩余油垂向分布 中 12-斜检 3011 井 Ng33 砂岩厚度为8.5 m,中部发育的厚度为0.75 m的钙质夹层将其分成上、下两段。Ng33 上段砂岩厚度为4.5 m,岩性以泥质粉砂岩为主,呈正韵律;泥质含量较高,平均值为 9.95%,最高可达 17.58%;颗粒较细,平均粒度中值仅为 0.088 mm;储层物性相对较差,平均孔隙度为 30.5%,平均渗透率为 421 mD,渗透率多为 500 mD 以下。Ng33下段砂岩厚度为 4.0 m,岩性以棕色粉砂岩为主,呈复合正韵律;泥质含量较低,平均值仅为4.61%,最低为2.01%;颗粒较均匀,平均粒度中值为 0.159 mm;储层物性相对较好,平均孔隙度为37.4%,平均渗透率为2 295 mD,底部渗透率多为 3 000 mD 以上。非均相复合驱后的 Ng33 剩余油分段分布特征明显,每个韵律层的中上部都存在一定剩余油,剩余油饱和度为 25%~30%,平均值为30.1%。Ng33 上段储层由于物性差且原始含油性低,油藏动用程度较低,驱油效率多为 40% 以下,平均剩余油饱和度为28.7%,其中30%的样品剩余油饱和度高于 30%。Ng33 下段储层由于物性好且原始含油性高,油藏动用程度也高,驱油效率多为 50% 以上,平均剩余油饱和度为 30.9%,其中 28% 的样品剩余油饱和度高于 30%,主要位于 Ng33 下段中上部(图2)。
-
图2 孤岛油田中一区中12-斜检3011井剩余油综合柱状图
-
Fig.2 Comprehensive histogram of remaining oil of Well Zhong12-Xiejian3011 in Zhongyi area,Gudao Oilfield
-
Ng35 剩余油垂向分布 中 12-斜检 3011 井 Ng35砂岩厚度为 11.2 m,1 465.0~1 466.4 m 井段发育的 5 个厚度为 5~10 cm 的泥质夹层将 Ng35分成上、下两段。Ng35 上段砂岩厚度为 7.2 m,岩性以棕色粉砂岩为主,呈正韵律;泥质含量较低,平均值仅为3.61%,多数样品的泥质含量低于5%;颗粒较粗,平均粒度中值为 0.146 mm;储层物性较好,平均孔隙度为37.9%,平均渗透率为2 180 mD,底部渗透率多为 3 500 mD 以上。Ng35 下段砂岩厚度为 4.0 m,岩性以棕色细砂岩为主,呈复合正韵律;砂岩较纯,泥质含量低,平均值仅为 1.24%;颗粒较粗,平均粒度中值为 0.349 mm;储层物性好,平均孔隙度为 39.2%,平均渗透率高达 12 591 mD。Ng35 储层由于物性好且砂岩厚度大,油藏动用程度高,平均驱油效率为 64.5%,平均剩余油饱和度仅为 26.8%,其中 48%的样品剩余油饱和度低于25%(图2,图3)。但在5个薄泥质夹层附近的1.4 m储层内,由于泥质夹层发育且位于正韵律储层顶部,剩余油饱和度仍较高,最高可达46.5%,平均剩余油饱和度为38.7%,平均驱油效率仅为50.9%。
-
图3 孤岛油田中一区中12-斜检3011井各小层剩余油饱和度分布
-
Fig.3 Remaining oil saturation distribution of sublayers in Well Zhong12-Xiejian3011 in Zhongyi area,Gudao Oilfield
-
2.2 微观分布特征
-
2.2.1 孔喉结构
-
铸体薄片分析表明孤岛油田中一区Ng3的岩石孔隙以粒间孔为主,孔隙直径一般为0.1~0.2 mm,最大可达 0.5 mm;喉道为片状喉,其喉道宽度为 0.01 mm 左右,孔隙连通性较好。压汞资料证实孤岛油田中一区Ng3平均孔喉半径为1.7~30.4 μm,主要为 5~12 μm;孔喉结构类型有中孔细喉型、大孔中喉型和大孔粗喉型3种,以大孔中喉型为主,垂向上孔喉结构特征差异显著。Ng33 上段孔隙小、喉道细,孔隙连通性较差,平均孔喉半径多为 1~3 μm,孔喉结构类型为中孔细喉型,相应储层宏观物性较差,渗透率多为 300~500 mD。Ng33 下段和 Ng35 上段的孔喉结构特征相似,储层宏观物性相近,即孔隙大、喉道中等,孔隙连通性较好,平均孔喉半径多为 5~10 μm,孔喉结构类型为大孔中喉型,相应储层宏观物性好,渗透率多为 1 000~4 000 mD。Ng35 下段孔隙大、喉道粗,孔隙连通性更好,平均孔喉半径多为 20~30 μm,孔喉结构类型为大孔粗喉型,相应储层宏观物性更好,渗透率极高,多数样品的渗透率高于1×104 mD。
-
2.2.2 剩余油微观赋存形态
-
鉴于含油岩石薄片基本保持了油藏内部剩余油的原始分布状况,利用偏光显微镜分析含油岩石薄片是研究非均相复合驱后剩余油微观赋存形态的有效手段[17]。
-
含油岩石薄片分析表明孤岛油田中一区Ng3非均相复合驱后剩余油微观赋存形态有网络状、斑块状、浸染状和珠状 4种类型(图4),以斑块状和浸染状为主。局部区域内多个孔隙和喉道的空间被剩余油所占据,形成网络状剩余油,多分布于连通性较差的孔隙中,对应的样品剩余油饱和度较高,多为 35% 以上,常出现在正韵律储层顶部和夹层附近。少数粒间孔中存在的剩余油呈斑块状分布,对应的样品剩余油饱和度多为25%~30%,位于储层中下部。浸染状剩余油是指以油膜形式被吸附在黏土矿物上或颗粒表面上的剩余油,多位于储层下部。珠状剩余油多出现在连通性差、较孤立的小孔隙中,即使采用了非均相复合驱,这类剩余油也难以采出。通过中12-斜检3011井的含油岩石薄片来看,孤岛油田中一区 Ng3非均相复合驱后的剩余油以斑块状或浸染状存在的样品占80%以上;网络状和珠状剩余油相对较少,分别只有1块样品中可见。
-
将核磁共振测试技术与常规的压汞实验相结合,利用压汞曲线和核磁共振 T2谱曲线一致性,可将岩心核磁共振 T2谱转化为伪毛管压力曲线[15],实现剩余油赋存孔隙大小及分布表征。孤岛油田中一区 Ng3 非均相复合驱后,剩余油主要赋存在 10~25 μm的孔隙中,这是因为中一区Ng3储层物性好、孔隙半径大,即使经历了长期的水驱、聚合物驱、后续水驱和非均相复合驱后,剩余油还是主要赋存于较大孔隙中,平均孔喉半径小于6 μm的较小孔隙中的剩余油饱和度为 5% 左右,占总剩余油饱和度的 23.9%(图5)。
-
图4 孤岛油田中一区中12-斜检3011井Ng3非均相复合驱后剩余油微观赋存形态
-
Fig.4 Occurrence mode of microscopic remaining oil of Ng3 of Well Zhong12-Xiejian3011 in Zhongyi area,Gudao Oilfield after heterogeneous combination flooding
-
图5 孤岛油田中一区中12-斜检3011井剩余油饱和度随平均孔喉半径的变化
-
Fig.5 Variation of remaining oil saturation with average pore throat radius of Well Zhong12-Xiejian3011 in Zhongyi area,Gudao Oilfield
-
3 非均相复合驱前后剩余油变化规律
-
3.1 宏观变化规律
-
由图6 可以看出,孤岛油田中一区 Ng3 非均相复合驱前 3 口密闭取心井的平均剩余油饱和度为 35.1%,剩余油饱和度分布区间较广,主要为 30%~50%,最高为 63.8%,其中 71.8% 的样品剩余油饱和度大于 30%;非均相复合驱后中 12-斜检 3011 井的剩余油饱和度平均为 28.1%,主要为 15%~40%,最高为 46.5%,剩余油饱和度大于 30% 的样品仅占 40.4%,且超过 40% 的样品仅为 10.2%,集中出现于泥质夹层下部储层中。与非均相复合驱前相比,剩余油饱和度大于40%的样品比例明显减少,由非均相复合驱前的 41.1% 减少至非均相复合驱后的 10.3%,且未见剩余油饱和度高于50%的样品;剩余油饱和度为 15%~30% 的样品比例明显增加,由非均相复合驱前的 14.9% 增加至非均相复合驱后的3 9.0%。非均相复合驱后平均剩余油饱和度降低了 7%,表明非均相复合驱有效动用了油藏内剩余油。
-
图6 非均相复合驱前后剩余油饱和度分布
-
Fig.6 Remaining oil saturation distribution before and after heterogeneous combination flooding
-
从油藏动用程度来看,非均相复合驱的驱油效率明显增高。非均相复合驱前平均驱油效率为 48.4%。水淹级别为见水的厚度比例为33.5%,而水洗、强水洗的厚度比例分别为 40.5% 和 26.0%(表1);非均相复合驱后平均驱油效率高达61.5%,驱油效率超过60%的样品比例高达53.2%,水洗、强水洗的厚度比例分别为 21.8% 和 78.2%,且见水级别储层不发育。通过非均相复合驱前后密闭取心井对比分析,平均驱油效率提高了13.1%,油藏动用程度进一步提高,非均相复合驱取得了明显开发效果。
-
孤岛油田中一区 Ng3非均相复合驱前的中 14-检 10 井 Ng35 正韵律储层顶部与底部的剩余油饱和度相差为10.1%;与之相似的中12-斜检3011井,非均相复合驱后的 Ng35 正韵律储层顶部与底部的剩余油饱和度相差仅为 3.1%。分析认为非均相复合驱油体系中 PPG颗粒通过喉道时堆积增压、扩大波及的特点[4,7],使得非均相复合驱能够克服重力影响,减小正韵律储层顶部与底部的剩余油分布差异,以致油藏垂向上动用更均衡。因此,非均相复合驱既使各小层剩余油饱和度有所降低、水洗程度有所增强,又使层内垂向动用更均匀、顶底部剩余油差异减小。
-
3.2 微观变化规律
-
非均相复合驱前后剩余油微观赋存形态变化不大,两者都见有网络状、浸染状、珠状和斑块状,但不同形态比例有所变化。非均相复合驱前的 54 块含油岩石薄片分析表明,剩余油微观赋存形态以浸染状、网络状为主[8],样品分别占 42.6%,31.5%; 而珠状、斑块状所占比例较少,样品分别占 13.0%, 12.9%,其中珠状剩余油的油珠半径多为 0.05~0.1 mm,分布于粒间孔中,含量可达5%。非均相复合驱后的 12块含油岩石薄片分析表明,7块样品的剩余油为浸染状,占58.3%;3块样品的剩余油为斑块状,占 25.0%;网络状和珠状剩余油很少,分别只有 1块样品中可见,其中珠状剩余油油珠半径多小于 0.05 mm,分布于粒间孔中,含量为2%左右。
-
综上所述,与非均相复合驱前相比,非均相复合驱后网络状剩余油减少,样品比例从 31.5% 减至 8.3%;浸染状剩余油增多,样品比例从 42.6% 增至 58.3%;斑块状和珠状剩余油所占比例变化不大,但是油珠半径变小。由此可见,非均相复合驱可使不同形态剩余油进一步得到动用,洗油效率更强。
-
4 结论
-
密闭取心井非均相复合驱后存在一定剩余油,剩余油饱和度多为 20%~36%,平均值为 28.3%。受储层韵律性及夹层的控制,非均相复合驱后剩余油在正韵律储层顶部和夹层附近相对较多,夹层附近的剩余油饱和度高达38.7%。非均相复合驱后剩余油微观赋存形态以斑块状和浸染状为主,核磁共振证实非均相复合驱后剩余油赋存于 10~25 μm 的孔隙中。
-
与非均相复合驱前相比,非均相复合驱后剩余油饱和度明显降低,平均降低了 7%,剩余油饱和度大于30%的样品明显减少,驱油效率显著提高。非均相复合驱使垂向动用更均衡,正韵律储层顶部与底部剩余油饱和度差异由非均相复合驱前的10.1% 降至非均相复合驱后的 3.1%。非均相复合驱前后剩余油赋存形态变化不大,但是不同形态比例变化明显,浸染状样品比例增加,网络状样品比例减少,表明非均相复合驱具有更强洗油效率。密闭取心井证实井网调整非均相复合驱是进一步提高特高含水后期油藏采收率的有效途径。
-
参考文献
-
[1] 孙焕泉.聚合物驱后井网调整与非均相复合驱先导试验方案及矿场应用——以孤岛油田中一区Ng3单元为例[J].油气地质与采收率,2014,21(2):1-4.SUN Huanquan.Application of pilot test for well pattern adjusting heterogeneous combination flooding after polymer flooding-case of Zhongyiqu Ng3 block,Gudao oilfield[J].Petroleum Geology and Recovery Efficiency,2014,21(2):1-4.
-
[2] 张莉,刘慧卿,陈晓彦.非均相复合驱封堵调剖性能及矿场试验[J].东北石油大学学报,2014,38(1):63-68. ZHANG Li,LIU Huiqing,CHEN Xiaoyan.Field test of PPG/poly⁃ mer/surfactant flooding after polymer flooding[J].Journal of Northeast Petroleum University,2014,38(1):63-68.
-
[3] 曹绪龙.非均相复合驱油体系设计与性能评价[J].石油学报:石油加工,2013,29(1):115-121.CAO Xulong.Design and performance evaluation on the heteroge⁃ neous combination flooding system[J].Acta Petrolei Sinica:Petro⁃ leum Processing Section,2013,29(1):115-121.
-
[4] 侯健,吴德君,韦贝,等.非均相复合驱非连续相渗流特征及提高驱油效率机制[J].中国石油大学学报:自然科学版,2019,43(5):128-135.HOU Jian,WU Dejun,WEI Bei,et al.Percolation characteristics of discontinuous phase and mechanisms of improving oil displace⁃ ment efficiency in heterogeneous composite flooding[J].Journal of China University of Petroleum:Edition of Natural Science,2019,43(5):128-135.
-
[5] 崔晓红.新型非均相复合驱油方法[J].石油学报,2011,32(1):122-126.CUI Xiaohong.A study on the heterogeneous combination flooding system[J].Acta Petrolei Sinica,2011,32(1):122-126.
-
[6] 赵光,戴彩丽,由庆.冻胶分散体软体非均相复合驱油体系特征及驱替机理[J].石油勘探与开发,2018,45(3):464-473.ZHAO Guang,DAI Caili,YOU Qing.Characteristics and displace⁃ ment mechanisms of the dispersed particle gel soft heterogeneous compound flooding system[J].Petroleum Exploration and Devel⁃ opment,2018,45(3):464-473.
-
[7] 任亭亭,宫厚健,桑茜,等.聚驱后B-PPG与HPAM非均相复合驱提高采收率技术[J].西安石油大学学报:自然科学版,2015,30(5):54-58,84.REN Tingting,GONG Houjian,SANG Qian,et al.Enhanced oil recovery by HPAM/B-PPG heterogeneous composite flooding af⁃ ter polymer flooding[J].Journal of Xi’an Shiyou University:Natu⁃ ral Science Edition,2015,30(5):54-58,84.
-
[8] 李振泉,郭长春,王军,等.特高含水期油藏剩余油分布新认识——以孤岛油田中一区 Ng 上 3 砂组为例[J].油气地质与采收率,2019,26(6):19-27.LI Zhenquan,GUO Changchun,WANG Jun,et al.New under⁃ standing of remaining oil distribution in oil reservoirs at extrahigh water-cut stage:A case of Upper Ng3 sand group in Zhongyi area,Gudao Oilfield[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(6):19-27.
-
[9] 李双应,李忠,王忠诚,等.胜利油区孤岛油田馆上段沉积模式研究[J].沉积学报,2001,19(3):386-393.LI Shuangying,LI Zhong,WANG Zhongcheng,et al.The study of depositional model in the Upper Member of Guantao Formation in Gudao Oilfield of the Shengli Petroleum Province[J].Acta Sedi⁃ mentologica Sinica,2001,19(3):386-393.
-
[10] 姜颜波.聚合物驱后油藏井网重组与化学驱复合增效技术——以孤岛油田中一区Ng3单元为例[J].石油地质与工程,2014,28(1):91-93.JIANG Yanbo.Reservoir well pattern reorganization and chemical flooding compound synergistic technology after polymer flooding:Taking Ng3 block in Zhongyi area of Gudao Oilfield as an exam⁃ ple[J].Petroleum Geology and Engineering,2014,28(1):91-93.
-
[11] 陈晓彦.非均相复合驱油剂应用方法研究[J].石油钻采工艺,2009,31(5):85-88.CHEN Xiaoyan.Method study for application of heterogeneous oil displacement agent[J].Oil Drilling & Production Technology,2009,31(5):85-88.
-
[12] 张亮.密闭取心井岩心饱和度校正物理模拟实验[J].油气地质与采收率,2009,16(2):94-95,98.ZHANG Liang.Physical simulation experiment on the saturation correction for sealed coring wells[J].Petroleum Geology and Re⁃ covery Efficiency,2009,16(2):94-95,98.
-
[13] 马名臣,李建树.密闭取心井岩心油、水饱和度校正方法[J].石油勘探与开发,1993,20(4):102-105.MA Mingchen,LI Jianshu.A correction of oil-and water-satura⁃ tion obtained from sealed core analysis[J].Petreleum Exploration and Development,1993,20(4):102-105.
-
[14] 侯建,邱茂鑫,陆努,等.采用CT技术研究岩心剩余油微观赋存状态[J].石油学报,2014,35(2):319-325.HOU Jian,QIU Maoxin,LU Nu,et al.Characterization of residual oil microdistribution at pore scale using computerized tomography [J].Acta Petrolei Sinica,2014,35(2):319-325.
-
[15] 罗少成,成志刚,林伟川,等.基于核磁共振测井的致密砂岩储层孔喉空间有效性定量评价[J].油气地质与采收率,2015,22(3):16-21.LUO Shaocheng,CHENG Zhigang,LIN Weichuan,et al.Quantita⁃ tive evaluation of the effectiveness of pore-throat space in tight sandstone reservoirs based on nuclear magnetic resonance log[J].Petroleum Geology and Recovery Efficiency,2015,22(3):16-21.
-
[16] 王克文,孙建孟,关继腾,等.聚合物驱后微观剩余油分布的网络模型模拟[J].中国石油大学学报:自然科学版,2006,30(1):72-76.WANG Kewen,SUN Jianmeng,GUAN Jiteng,et al.Network mod⁃ el modeling of microcosmic remaining oil distribution after poly⁃ mer flooding[J].Journal of China University of Petroleum:Edition of Natural Science,2006,30(1):72-76.
-
[17] 王朴,蔡进功,谢忠怀,等.用含油薄片研究剩余油微观分布特征[J].油气地质与采收率,2002,9(1):60-61.WANG Pu,CAI Jingong,XIE Zhonghuai,et al.Using oil-bearing thin section to study microscopic distribution feature of remaining oil[J].Petroleum Geology and Recovery Efficiency,2002,9(1):60-61.
-
摘要
自2010年胜利油田在孤岛油田中一区Ng3开展非均相复合驱先导试验以来,非均相复合驱技术的应用规模不断扩大,已成为老油田进一步提高采收率的化学驱主导技术之一。尽管非均相复合驱在孤岛油田中一区Ng3取得了成功,但非均相复合驱后剩余油分布特征、非均相复合驱油藏动用规律成为其推广实施中亟待解决的关键问题。为此,基于密闭取心井资料,系统分析非均相复合驱后剩余油分布特征,并与非均相复合驱前的对比,总结非均相复合驱油藏动用规律。研究结果表明:非均相复合驱后的孤岛油田中一区Ng3平均剩余油饱和度为28.3%,高剩余油饱和度样品多发育在正韵律储层顶部及夹层附近;剩余油微观赋存形态以浸染状为主。与非均相复合驱前相比,非均相复合驱后平均剩余油饱和度降低7%,平均驱油效率提高13.1%,非均相复合驱垂向动用更均衡,正韵律储层顶部与底部剩余油饱和度差异减小。
Abstract
The application scale of heterogeneous combination flooding has been expanding significantly since the pilot test carried out at Ng3 of Zhongyi area,Gudao Oilfield,Shengli Petroleum Province in 2010. It has become one of the leading chemical flooding technologies for further enhancing oil recovery in old oilfields. Although the application of heterogeneous combination flooding technology has achieved successful results at Ng3 of Zhongyi area,the remaining oil distribution and reservoir response law after heterogeneous combination flooding are still the key problems to be addressed in the promotion and implementation of the technology. This paper systematically analyzes the distribution characteristics of remaining oil af- ter heterogeneous combination flooding based on sealed cored well and summarizes the reservoir response law by compar- ing the remaining oil distribution before and after heterogeneous combination flooding. The results show that the average re- maining oil saturation at Ng3 of Zhongyi area is 28.3% after heterogeneous combination flooding. The samples with high re- maining oil saturation mostly appear at the top of the positive rhythm reservoir and near the interlayer. The microscopic oc- currence mode of remaining oil is mainly disseminated. Compared with that before heterogeneous combination flooding,the average remaining oil saturation is reduced by 7%,and the average displacement efficiency is increased by 13.1%. More-over,the displacement is more balanced in the vertical direction,and the difference in remaining oil saturation between the top and bottom of the positive rhythm reservoir is reduced after heterogeneous combination flooding.