en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

卢祥国(1960—),男,重庆綦江人,教授,博士,主要从事提高油气采收率技术教育和科研工作。E-mail:luxiangg2003@aliyun.com。

通讯作者:

何欣(1995—),女,山东潍坊人,在读博士研究生。E-mail:2517490697@qq.com。

中图分类号:TE312

文献标识码:A

文章编号:1009-9603(2022)05-0118-08

DOI:10.13673/j.cnki.cn37-1359/te.202106029

参考文献 1
林玉保,张江,王新江.喇嘛甸油田砂岩孔隙结构特征研究[J].大庆石油地质与开发,2006,25(6):39-42.LIN Yubao,ZHANG Jiang,WANG Xinjiang.Research on pore structural feature of sandstone in Lamadian Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2006,25(6):39-42.
参考文献 2
黄修平,姜喜庆,赵伟.喇嘛甸油田河流相储层流动单元划分方法[J].大庆石油地质与开发,2002,21(2):7-8.HUANG Xiuping,JIANG Xiqing,ZHAO Wei.The method of iden⁃ tifying flow units of fluvial facies reservoir in Lamadian Oil Field [J].Petroleum Geology & Oilfield Development in Daqing,2002,21(2):7-8.
参考文献 3
吴朝辉.喇嘛甸油田北北块二区聚合物驱跟踪数值模拟方法研究[J].长江大学学报:自然科学版,2014,31(11):136-138.WU Zhaohui.Study on numerical simulation method of polymer flooding tracking in block2 of north block of Lamadian Oilfield [J].Journal of Yangtze University:Natural Science Edition,2014,31(11):136-138.
参考文献 4
王滨涛,高艳芳,樊玉秀,等.喇嘛甸油田剩余油测井评价方法研究[J].石油天然气学报,2014,36(7):84-88.WANG Bintao,GAO Yanfang,FAN Yuxiu,et al.Remaining oil logging evaluation methods for Lamadian Oilfield[J].Journal of Oil and Gas Technology,2014,36(7):84-88.
参考文献 5
徐冰.纵向非均质储层凝胶调剖剩余油分布特征实验研究[J].油气地质与采收率,2020,27(6):71-80.XU Bing.Experimental study on distribution characteristics of re⁃ maining oil in vertical heterogeneous reservoirs by gel profile con⁃ trol[J].Petroleum Geology and Recovery Efficiency,2020,27(6):71-80.
参考文献 6
李宗阳,王业飞,曹绪龙,等.新型耐温抗盐聚合物驱油体系设计评价及应用[J].油气地质与采收率,2019,26(2):106-112.LI Zongyang,WANG Yefei,CAO Xulong,et al.Design evaluation and application of a novel temperature-resistant and salt-tolerant polymer flooding system[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(2):106-112.
参考文献 7
裘亦楠,许仕策,肖敬修.沉积方式与碎屑岩储层的层内非均质性[J].石油学报,1985,6(1):41-49.QIU Yinan,XU Shice,XIAO Jingxiu.Deposition pattern and inlayer heterogeneity of clastic reservoirs[J].Acta Petrolei Sinica,1985,6(1):41-49.
参考文献 8
张庆龙.多层非均质层间窜流定量表征及开发对策[J].特种油气藏,2021,28(1):136-141.ZHANG Qinglong.Quantitative characterization and development countermeasures of multi-layer heterogeneous interlayer channel⁃ ing flow[J].Special Oil & Gas Reservoirs,2021,28(1):136-141.
参考文献 9
白振强,王清华,李亚.砂岩油田聚合物驱后油层微观剩余油分布规律[J].大庆石油地质与开发,2021,40(4):101-106.BAI Zhenqiang,WANG Qinghua,LI Ya.Distribution law of micro⁃ scopic remaining oil in polymer-flooded reservoirs of sandstone oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(4):101-106.
参考文献 10
韩培慧,曹瑞波,刘海波,等.聚合物驱后油层特征和自适应复合驱方法[J].大庆石油地质与开发,2019,38(5):254-264.HAN Peihui,CAO Ruibo,LIU Haibo,et al.Oil reservoir charac⁃ teristics and adaptive compound flooding method after the poly⁃ mer flooding[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):254-264.
参考文献 11
韩培慧,闫坤,曹瑞波,等.聚驱后油层提高采收率驱油方法 [J].岩性油气藏,2019,31(2):143-150.HAN Peihui,YAN Kun,CAO Ruibo,et al.Oil displacement meth⁃ ods for enhanced oil recovery after polymer flooding[J].Lithologic Reservoirs,2019,31(2):143-150.
参考文献 12
毕永强,高煜婷,王春友,等.渗透率对菌体调剖驱油效果的影响[J].断块油气田,2020,27(4):493-497.BI Yongqiang,GAO Yuting,WANG Chunyou,et al.Effect of per⁃ meability on profile control and oil displacement by bacteria[J].Fault-Block Oil and Gas Field,2020,27(4):493-497.
参考文献 13
李宜强,林丽华,梁双庆.聚合物驱组合段塞分注实验研究[J].海洋石油,2010,30(1):85-89.LI Yiqiang,LIN Lihua,LIANG Shuangqing.Experimental study on separate injection of combinational polymer slug[J].Offshore Oil,2010,30(1):85-89.
参考文献 14
何金钢,宋考平,袁琳,等.岩心渗透率级差对泡沫分流量的影响[J].大庆石油地质与开发,2015,34(5):117-122.HE Jingang,SONG Kaoping,YUAN Lin,et al.Influences of the core permeability differential on the fractional flow of the foam[J].Petroleum Geology & Oilfield Development in Daqing,2015,34(5):117-122.
参考文献 15
卢祥国,曹豹,谢坤,等.非均质油藏聚合物驱提高采收率机理再认识[J].石油勘探与开发,2021,48(1):148-155.LU Xiangguo,CAO Bao,XIE Kun,et al.EOR mechanisms of poly⁃ mer flooding in a heterogeneous oil reservoir[J].Petroleum Explo⁃ ration and Development,2021,48(1):148-155.
参考文献 16
张官亮,张祖波,刘庆杰,等.利用CT扫描技术研究层内非均质油层聚合物驱油效果[J].油气地质与采收率,2015,22(1):78-83.ZHANG Guanliang,ZHANG Zubo,LIU Qingjie,et al.Study on ef⁃ fects of polymer flooding on layered heterogeneous reservoirs us⁃ ing CT scanning[J].Petroleum Geology and Recovery Efficiency,2015,22(1):78-83.
参考文献 17
卢祥国,刘义刚,曹伟佳,等.实现分注分采的层内非均质岩心的制作方法及其实验方法:CN107389396B[P].2020-09-01.LU Xiangguo,LIU Yigang,CAO Weijia,et al.Production method and experimental method of interlayer heterogeneous core for sep⁃ arate injection and production:CN107389396B[P].2020-09-01.
参考文献 18
鲍文博,卢祥国,刘义刚,等.微球/高效驱油剂复合驱油体系增油效果及作用机理[J].石油化工,2019,48(8):843-849.BAO Wenbo,LU Xiangguo,LIU Yigang,et al.Oil increasing ef⁃ fect and mechanism of polymer microspheres/high efficiency oil displacement agent composite flooding system[J].Petrochemical Technology,2019,48(8):843-849.
参考文献 19
张楠,卢祥国,刘进祥,等.渤海LD5-2油藏复合调驱效果物理模拟实验研究[J].油气藏评价与开发,2020,10(4):119-124,134.ZHANG Nan,LU Xiangguo,LIU Jinxiang,et al.Physical simula⁃ tion experiment study on effect of profile modification in Bohai LD5-2 reservoir[J].Reservoir Evaluation and Development,2020,10(4):119-124,134.
参考文献 20
XIE Kun,CAO Bao,LU Xiangguo,et al.Matching between the di⁃ ameter of the aggregates of hydrophobically associating polymers and reservoir pore-throat size during polymer flooding in an off⁃ shore oilfield[J].Journal of Petroleum Science and Engineering,2019,177:558-569.
参考文献 21
XIE Kun,LU Xiangguo,PAN He,et al.Analysis of dynamic imbi⁃ bition effect of surfactant in micro cracks in reservoir with high temperature and low permeability[J].SPE Production & Opera⁃ tions,2018,33(3):596-606.
参考文献 22
CAO Weijia,XIE Kun,LU Xiangguo,et al.Effect of profile-con⁃ trol oil-displacement agent on increasing oil recovery and its mechanism[J].Fuel,2019,237(1):1 151-1 160.
目录contents

    摘要

    大庆喇嘛甸油田厚油层以多段多韵律为主要特征,深入认识窜流规律对于进一步挖潜剩余油至关重要。为此,采用层内非均质岩心,对层内非均质储层内部窜流规律实验展开研究。结果表明,在注入量为 0~0.4 PV水驱阶段,高渗透层注入端分流率略低于采出端,中、低渗透层则相反;在注入量为0.4 PV至水驱结束阶段,高渗透层采出端分流率大幅度增加,中渗透层分流率大幅度降低,低渗透层分流率小幅度减小。随岩心渗透率级差增大,采出端与注入端各小层窜流程度减小,层间干扰作用减小。随水驱开发的不断进行,层间窜流程度先减小后增大。随注入速度增加,高渗透层采出端与注入端分流率差值增加,窜流程度增强。采取提高水井注入速度的方式可以达到增大注入压力的目的,但由于高渗透层吸液量增幅远大于中、低渗透层,加之储层内部窜流作用的影响,扩大波及体积效果并不十分明显,同时提高水井注入速度还对注入端、采出端和地面设备能力提出更高的要求,因此采取增加高渗透层渗流阻力措施才是提高注入压力的有效技术途径。

    Abstract

    The thick oil layers of Lamadian Oilfield in Daqing are mainly characterized by multiple intervals and multiple rhythms. Deeply understanding the channeling law is crucial for further tapping the potential of the remaining oil. There- fore,intralayer heterogeneous cores were used to study the internal channeling law of intra-layer heterogeneous reservoirs experimentally. The results show that in the stage of water flooding with an injection volume of 0-0.4 PV,the diversion rate at the injection end is slightly lower than that at the production end in the high-permeability layer,which is opposite to those observed in the medium-and low-permeability layers;in the stage from water flooding with an injection volume of 0.4 PV to the end of water flooding,the diversion rate at the production end of the high-permeability layer greatly increases, while the diversion rate in the medium-permeability layer significantly reduces and that in the low-permeability layer slightly decreases. With the increase in the core permeability ratio,the channeling degree between the sublayers at the pro- duction end and the injection end decreases,and the same goes with the interlayer interference. As water flooding contin-ues,the channeling degree of interlayer first decreases and then increases. As the injection rate goes up,the diversion rate difference between the production end and the injection end of the high-permeability layer increases,hence the channeling degree rising. Increasing the injection rates of water wells can achieve the purpose of raising the injection pressure. Never- theless,because the increase in fluid absorption in the high-permeability layer is much greater than those in the mediumand low-permeability layers,besides the influence of channeling inside the reservoir,the effect of expanding the swept vol- ume is not distinct. Moreover,increasing the injection rates of water wells also puts forward higher requirements on the ca- pabilities of equipment at the injection end and the production end and that on the surface. Therefore,increasing the flow resistance of the high-permeability layer is the effective technical way of increasing the injection pressure.

  • 喇嘛甸油田储层以多段多韵律特征为主[1-10],利用某取心井资料确定了储层内各渗透层组合类型,即以层内非均质储层为主。针对非均质储层内各层分流特征,通常采用并联岩心实验来研究油藏各层注采量。韩培慧等研究了3种新型驱油方法的分流率与注入量的关系[11];毕勇强等通过并联均质胶结岩心构建了非均质油藏模型,利用物理模拟驱油实验分别研究了不同渗透率和渗透率级差条件下调剖剂的调剖驱油效果[12];李宜强等通过室内驱油实验,对注入井分注时机和层段注入强度开展了进一步优化,对比不分注实验,评价各方案驱油效果[13];何金钢等采用并联岩心组合方式确定了不同渗透率级差岩心的注入能力和分流能力特征,研究了泡沫与孔隙结构的匹配关系[14]。也有一些专家学者采用层内非均质岩心研究油藏内各层注采量[15]。张官亮等通过制作层内非均质岩心,结合CT 扫描技术,研究了层内非均质性对开发窜流规律的影响,认为渗透率级差对厚油层采出程度影响较大[16]。但该技术只能实现整体含水率变化,无法计量各小层窜流程度、窜流增强时机及各小层采出程度,并且实验成本高、测试周期长、数据处理复杂,人为因素影响较大。为此,以喇嘛甸油田储层为模拟对象,利用具有“分注分采”功能的岩心对各小层分别读取实时监测注采量的测试方法,开展层内非均质储层内部窜流规律实验研究。

  • 1 实验原理、器材及方案

  • 1.1 实验原理

  • 常规并联岩心模拟的是储层层间非均质性,笔者创新地采用具备“分注分采”功能的层内非均质岩心模拟储层非均质性,对其开展水驱,通过计量注入端和采出端各小层的吸液量和采液量,计算分流率和采收率,据此探讨储层非均质性和注入速度对分流率和采收率的影响。将单层采出端与注入端分流率差值作为衡量窜流程度的标准。注入端、采出端分流率及其差值公式分别为:

  • finl=VilVi
    (1)
  • foutl =VolVo
    (2)
  • fdl=foutl -finl=VolVo-VilVi
    (3)
  • R1=Q-QwSo
    (4)
  • 当单层采出端与注入端分流率差值为正值时,即证明其他层有部分液量窜流至该层。当单层采出端与注入端分流率差值为负值时,即证明该层有部分液体窜流至其他层位。通过分流率差值能够反映出层内非均质岩心各小层液体的窜流方向及程度。

  • 1.2 实验器材及步骤

  • 实验材料 实验用水为大庆喇嘛甸油田注入水,其中阳离子 Ca2+,Mg2+和 Na+质量浓度分别为 32.06,7.30和1 265.00 mg/L,阴离子CO3 2-,HCO3-,Cl-和 SO4 2- 质量浓度分别为 210.07,1 708.56,780.12 和 9.61 mg/L,总矿化度为4 012.7 mg/L。实验用油为大庆喇嘛甸油田采出油与轻烃混合而成,45℃下黏度为10 mPa·s。实验岩心为具备“分注分采”功能的层内非均质岩心[17-22],岩心包括高、中、低或上部、中部、下部3个渗透层,用于模拟储层中不存在夹层的情况,岩心结构示意见图1,依据目标油藏取心和测井资料确定厚油层内各小层渗透率值(表1)。

  • 图1 岩心结构示意

  • Fig.1 Core structure

  • 表1 岩心各小层渗透率值

  • Table1 Core permeability design

  • 实验仪器 实验仪器设备主要包括ICSO泵(可实现恒速注入)、压力表、液位仪(可分别计量出每个层位的吸液量)等,除 ICSO 泵外其他设备置于 45℃恒温箱内。仪器装置结构示意见图2。

  • 图2 小层吸液和采液量计量装置结构示意

  • Fig.2 Structure of metering device for sublayer fluid absorption and recovery

  • 实验步骤 实验步骤包括:①岩心抽真空饱和地层水,测定孔隙体积和孔隙度。②岩心注模拟地层水,测定不同注入速度下各小层分流率,并记录注入压力。③岩心饱和油,计算含油饱和度。④岩心水驱,直到含水率为 98%。定期记录注入压力和收集采出液,计算岩心采收率、含水率和小层分流率,绘制岩心注入压力、含水率和采收率与注入量的关系曲线以及小层分流率与注入量的关系曲线,据此探讨厚油层各小层窜流现象对分流率和采收率的影响和作用机制。

  • 1.3 实验方案

  • 渗透率级差对储层内各小层分流率的影响 将岩心Ⅰ、岩心Ⅱ和岩心Ⅲ抽真空饱和油后,采用大庆喇嘛甸油田注入水以0.9 mL/min的注入速度分别对其进行驱替,实验过程中记录实验数据,得到岩心各小层分流率与注入量的关系以及注入压力、含水率和采收率与注入量的关系。

  • 注水速度对储层内各小层分流率的影响 将3 块相同的层内非均质岩心Ⅰ抽真空饱和油后,采用大庆喇嘛甸油田注入水分别以0.6,0.9和1.2 mL/min 的注入速度进行驱替,实验过程中记录实验数据,得到岩心各小层分流率与注入量的关系以及注入压力、含水率和采收率与注入量的关系。

  • 2 实验结果分析

  • 2.1 渗透率级差对储层内各小层分流率的影响

  • 2.1.1 采收率和动态特征

  • 从实验结果(表2,图3)可以看出,随渗透率级差增加,中、低渗透层波及体积减少,水驱采收率减小,开发效果变差;随注入量增加,注入压力减小,含水率增大,采收率增加但增幅减小。机理分析认为,随注入量增加,岩心高渗透层采油量增多,含油饱和度降低,水相渗透率增加,渗流阻力减小,含水率逐渐升高,总体采收率增幅逐渐降低。

  • 表2 渗透率级差与采收率的关系

  • Table2 Relationship between permeability ratio and oil recovery

  • 2.1.2 小层分流率及采出程度

  • 各小层吸液量主要取决于注入压力(动力)和渗流阻力(阻力)的相对大小。各小层注入压力均为注入端压力数值,因此在分析吸液量及分流率时,仅需考虑渗流阻力变化规律。从图4可以看出,在注入端,水驱初始阶段(注入量为0~0.4 PV)注入水主要进入高渗透层。不同渗透率级差岩心随注入量增加,注入压力降低,高、中渗透层采出程度均有增加,由于高渗透层采出程度增加速度较中渗透层快,水相渗透率增加较快,因此渗流阻力下降较快,高渗透层吸液量和分流率反而增加。与此同时,注入压力降低致使中、低渗透层分流率减少。水驱中后期(注入量为 0.4 PV之后),由于高渗透层采出程度趋于稳定,注入压力降低引起吸液量和分流率减小,此时中渗透层因采出程度增加,吸液量和分流率增大。与中、高渗透层相比,低渗透层吸液量和分流率较小,受注入压力变化影响较小。在采出端,由于小层间存在窜流现象(表3),致使高渗透层分流率增加,且大于注入端。

  • 图3 注入压力、含水率和采收率与注入量的关系

  • Fig.3 Relationships of injection pressure,water cut,and oil recovery with injection volume

  • 图4 各小层注采端分流率及采出程度与注入量的关系

  • Fig.4 Relationships of diversion rates at injection end and production end and recovery percent of each sublayer with injection volume

  • 从表3 可以看出,采出端与注入端分流率差值代表窜流程度。当渗透率一定时,高渗透层采出端分流率大于注入端分流率,而中、低渗透层采出端分流率小于注入端分流率,说明在层内非均质岩心内,中、低渗透层液流均有不同程度向高渗透层方向窜流的现象。随岩心渗透率级差增大,层内非均质性增强,高渗透层采出端与注入端分流率差值分别为 18.78%,14.68% 和 7.18%;中渗透层分别为-18.60%,-14.19% 和-7.18%;低渗透层分别为-0.18%,-0.49% 和 0,整体采出端与注入端层间窜流程度减小,层间干扰作用减弱。

  • 表3 采出端与注入端分流率

  • Table3 Diversion rates at production end and injection end and their difference

  • 由岩心Ⅲ窜流程度与注入量的关系(图5)可以看出,实验过程中窜流程度分别在 0.4 和 0.8 PV 发生 2 次增强。不同注入阶段窜流现象强弱不同,在水驱开发初期,中、高渗透层窜流现象明显,表现为中渗透层注入的模拟水沿高渗透层流出;在水驱开发中期,随高渗透层优势通道逐渐形成,窜流现象削弱;水驱开发后期,窜流现象明显增强。分析认为,在水驱开发初期和后期,中、高渗透层多为油相连续或水相连续,两层间渗流阻力差异相对较小; 在水驱开发中期,高渗透层优势通道形成,多为水相连通,而中渗透层开发效果较差,为半油半水的 “非段塞流”,两层间渗流阻力差异较大,因而窜流现象削弱。

  • 图5 窜流程度与注入量的关系(岩心Ⅲ)

  • Fig.5 Relationship between channeling degree and injection volume(coreⅢ)

  • 2.2 注水速度对储层内各小层分流率的影响

  • 2.2.1 采收率和动态特征

  • 由岩心Ⅰ采收率实验数据(表4)以及注入压力、含水率和采收率与注入量的关系(图6)可以看出,随注入速度增加,注入压力升高,吸水压差增大,波及体积增加,水驱采收率提高。机理分析认为,注入速度增加,注入水在岩心内的渗流阻力增加,导致注入压力增大,吸液压差增加,岩心各小层吸液量增加,波及体积增加,采收率提高。

  • 表4 采收率实验数据(岩心Ⅰ)

  • Table4 Experimental data of oil recovery(core I)

  • 2.2.2 小层分流率及采出程度

  • 由各小层注采端分流率及采出程度与注入量的关系(图7)可以看出,随注入速度增加,分流率增加。当注入速度较低(0.6 mL/min)时,由于初始注入压力较低,中、低渗透层吸液量较低,分流率较低。随高渗透层采出程度增加,渗流阻力降低,其吸液量增加,致使中、低渗透层吸液量和分流率减小。当注入速度较高时(0.9和 1.2 mL/min),尽管水驱过程中注入压力也呈现逐渐下降趋势,但中、低渗透层吸液量较大,采出程度较高,渗流阻力减小,进而导致分流率增大,其中中渗透层尤为明显。

  • 进一步分析发现,当注入速度较高时(0.9 和 1.2 mL/min),随注入量的增加,高渗透层分流率呈现先增加后减小趋势,中渗透层分流率呈现先减小后增加趋势。机理分析认为,当注入速度较高时,在水驱初期到中期(注入量0~0.4 PV),随注入量的增加,高渗透层因采出程度增加而引起渗流阻力降低,并且渗流阻力降低速度要大于注入压力降低速度,因而吸液量即分流率逐渐增加,此时中、低渗透层分流率则减小。在水驱中后期(注入量大于 0.4 PV),随注入量的增加,高渗透层因采油速度降低而引起渗流阻力降低速度减小,并且渗流阻力降低速度要低于注入压力降低速度,因而分流率减小,中、低渗透层分流率则增加,其中中渗透层尤为明显。与注入端相比,采出端高渗透层分流率逐渐升高,且注采端分流率差值的绝对值较大,中、低渗透层分流率逐渐减小,且注采端分流率差值的绝对值较小。

  • 图6 注入压力、含水率和采收率与注入量的关系(岩心Ⅰ)

  • Fig.6 Relationships of injection pressure,water cut,and oil recovery with injection volume(coreⅠ)

  • 图7 各小层注采端分流率及采出程度与注入量的关系(岩心Ⅰ)

  • Fig.7 Relationships of diversion rates at injection end and production end and recovery percent of each sublayer with injection volume(coreⅠ)

  • 由各小层采出端与注入端分流率(表5)可以看出,改变注入速度能够控制层内非均质岩心高渗透层采出端与注入端分流率。随注入速度增加,高渗透层采出端与注入端分流率差值增大,窜流程度增强,高渗透层注采端分流率差值分别为 2.19%, 18.78%和21.15%,层间干扰作用增强,中、低渗透层采出端与注入端差值减小。

  • 3 结论

  • 在 0~0.4 PV 水驱阶段,高渗透层注入端分流率略低于采出端值;在 0.4 PV 至水驱结束,高渗透层采出端分流率大幅度增加,中、低渗透层降低。由此可见,储层内各渗透层间存在明显窜流现象。

  • 表5 注入速度与注采端分流率关系

  • Table5 Relationships of injection rate with diversion rates at production end and injection end

  • 在层内非均质岩心内,中、低渗透层液流均有不同程度向高渗透层方向窜流的现象。随注入量的增加,中、低渗透层的渗流阻力较大,因此高渗透层分流率增多。随岩心渗透率级差增大,整体采出端与注入端层间窜流程度减小,层间干扰作用减弱。在水驱开发初期,中、高渗透层窜流现象明显; 在水驱开发中期,随高渗透层优势通道逐渐形成,窜流现象削弱;水驱开发后期,窜流现象明显增强。水驱结束时储层内各渗透层采收率从大到小顺序为高渗透层、中渗透层和低渗透层。随注入速度增加,中、低渗透层采出端与注入端分流率差值减小,高渗透层采出端与注入端分流率差值增加,窜流现象增强。

  • 采取提高水井注入速度的方式可以达到增大注入压力的目的,但由于高渗透层吸液量增幅远大于中、低渗透层的值,加之厚油层内部窜流现象的影响,同时还对注入端、采出端和地面设备能力提出更高要求。因此,通过增加高渗透层渗流阻力才是提高注入压力的有效技术途径。

  • 符号解释

  • fdl ——单层采出端与注入端分流率差值,%;

  • finl foutl ——单层注入端和采出端分流率,%;

  • Qll ——单层累积产液量,mL;

  • Qwl ——单层累积产水量,mL;

  • Rl ——单层累积采出程度,%;

  • So——原始含油饱和度,%;

  • Vi ——三层累积总注入量,mL;

  • Vil ——单层累积注入量,mL;

  • Vo——三层累积总采出量,mL;

  • Vol ——单层累积采出量,mL。

  • 参考文献

    • [1] 林玉保,张江,王新江.喇嘛甸油田砂岩孔隙结构特征研究[J].大庆石油地质与开发,2006,25(6):39-42.LIN Yubao,ZHANG Jiang,WANG Xinjiang.Research on pore structural feature of sandstone in Lamadian Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2006,25(6):39-42.

    • [2] 黄修平,姜喜庆,赵伟.喇嘛甸油田河流相储层流动单元划分方法[J].大庆石油地质与开发,2002,21(2):7-8.HUANG Xiuping,JIANG Xiqing,ZHAO Wei.The method of iden⁃ tifying flow units of fluvial facies reservoir in Lamadian Oil Field [J].Petroleum Geology & Oilfield Development in Daqing,2002,21(2):7-8.

    • [3] 吴朝辉.喇嘛甸油田北北块二区聚合物驱跟踪数值模拟方法研究[J].长江大学学报:自然科学版,2014,31(11):136-138.WU Zhaohui.Study on numerical simulation method of polymer flooding tracking in block2 of north block of Lamadian Oilfield [J].Journal of Yangtze University:Natural Science Edition,2014,31(11):136-138.

    • [4] 王滨涛,高艳芳,樊玉秀,等.喇嘛甸油田剩余油测井评价方法研究[J].石油天然气学报,2014,36(7):84-88.WANG Bintao,GAO Yanfang,FAN Yuxiu,et al.Remaining oil logging evaluation methods for Lamadian Oilfield[J].Journal of Oil and Gas Technology,2014,36(7):84-88.

    • [5] 徐冰.纵向非均质储层凝胶调剖剩余油分布特征实验研究[J].油气地质与采收率,2020,27(6):71-80.XU Bing.Experimental study on distribution characteristics of re⁃ maining oil in vertical heterogeneous reservoirs by gel profile con⁃ trol[J].Petroleum Geology and Recovery Efficiency,2020,27(6):71-80.

    • [6] 李宗阳,王业飞,曹绪龙,等.新型耐温抗盐聚合物驱油体系设计评价及应用[J].油气地质与采收率,2019,26(2):106-112.LI Zongyang,WANG Yefei,CAO Xulong,et al.Design evaluation and application of a novel temperature-resistant and salt-tolerant polymer flooding system[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(2):106-112.

    • [7] 裘亦楠,许仕策,肖敬修.沉积方式与碎屑岩储层的层内非均质性[J].石油学报,1985,6(1):41-49.QIU Yinan,XU Shice,XIAO Jingxiu.Deposition pattern and inlayer heterogeneity of clastic reservoirs[J].Acta Petrolei Sinica,1985,6(1):41-49.

    • [8] 张庆龙.多层非均质层间窜流定量表征及开发对策[J].特种油气藏,2021,28(1):136-141.ZHANG Qinglong.Quantitative characterization and development countermeasures of multi-layer heterogeneous interlayer channel⁃ ing flow[J].Special Oil & Gas Reservoirs,2021,28(1):136-141.

    • [9] 白振强,王清华,李亚.砂岩油田聚合物驱后油层微观剩余油分布规律[J].大庆石油地质与开发,2021,40(4):101-106.BAI Zhenqiang,WANG Qinghua,LI Ya.Distribution law of micro⁃ scopic remaining oil in polymer-flooded reservoirs of sandstone oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(4):101-106.

    • [10] 韩培慧,曹瑞波,刘海波,等.聚合物驱后油层特征和自适应复合驱方法[J].大庆石油地质与开发,2019,38(5):254-264.HAN Peihui,CAO Ruibo,LIU Haibo,et al.Oil reservoir charac⁃ teristics and adaptive compound flooding method after the poly⁃ mer flooding[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):254-264.

    • [11] 韩培慧,闫坤,曹瑞波,等.聚驱后油层提高采收率驱油方法 [J].岩性油气藏,2019,31(2):143-150.HAN Peihui,YAN Kun,CAO Ruibo,et al.Oil displacement meth⁃ ods for enhanced oil recovery after polymer flooding[J].Lithologic Reservoirs,2019,31(2):143-150.

    • [12] 毕永强,高煜婷,王春友,等.渗透率对菌体调剖驱油效果的影响[J].断块油气田,2020,27(4):493-497.BI Yongqiang,GAO Yuting,WANG Chunyou,et al.Effect of per⁃ meability on profile control and oil displacement by bacteria[J].Fault-Block Oil and Gas Field,2020,27(4):493-497.

    • [13] 李宜强,林丽华,梁双庆.聚合物驱组合段塞分注实验研究[J].海洋石油,2010,30(1):85-89.LI Yiqiang,LIN Lihua,LIANG Shuangqing.Experimental study on separate injection of combinational polymer slug[J].Offshore Oil,2010,30(1):85-89.

    • [14] 何金钢,宋考平,袁琳,等.岩心渗透率级差对泡沫分流量的影响[J].大庆石油地质与开发,2015,34(5):117-122.HE Jingang,SONG Kaoping,YUAN Lin,et al.Influences of the core permeability differential on the fractional flow of the foam[J].Petroleum Geology & Oilfield Development in Daqing,2015,34(5):117-122.

    • [15] 卢祥国,曹豹,谢坤,等.非均质油藏聚合物驱提高采收率机理再认识[J].石油勘探与开发,2021,48(1):148-155.LU Xiangguo,CAO Bao,XIE Kun,et al.EOR mechanisms of poly⁃ mer flooding in a heterogeneous oil reservoir[J].Petroleum Explo⁃ ration and Development,2021,48(1):148-155.

    • [16] 张官亮,张祖波,刘庆杰,等.利用CT扫描技术研究层内非均质油层聚合物驱油效果[J].油气地质与采收率,2015,22(1):78-83.ZHANG Guanliang,ZHANG Zubo,LIU Qingjie,et al.Study on ef⁃ fects of polymer flooding on layered heterogeneous reservoirs us⁃ ing CT scanning[J].Petroleum Geology and Recovery Efficiency,2015,22(1):78-83.

    • [17] 卢祥国,刘义刚,曹伟佳,等.实现分注分采的层内非均质岩心的制作方法及其实验方法:CN107389396B[P].2020-09-01.LU Xiangguo,LIU Yigang,CAO Weijia,et al.Production method and experimental method of interlayer heterogeneous core for sep⁃ arate injection and production:CN107389396B[P].2020-09-01.

    • [18] 鲍文博,卢祥国,刘义刚,等.微球/高效驱油剂复合驱油体系增油效果及作用机理[J].石油化工,2019,48(8):843-849.BAO Wenbo,LU Xiangguo,LIU Yigang,et al.Oil increasing ef⁃ fect and mechanism of polymer microspheres/high efficiency oil displacement agent composite flooding system[J].Petrochemical Technology,2019,48(8):843-849.

    • [19] 张楠,卢祥国,刘进祥,等.渤海LD5-2油藏复合调驱效果物理模拟实验研究[J].油气藏评价与开发,2020,10(4):119-124,134.ZHANG Nan,LU Xiangguo,LIU Jinxiang,et al.Physical simula⁃ tion experiment study on effect of profile modification in Bohai LD5-2 reservoir[J].Reservoir Evaluation and Development,2020,10(4):119-124,134.

    • [20] XIE Kun,CAO Bao,LU Xiangguo,et al.Matching between the di⁃ ameter of the aggregates of hydrophobically associating polymers and reservoir pore-throat size during polymer flooding in an off⁃ shore oilfield[J].Journal of Petroleum Science and Engineering,2019,177:558-569.

    • [21] XIE Kun,LU Xiangguo,PAN He,et al.Analysis of dynamic imbi⁃ bition effect of surfactant in micro cracks in reservoir with high temperature and low permeability[J].SPE Production & Opera⁃ tions,2018,33(3):596-606.

    • [22] CAO Weijia,XIE Kun,LU Xiangguo,et al.Effect of profile-con⁃ trol oil-displacement agent on increasing oil recovery and its mechanism[J].Fuel,2019,237(1):1 151-1 160.

  • 参考文献

    • [1] 林玉保,张江,王新江.喇嘛甸油田砂岩孔隙结构特征研究[J].大庆石油地质与开发,2006,25(6):39-42.LIN Yubao,ZHANG Jiang,WANG Xinjiang.Research on pore structural feature of sandstone in Lamadian Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2006,25(6):39-42.

    • [2] 黄修平,姜喜庆,赵伟.喇嘛甸油田河流相储层流动单元划分方法[J].大庆石油地质与开发,2002,21(2):7-8.HUANG Xiuping,JIANG Xiqing,ZHAO Wei.The method of iden⁃ tifying flow units of fluvial facies reservoir in Lamadian Oil Field [J].Petroleum Geology & Oilfield Development in Daqing,2002,21(2):7-8.

    • [3] 吴朝辉.喇嘛甸油田北北块二区聚合物驱跟踪数值模拟方法研究[J].长江大学学报:自然科学版,2014,31(11):136-138.WU Zhaohui.Study on numerical simulation method of polymer flooding tracking in block2 of north block of Lamadian Oilfield [J].Journal of Yangtze University:Natural Science Edition,2014,31(11):136-138.

    • [4] 王滨涛,高艳芳,樊玉秀,等.喇嘛甸油田剩余油测井评价方法研究[J].石油天然气学报,2014,36(7):84-88.WANG Bintao,GAO Yanfang,FAN Yuxiu,et al.Remaining oil logging evaluation methods for Lamadian Oilfield[J].Journal of Oil and Gas Technology,2014,36(7):84-88.

    • [5] 徐冰.纵向非均质储层凝胶调剖剩余油分布特征实验研究[J].油气地质与采收率,2020,27(6):71-80.XU Bing.Experimental study on distribution characteristics of re⁃ maining oil in vertical heterogeneous reservoirs by gel profile con⁃ trol[J].Petroleum Geology and Recovery Efficiency,2020,27(6):71-80.

    • [6] 李宗阳,王业飞,曹绪龙,等.新型耐温抗盐聚合物驱油体系设计评价及应用[J].油气地质与采收率,2019,26(2):106-112.LI Zongyang,WANG Yefei,CAO Xulong,et al.Design evaluation and application of a novel temperature-resistant and salt-tolerant polymer flooding system[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(2):106-112.

    • [7] 裘亦楠,许仕策,肖敬修.沉积方式与碎屑岩储层的层内非均质性[J].石油学报,1985,6(1):41-49.QIU Yinan,XU Shice,XIAO Jingxiu.Deposition pattern and inlayer heterogeneity of clastic reservoirs[J].Acta Petrolei Sinica,1985,6(1):41-49.

    • [8] 张庆龙.多层非均质层间窜流定量表征及开发对策[J].特种油气藏,2021,28(1):136-141.ZHANG Qinglong.Quantitative characterization and development countermeasures of multi-layer heterogeneous interlayer channel⁃ ing flow[J].Special Oil & Gas Reservoirs,2021,28(1):136-141.

    • [9] 白振强,王清华,李亚.砂岩油田聚合物驱后油层微观剩余油分布规律[J].大庆石油地质与开发,2021,40(4):101-106.BAI Zhenqiang,WANG Qinghua,LI Ya.Distribution law of micro⁃ scopic remaining oil in polymer-flooded reservoirs of sandstone oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(4):101-106.

    • [10] 韩培慧,曹瑞波,刘海波,等.聚合物驱后油层特征和自适应复合驱方法[J].大庆石油地质与开发,2019,38(5):254-264.HAN Peihui,CAO Ruibo,LIU Haibo,et al.Oil reservoir charac⁃ teristics and adaptive compound flooding method after the poly⁃ mer flooding[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):254-264.

    • [11] 韩培慧,闫坤,曹瑞波,等.聚驱后油层提高采收率驱油方法 [J].岩性油气藏,2019,31(2):143-150.HAN Peihui,YAN Kun,CAO Ruibo,et al.Oil displacement meth⁃ ods for enhanced oil recovery after polymer flooding[J].Lithologic Reservoirs,2019,31(2):143-150.

    • [12] 毕永强,高煜婷,王春友,等.渗透率对菌体调剖驱油效果的影响[J].断块油气田,2020,27(4):493-497.BI Yongqiang,GAO Yuting,WANG Chunyou,et al.Effect of per⁃ meability on profile control and oil displacement by bacteria[J].Fault-Block Oil and Gas Field,2020,27(4):493-497.

    • [13] 李宜强,林丽华,梁双庆.聚合物驱组合段塞分注实验研究[J].海洋石油,2010,30(1):85-89.LI Yiqiang,LIN Lihua,LIANG Shuangqing.Experimental study on separate injection of combinational polymer slug[J].Offshore Oil,2010,30(1):85-89.

    • [14] 何金钢,宋考平,袁琳,等.岩心渗透率级差对泡沫分流量的影响[J].大庆石油地质与开发,2015,34(5):117-122.HE Jingang,SONG Kaoping,YUAN Lin,et al.Influences of the core permeability differential on the fractional flow of the foam[J].Petroleum Geology & Oilfield Development in Daqing,2015,34(5):117-122.

    • [15] 卢祥国,曹豹,谢坤,等.非均质油藏聚合物驱提高采收率机理再认识[J].石油勘探与开发,2021,48(1):148-155.LU Xiangguo,CAO Bao,XIE Kun,et al.EOR mechanisms of poly⁃ mer flooding in a heterogeneous oil reservoir[J].Petroleum Explo⁃ ration and Development,2021,48(1):148-155.

    • [16] 张官亮,张祖波,刘庆杰,等.利用CT扫描技术研究层内非均质油层聚合物驱油效果[J].油气地质与采收率,2015,22(1):78-83.ZHANG Guanliang,ZHANG Zubo,LIU Qingjie,et al.Study on ef⁃ fects of polymer flooding on layered heterogeneous reservoirs us⁃ ing CT scanning[J].Petroleum Geology and Recovery Efficiency,2015,22(1):78-83.

    • [17] 卢祥国,刘义刚,曹伟佳,等.实现分注分采的层内非均质岩心的制作方法及其实验方法:CN107389396B[P].2020-09-01.LU Xiangguo,LIU Yigang,CAO Weijia,et al.Production method and experimental method of interlayer heterogeneous core for sep⁃ arate injection and production:CN107389396B[P].2020-09-01.

    • [18] 鲍文博,卢祥国,刘义刚,等.微球/高效驱油剂复合驱油体系增油效果及作用机理[J].石油化工,2019,48(8):843-849.BAO Wenbo,LU Xiangguo,LIU Yigang,et al.Oil increasing ef⁃ fect and mechanism of polymer microspheres/high efficiency oil displacement agent composite flooding system[J].Petrochemical Technology,2019,48(8):843-849.

    • [19] 张楠,卢祥国,刘进祥,等.渤海LD5-2油藏复合调驱效果物理模拟实验研究[J].油气藏评价与开发,2020,10(4):119-124,134.ZHANG Nan,LU Xiangguo,LIU Jinxiang,et al.Physical simula⁃ tion experiment study on effect of profile modification in Bohai LD5-2 reservoir[J].Reservoir Evaluation and Development,2020,10(4):119-124,134.

    • [20] XIE Kun,CAO Bao,LU Xiangguo,et al.Matching between the di⁃ ameter of the aggregates of hydrophobically associating polymers and reservoir pore-throat size during polymer flooding in an off⁃ shore oilfield[J].Journal of Petroleum Science and Engineering,2019,177:558-569.

    • [21] XIE Kun,LU Xiangguo,PAN He,et al.Analysis of dynamic imbi⁃ bition effect of surfactant in micro cracks in reservoir with high temperature and low permeability[J].SPE Production & Opera⁃ tions,2018,33(3):596-606.

    • [22] CAO Weijia,XIE Kun,LU Xiangguo,et al.Effect of profile-con⁃ trol oil-displacement agent on increasing oil recovery and its mechanism[J].Fuel,2019,237(1):1 151-1 160.