en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈立超(1985—),男,内蒙古赤峰人,副教授,博士,从事非常规储层压裂岩石力学研究。E-mail:chenlichaogas@163.com。

中图分类号:TE32

文献标识码:A

文章编号:1009-9603(2022)06-0031-08

DOI:10.13673/j.cnki.cn37-1359/te.202111012

参考文献 1
金之钧,王冠平,刘光祥,等.中国陆相页岩油研究进展与关键科学问题[J].石油学报,2021,42(7):821-835.JIN Zhijun,WANG Guanping,LIU Guangxiang,et al.Research progress and key scientific issues of continental shale oil in China [J].Acta Petrolei Sinica,2021,42(7):821-835.
参考文献 2
焦方正.陆相低压页岩油体积开发理论技术及实践——以鄂尔多斯盆地长7段页岩油为例[J].天然气地球科学,2021,32(6):836-844.JIAO Fangzheng.Theoretical technologies and practices concern⁃ ing“volume development”of low pressure continental shale oil:Case study of shale oil in Chang7 member,Ordos Basin,China [J].Natural Gas Geoscience,2021,32(6):836-844.
参考文献 3
周立宏,赵贤正,柴公权,等.陆相页岩油效益勘探开发关键技术与工程实践——以渤海湾盆地沧东凹陷古近系孔二段为例 [J].石油勘探与开发,2020,47(5):1 059-1 066.ZHOU Lihong,ZHAO Xianzheng,CHAI Gongquan,et al.Key ex⁃ ploration & development technologies and engineering practice of continental shale oil:A case study of Member2 of Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin,East Chi⁃ na[J].Petroleum Exploration and Development,2020,47(5):1 059-1 066.
参考文献 4
袁余洋,刘永林,王瑛.黔西北地区龙马溪组页岩有机质和脆性矿物的控缝机制[J].岩石矿物学杂志,2020,39(6):808-818.YUAN Yuyang,LIU Yonglin,WANG Ying.Fracture-controlling mechanism of organic matter and brittle minerals in shale of Long⁃ maxi Formation in Northwestern Guizhou[J].Journal of Petrology and Mineralogy,2020,39(6):808-818.
参考文献 5
王斌,邓继新,刘喜武,等.矿物组分对龙马溪组页岩动、静态弹性特征的影响[J].地球物理学报,2019,62(12):4 833-4 845.WANG Bin,DENG Jixin,LIU Xiwu,et al.The influence of rock composition on dynamic and static elastic properties of Longmaxi Formation shales[J].Chinese Journal of Geophysics,2019,62(12):4 833-4 845.
参考文献 6
XIONG Jian,LIU Kaiyuan,LIANG Lixi,et al.Investigation of in⁃ fluence factors of the fracture toughness of shale:A case study of the Longmaxi Formation shale in Sichuan Basin,China[J].Geo⁃ technical and Geological Engineering,2019,37(4):2 927-2 934.
参考文献 7
石长有,刘向君,张茜,等.四川盆地龙马溪组页岩声波特性与断裂韧性实验研究[J].石油地质与工程,2019,33(6):43-46.SHI Changyou,LIU Xiangjun,ZHANG Qian,et al.Acoustic char⁃ acteristics and fracture toughness of shale in Longmaxi formation [J].Petroleum Geology and Engineering,2019,33(6):43-46.
参考文献 8
解经宇,陆洪智,陈磊,等.龙马溪组层状页岩微观非均质性及力学各向异性特征[J].地质科技通报,2021,40(3):67-77.XIE Jingyu,LU Hongzhi,CHEN Lei,et al.Microscopic heteroge⁃ neity and mechanical anisotropy of the laminated shale in Long⁃ maxi Formation[J].Bulletin of Geological Science and Technolo⁃ gy,2021,40(3):67-77.
参考文献 9
刘厚彬,余安然,范宇,等.深层脆性页岩力学性能及破坏规律实验研究[J].地下空间与工程学报,2019,15(S2):604-608.LIU Houbin,YU Anran,FAN Yu,et al.Experimental research on mechanical properties anddistruction laws of deep brittle shale [J].Chinese Journal of Underground Space and Engineering,2019,15(S2):604-608.
参考文献 10
马天寿,王浩男,刘梦云,等.页岩抗张力学行为各向异性实验与理论研究[J].中南大学学报:自然科学版,2020,51(5):1 391-1 401.MA Tianshou,WANG Haonan,LIU Mengyun,et al.Experimental and theoretical investigation on anisotropy of shale tensile me⁃ chanical behaviors[J].Journal of Central South University:Sci⁃ ence and Technology,2020,51(5):1 391-1 401.
参考文献 11
李郑涛,张震,吴鹏程,等.川南深层各向异性页岩井壁失稳力学机理[J].西南石油大学学报:自然科学版,2021,43(4):11-25.LI Zhengtao,ZHANG Zhen,WU Pengcheng,et al.Mechanical mechanisms of wellbore instability of deep anisotropic shale in southern Sichuan[J].Journal of Southwest Petroleum University:Science & Technology Edition,2021,43(4):11-25.
参考文献 12
赵金洲,任岚,蒋廷学,等.中国页岩气压裂十年:回顾与展望 [J].天然气工业,2021,41(8):121-142.ZHAO Jinzhou,REN Lan,JIANG Tingxue,et al.Ten years of gas shale fracturing in China:Review and prospect[J].Natural Gas In⁃ dustry,2021,41(8):121-142.
参考文献 13
郭建春,赵志红,路千里,等.深层页岩缝网压裂关键力学理论研究进展[J].天然气工业,2021,41(1):102-117.GUO Jianchun,ZHAO Zhihong,LU Qianli,et al.Research prog⁃ ress in key mechanical theories of deep shale network fracturing [J].Natural Gas Industry,2021,41(1):102-117.
参考文献 14
翟鸿宇,常旭,朱维,等.基于水力压裂实验的龙马溪组页岩各向异性特征研究[J].中国科学:地球科学,2021,51(3):380-397.ZHAI Hongyu,CHANG Xu,ZHU Wei,et al.Study on anisotropy of Longmaxi Shale using hydraulic fracturing experiment[J].Sci⁃ entia Sinica:Terrae,2021,51(3):380-397.
参考文献 15
卢聪,马莅,郭建春,等.酸处理对页岩微观结构及力学性质的影响[J].天然气工业,2019,39(10):59-67.LU Cong,MA Li,GUO Jianchun,et al.Effect of acidizing treat⁃ ment on microstructures and mechanical properties of shale[J].Natural Gas Industry,2019,39(10):59-67.
参考文献 16
杨国梁,毕京九,郭伟民,等.加载角度对层理页岩裂纹扩展影响的实验研究[J].爆炸与冲击,2021,41(9):27-39.YANG Guoliang,BI Jingjiu,GUO Weimin,et al.Experimental study on the effect of loading angle on crack propagation in bed⁃ ding shale[J].Explosion and Shock Waves,2021,41(9):27-39.
参考文献 17
XIE Qin,LI Shengxiang,LIU Xiling,et al.Effect of loading rate on fracture behaviors of shale under type Ⅰ loading[J].Journal of Central South University,2020,27(10):3 118-3 132.
参考文献 18
王兴渝,朱哲明,邱豪,等.冲击荷载下层理对页岩内裂纹扩展行为影响规律的研究[J].岩石力学与工程学报,2019,38(8):1 542-1 556.WANG Xingyu,ZHU Zheming,QIU Hao,et al.Study of the effect of stratifications on crack propagation behaviors in shale under impacting loads[J].Chinese Journal of Rock Mechanics and Engi⁃ neering,2019,38(8):1 542-1 556.
参考文献 19
管全中,董大忠,王淑芳,等.海相和陆相页岩储层微观结构差异性分析[J].天然气地球科学,2016,27(3):524-531.GUAN Quanzhong,DONG Dazhong,WANG Shufang,et al.Analy⁃ ses on differences of microstructure between marine and lacus⁃ trine facies shale reservoirs[J].Natural Gas Geoscience,2016,27(3):524-531.
参考文献 20
高和群,曹海虹,丁安徐,等.海相页岩和陆相页岩等温吸附特性及控制因素[J].天然气地球科学,2013,24(6):1 290-1 297.GAO Hequn,CAO Haihong,DING Anxu,et al.Isotherm adsorp⁃ tion characteristic of marine and continental shale and its control⁃ ling factors[J].Natural Gas Geoscience,2013,24(6):1 290-1 297.
参考文献 21
朱彤,俞凌杰,王烽.四川盆地海相、湖相页岩气形成条件对比及开发策略[J].天然气地球科学,2017,28(4):633-641.ZHU Tong,YU Lingjie,WANG Feng.Comparative analysis of the accumulation conditions and development strategies of the marine and lacustrine shale gas from the Sichuan Basin,China[J].Natu⁃ ral Gas Geoscience,2017,28(4):633-641.
参考文献 22
张峰,荣莽,乌效鸣,等.陆相与海相页岩水相润湿渗吸特征 [J].科学技术与工程,2019,19(32):126-132.ZHANG Feng,RONG Mang,WU Xiaoming,et al.Characteristics of wettability and imbibition between continental and marine shales[J].Science Technology and Engineering,2019,19(32):126-132.
参考文献 23
周立宏,刘学伟,付大其,等.陆相页岩油岩石可压裂性影响因素评价与应用——以沧东凹陷孔二段为例[J].中国石油勘探,2019,24(5):670-678.ZHOU Lihong,LIU Xuewei,FU Daqi,et al.Evaluation and appli⁃ cation of influencing factors on the fracturability of continental shale oil reservoir:a case study of Kong2 Member in Cangdong sag[J].China Petroleum Exploration,2019,24(5):670-678.
参考文献 24
夏遵义,马海洋,房堃.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J].石油实验地质,2019,41(1):134-141.XIA Zunyi,MA Haiyang,FANG Kun.Rock mechanical properties and fracability of continental shale in Zhanhua Sag,Bohai Bay Ba⁃ sin[J].Petroleum Geology & Experiment,2019,41(1):134-141.
参考文献 25
韩强,屈展,叶正寅,等.基于微米力学实验的页岩Ⅰ型断裂韧度表征[J].力学学报,2019,51(4):1 245-1 254.HAN Qiang,QU Zhan,YE Zhengyin,et al.Study on fracture toughness of modeⅠof shale based on micro-mechanical test[J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(4):1 245-1 254.
参考文献 26
刘圣鑫,王宗秀,张林炎,等.基于纳米压痕的页岩微观力学性质分析[J].实验力学,2018,33(6):957-968.LIU Shengxin,WANG Zongxiu,ZHANG Linyan,et al.Microme⁃ chanics properties analysis of shale based on nano-indentation [J].Journal of Experimental Mechanics,2018,33(6):957-968.
参考文献 27
时贤,蒋恕,卢双舫,等.利用纳米压痕实验研究层理性页岩岩石力学性质——以渝东南酉阳地区下志留统龙马溪组为例 [J].石油勘探与开发,2019,46(1):155-164.SHI Xian,JIANG Shu,LU Shuangfang,et al.Investigation of me⁃ chanical properties of bedded shale by nanoindentation tests:A case study on Lower Silurian Longmaxi Formation of Youyang ar⁃ ea in southeast Chongqing,China[J].Petroleum Exploration and Development,2019,46(1):155-164.
参考文献 28
陈平,韩强,马天寿,等.基于微米压痕实验研究页岩力学特性 [J].石油勘探与开发,2015,42(5):662-670.CHEN Ping,HAN Qiang,MA Tianshou,et al.The mechanical properties of shale based on micro-indentation test[J].Petroleum Exploration and Development,2015,42(5):662-670.
参考文献 29
陈立超,王生维.煤岩断裂力学性质对储层压裂改造的影响 [J].天然气地球科学,2020,31(1):122-131.CHEN Lichao,WANG Shengwei.Fracture properties of high-rank coal and its constraint on hydraulic fracturing stimulation of coal reservoir[J].Natural Gas Geoscience,2020,31(1):122-131.
参考文献 30
刘俊新,李军润,尹彬瑞,等.基于能量平衡的新脆性指标与页岩失效机制分析[J].岩石力学与工程学报,2022,41(4):734-747.LIU Junxin,LI Junrun,YIN Binrui,et al.New brittleness index based on energy balance and analysis of failure mechanism of shale[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(4):734-747.
参考文献 31
温韬,张馨,孙金山,等.基于峰前和峰后能量演化特征的岩石脆性评价[J].地球科学,2021,46(9):3 385-3 396.WEN Tao,ZHANG Xin,SUN Jinshan,et al.Brittle evaluation based on energy evolution at pre-peak and post-peak stage[J].Earth Science,2021,46(9):3 385-3 396.
参考文献 32
陈立超,王生维,张典坤.煤岩脆性特征压痕法评价及储层改造意义[J].煤炭学报,2020,45(S2):955-964.CHEN Lichao,WANG Shengwei,ZHANG Diankun.Brittleness evaluation of coal rock based on indentation method and the sig⁃ nificance of coal reservoir stimulation[J].Journal of China Coal Society,2020,45(S2):955-964.
目录contents

    摘要

    页岩微观力学性质对页岩油气储层钻井、完井、压裂改造具有关键影响。利用 X射线衍射、微观结构扫描电镜及压痕测试等手段对四川盆地海相页岩和内蒙古石拐盆地陆相页岩进行研究,结果表明:海相页岩由石英、方解石、白云石及黄铁矿等自生矿物组成,微观结构较为致密,维氏硬度平均值为2.43 kN/mm2 ,岩石坚硬、刚度大,储层破裂压力较高;陆相页岩由石英、钠长石、高岭石和蒙脱石等外源矿物组成,黏土矿物含量高是其显著特征,粒间孔隙发育,结构相对疏松,其维氏硬度平均值为0.80 kN/mm2 ,储层破裂压力较低。海相页岩不同方向上压痕位移差异大,易形成辐射裂缝(纹),其脆性强,储层压裂可采取低裂缝净压力以减小裂缝后期回弹;而陆相页岩不同方向上压痕位移相似且不易形成辐射裂缝,其脆性弱,储层压裂可考虑高裂缝净压力加载,以保障压裂裂缝残余宽度。

    Abstract

    Micromechanical properties of the shale play a key role in the drilling,completion,and fracturing of reservoirs. In this paper,the marine shale in Sichuan Basin and continental shale in Shiguai Basin of Inner Mongolia were studied by XRD,SEM,and indentation test. The results show that marine shale in Sichuan Basin is mainly composed of authigenic minerals such as quartz,calcite,dolomite,and pyrite,while continental shale is composed of exogenous minerals such as quartz,kaolinite,montmorillonite,and albite. The microscopic structure of marine shale is relatively compact,while the continental shale develops intergranular pores and the structure is relatively loose. The indentation test results show that the average Vickers hardness(Hv)of marine shale is above 2.43 kN/mm2 ;the rock stiffness is hard and stiff,and the break- down pressure required for the reservoir is high. The average Hv of continental shale is 0.80 kN/mm2 ;the rock is relatively weak,and the breakdown pressure of the reservoir is low. Marine shale has a large indentation displacement difference in different directions and is prone to radiation fractures,indicating that the rock brittleness is significant. Continental shale has similar indentation displacement in different directions and is not prone to radiation fractures,indicating that the rock brittleness is relatively weak. Combined with the energy theory,low net fracture pressure is adopted in marine shale reser- voir fracturing to reduce the fracture rebound in the later period,while high net fracture pressure can be considered in conti- nental shale reservoir fracturing to ensure fracture residual width.

  • 陆相页岩油气开发对于保障能源安全、实现油气自主供给具有战略意义[1-3]。长期以来,围绕四川盆地海相页岩岩石力学性质方面的研究较多,针对页岩岩石物性与力学性能[4-7]、各向异性[8-9]、对井壁稳定性影响[10-11]、岩石压裂力学性质及造缝效果[12-15] 等方面开展了大量研究,为海相页岩气开发提供有力支撑。近年来,由于霍普金森压杆等高速冲击加载实验手段和分析理论的交叉,页岩动态断裂力学及断裂加载率效应方面研究[16-18] 备受关注,但相关研究在压裂中的尺寸效应问题有待深入。有必要提及的是,海/陆相页岩在矿物组成、岩石物性、岩石力学性质等方面差异显著[19-22]。随着中国陆相页岩油气开发的推进,目前针对陆相页岩储层岩石力学性质、储层压裂裂缝物理模拟方面的研究工作进展较快,但研究深度与海相页岩相比仍需加强,亟待开展海/陆相页岩在岩石力学、岩石断裂力学等方面的差异性分析,从而为陆相页岩在油气钻井、完井、储层压裂改造等方面提供科学依据[23-24]。由于页岩比煤岩、砂岩更致密,宏观尺度岩石表征已不能满足致密页岩油气挖掘的需求,因此摸清页岩微观力学性质,对构建页岩储层地质力学模型、提升页岩储层钻完井效率及评价页岩储层可压性等具有重要意义。前人针对海相页岩利用纳米压痕及压痕法已开展了大量研究工作[25-28],然而针对陆相页岩尤其与海相页岩微观力学性质对比分析方面的研究仍较少。

  • 为此,利用常规压痕实验对四川盆地龙马溪组海相页岩和内蒙古石拐盆地厂汉沟组陆相页岩微观力学性质进行实验研究,以获取海/陆相页岩维氏硬度数据和压痕形态特征图像,分析不同方向上压痕位移随载荷的变化规律,并构建了一套基于压痕位移比的页岩脆性评价方法,结合弹性能量理论,分析海/陆相页岩储层压裂裂缝的回弹效应差异对压裂裂缝残留宽度的影响,并提出海/陆相页岩储层针对性压裂建议,以期为陆相页岩油气开发储层压裂改造策略优化、页岩储层“个性化”压裂提供参考。

  • 1 样品特征与实验方法

  • 1.1 海/陆相页岩宏观特征

  • 海相页岩采自四川盆地龙马溪组,黑色有机质含量高,结构致密,断口呈眼球状、贝壳状,其脆性显著;陆相页岩采自内蒙古石拐盆地厂汉沟组,为陆相湖盆环境沉积,呈深灰、黑灰色,有机质含量相对较低,结构相对疏松,指甲可刻划,层理结构清晰。从沉积成岩环境、水动力条件来看,海相页岩水动力较弱,矿物颗粒间结合强度较高;陆相页岩水动力较强且成岩矿物间以机械压实作用为主,矿物颗粒间结合强度明显弱于海相页岩。

  • 1.2 海/陆相页岩矿物组成特征

  • X 射线衍射和微观结构扫描电镜显示:海相页岩主要由石英、方解石、白云石和黄铁矿等矿物组成(图1a,图2a—2c),自生矿物比例较高,具有典型海相沉积成岩特征[21];陆相页岩主要由石英、钠长石、高岭石和蒙脱石等组成(图1b,图2d—2f),均为外源矿物后期搬运沉积成岩。依据混合律理论[29],海相页岩主要由脆性矿物组成,而陆相页岩含大量黏土矿物,因而海相页岩脆性较强。

  • 1.3 海/陆相页岩微观结构特征

  • 由图2 所示,整体上四川盆地海相页岩结构较为致密,发育大量脆性断口。而内蒙古石拐盆地陆相页岩粒(晶)间孔隙非常发育,岩石结构较为疏松。值得注意的是,扫描电镜照片显示陆相页岩中高岭石晶体界面上压痕为韧性断裂形式(表现为裂缝附近无辐射破坏等现象),也指示陆相页岩的力学行为偏塑性。结合矿物组成和微观结构特征分析,认为相对四川盆地海相页岩,内蒙古石拐盆地陆相页岩成岩矿物以高岭石等黏土矿物(图2d—2f) 为主,压裂中水基压裂液进入储层会与上述矿物反应形成水敏性伤害[22],需引起重视。

  • 图1 海/陆相页岩矿物特征X射线衍射分析结果

  • Fig.1 XRD analysis results of mineral characteristics of marine/continental shales

  • 图2 海/陆相页岩微观结构特征SEM照片

  • Fig.2 SEM images of microstructure characteristics of marine/continental shales

  • 1.4 压痕测试实验方法

  • 压痕测试的具体实验步骤包括:①将海/陆相岩样切割为1.5 cm×1.5 cm×1.5 cm的立方体,样品顶面抛光,且顶、底面保持平行。②利用显微硬度计(图3)对海/陆相岩样进行压痕测试,硬度计加载时压头接触样品时间为 15 s,其中海相岩样压头施加载荷 (P)设定为1,2,3,5和10 N共5档,考虑陆相页岩相对较软,压头施加载荷仅设定为 1,2 和 3 N 共 3 档。 ③显微镜下测量不同压头施加载荷下岩样顶面XY 两个方向的压痕位移。依据维氏硬度公式计算岩样硬度,表达式为[29]

  • Hv=1.854P(XY)2
    (1)
  • 图3 压痕测试实验装置

  • Fig.3 Layout of indentation test

  • 2 结果与分析

  • 2.1 页岩维氏硬度特征

  • 本次实验得到四川盆地海相页岩和内蒙古石拐盆地陆相页岩维氏硬度平均值分别为 2.43 和 0.80 kN/mm2,前者是后者的 3~4 倍,说明海相页岩的致密度远比陆相高,抵抗外载荷侵入能量更强,岩石破碎需要消耗更多能量。

  • 值得指出的是,海相页岩随载荷增加,维氏硬度值离散性加强;而陆相页岩随载荷增加,维氏硬度值的离散性则没有明显变化(图4),这也反映出海相页岩材料的脆性相对较强。

  • 图4 海/陆相页岩维氏硬度特征

  • Fig.4 Vickers hardness characteristics of marine/continental shales

  • 2.2 压痕位移随载荷的变化规律

  • 对海/陆相页岩岩样在 XYZ 方向上形成的压痕位移与载荷之间的关系(图5)进行拟合分析,认为随着压头载荷增大,在海/陆相岩样 XYZ方向上形成的压痕位移均呈线性增长,说明本次实验所用的岩样基质具有较好的均质性。随着载荷增加,海相页岩压痕位移的离散性增强(图5a),这与海相岩石脆性较强的判断相吻合;随载荷增大,陆相页岩压痕位移的离散性并未增强(图5b),表明陆相页岩力学性质偏塑性。

  • 2.3 海/陆相页岩压痕形态特征

  • 利用显微镜捕捉了海/陆相页岩压痕形态特征(图6)。镜下照片显示,随着压头载荷增大,页岩岩样在XY方向上的压痕位移均增加。其中海相页岩岩样在压头侵入下形成不规则压痕形态,XY 方向上的压痕位移差异较大,且压痕端部多形成辐射状裂纹,呈较为明显的脆性断裂。陆相页岩岩样压痕呈规则菱形深凹坑形态,XY 方向上的压痕位移随载荷增加而快速增大,表明陆相页岩岩样偏软,抵抗外界侵入能力较弱,压痕四周边界清晰、形态规整;值得注意的是陆相页岩岩样表面压痕端部少有辐射裂纹,表明陆相页岩岩样在外载作用下呈塑性力学特性,对于储层压裂改造不利[23-24]

  • 3 海/陆相页岩微观力学性能对储层压裂造缝的启示

  • 3.1 页岩脆性特征的评价

  • 通常维氏硬度的离散性随载荷的变化规律与测试对象材料脆性的强弱有关。为此,将四川盆地海相页岩、内蒙古石拐盆地陆相页岩以及内蒙古二道岭矿区无烟煤压痕测试结果进行比较,分析岩石维氏硬度随压头载荷增大的变化规律,并对 3 类岩样维氏硬度的离散性进行比较(图7a),发现随着载荷增大,海相页岩维氏硬度的离散性显著高于陆相页岩和无烟煤,这与 3 类岩石宏观力学性质和断裂特征吻合。

  • 依据XY方向上的压痕位移比提出一种页岩脆性评价方法,当压痕位移比大于 0.1 时,岩石为脆性;反之为塑性。计算可知海相页岩压痕位移比普遍大于 0.1,岩石脆性较强,而与压头载荷无明显相关性(图7b),说明脆性为岩石固有属性,与外部加载条件关系不大;而陆相页岩压痕位移比小于 0.1,且随载荷增加,压痕位移比具有减小的趋势。

  • 图5 海/陆相页岩压痕位移随压头载荷的变化规律

  • Fig.5 Indentation displacement of marine/continental shales varies with indenter load

  • 图6 海/陆相页岩压痕形态特征

  • Fig.6 Indentation characteristics of marine/continental shales

  • 图7 海/陆相页岩维氏硬度与压痕位移比随载荷的变化规律

  • Fig.7 Vickers hardness and indentation displacement ratio of marine/continental shales varies with indenter load

  • 3.2 压缩能量对储层压裂的启示

  • 当显微硬度计压头压入岩样内部并到达最大侵入深度时,岩样在 XYZ 方向上的压痕位移均达到最大值。当压头从岩样撤出后,由于岩石弹性效应压痕空间将回缩,其中在 XY方向上压痕半径和在 Z 方向上压痕深度分别缩减为残留压痕半径 (Cr)和残留压痕深度(Zr)(图8)。依据材料力学原理,当测试材料为脆性时,压痕空间回弹程度高,即 Cr/CmaxZr/Zmax趋近于 0;而材料为塑性材料弹性模量小、刚度低,压痕空间回弹程度低,即 Cr/CmaxZr/ Zmax趋近于 1。加载曲线和卸载曲线及横轴所包围面积(S1)为页岩材料变形所吸收的能量;从卸载曲线最高点做垂线,该垂线与卸载曲线及位移轴所包围面积(S2)即为弹性形变所需能量,是可恢复的[30-32]

  • 依据本次压痕实验结果和脆性程度,提出四川盆地海相页岩和内蒙古石拐盆地陆相页岩的压缩能量模型,对于脆性显著的海相页岩,为增大 Cr / Cmax,形成有效压裂裂缝空间,需采取相对较低的裂缝净压力进行加载,从而减小弹性形变所需能量,保持塑性变形所吸收的能量,规避压裂裂缝回弹 (图8a);对于脆性较弱的陆相页岩,为增大 Cr/Cmax,减小裂缝回弹,应以较大的裂缝净压力加载(图8b)。

  • 图8 海/陆相页岩压缩能量模式

  • Fig.8 Compressional energy modes of marine/continental shales

  • 4 结论

  • 四川盆地海相页岩维氏硬度平均值为 2.43 kN/ mm2,岩石刚度大,储层破裂压力较高;内蒙古石拐盆地陆相页岩维氏硬度平均值为0.80 kN/mm2,岩石刚度相对较低,储层破裂压力较低。四川盆地海相页岩由石英、方解石、白云石及黄铁矿等自生矿物组成,陆相页岩则由石英、钠长石及高岭石等外源矿物组成,黏土矿物含量高是其显著特征,也是导致陆相页岩刚度较低的重要原因;海相页岩微观结构较为致密,而陆相页岩发育矿物粒间孔隙,结构相对疏松,是导致陆相页岩硬度较低的内在因素。海相页岩在XYZ方向的压痕位移差异较大且易形成辐射裂缝(纹),表明岩石脆性显著;而陆相页岩在各方向上的压痕位移相近且不易形成辐射裂缝,指示岩石脆性相对较弱。结合能量理论提出海相页岩储层压裂时采取低裂缝净压力减小裂缝后期回弹,而陆相页岩储层压裂时可考虑高裂缝净压力加载,以保障压裂裂缝的残余宽度。

  • 符号解释

  • C——压痕半径,μm;

  • Cmax——最大压痕半径,μm;

  • Cr ——残留压痕半径,μm;

  • Hv——维氏硬度,kN/mm2

  • P——压头载荷,N;

  • Pmax——最大压头载荷,N;

  • S1——加载曲线和卸载曲线及横轴包围面积,μm2

  • S2——从卸载曲线最高点做垂线,该垂线与卸载曲线及位移轴包围面积,μm2

  • XY——不同方向上的压痕半径,μm;

  • Z——压痕深度,μm;

  • Zmax——最大压痕深度,μm;

  • Zr ——残留压痕深度,μm。

  • 参考文献

    • [1] 金之钧,王冠平,刘光祥,等.中国陆相页岩油研究进展与关键科学问题[J].石油学报,2021,42(7):821-835.JIN Zhijun,WANG Guanping,LIU Guangxiang,et al.Research progress and key scientific issues of continental shale oil in China [J].Acta Petrolei Sinica,2021,42(7):821-835.

    • [2] 焦方正.陆相低压页岩油体积开发理论技术及实践——以鄂尔多斯盆地长7段页岩油为例[J].天然气地球科学,2021,32(6):836-844.JIAO Fangzheng.Theoretical technologies and practices concern⁃ ing“volume development”of low pressure continental shale oil:Case study of shale oil in Chang7 member,Ordos Basin,China [J].Natural Gas Geoscience,2021,32(6):836-844.

    • [3] 周立宏,赵贤正,柴公权,等.陆相页岩油效益勘探开发关键技术与工程实践——以渤海湾盆地沧东凹陷古近系孔二段为例 [J].石油勘探与开发,2020,47(5):1 059-1 066.ZHOU Lihong,ZHAO Xianzheng,CHAI Gongquan,et al.Key ex⁃ ploration & development technologies and engineering practice of continental shale oil:A case study of Member2 of Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin,East Chi⁃ na[J].Petroleum Exploration and Development,2020,47(5):1 059-1 066.

    • [4] 袁余洋,刘永林,王瑛.黔西北地区龙马溪组页岩有机质和脆性矿物的控缝机制[J].岩石矿物学杂志,2020,39(6):808-818.YUAN Yuyang,LIU Yonglin,WANG Ying.Fracture-controlling mechanism of organic matter and brittle minerals in shale of Long⁃ maxi Formation in Northwestern Guizhou[J].Journal of Petrology and Mineralogy,2020,39(6):808-818.

    • [5] 王斌,邓继新,刘喜武,等.矿物组分对龙马溪组页岩动、静态弹性特征的影响[J].地球物理学报,2019,62(12):4 833-4 845.WANG Bin,DENG Jixin,LIU Xiwu,et al.The influence of rock composition on dynamic and static elastic properties of Longmaxi Formation shales[J].Chinese Journal of Geophysics,2019,62(12):4 833-4 845.

    • [6] XIONG Jian,LIU Kaiyuan,LIANG Lixi,et al.Investigation of in⁃ fluence factors of the fracture toughness of shale:A case study of the Longmaxi Formation shale in Sichuan Basin,China[J].Geo⁃ technical and Geological Engineering,2019,37(4):2 927-2 934.

    • [7] 石长有,刘向君,张茜,等.四川盆地龙马溪组页岩声波特性与断裂韧性实验研究[J].石油地质与工程,2019,33(6):43-46.SHI Changyou,LIU Xiangjun,ZHANG Qian,et al.Acoustic char⁃ acteristics and fracture toughness of shale in Longmaxi formation [J].Petroleum Geology and Engineering,2019,33(6):43-46.

    • [8] 解经宇,陆洪智,陈磊,等.龙马溪组层状页岩微观非均质性及力学各向异性特征[J].地质科技通报,2021,40(3):67-77.XIE Jingyu,LU Hongzhi,CHEN Lei,et al.Microscopic heteroge⁃ neity and mechanical anisotropy of the laminated shale in Long⁃ maxi Formation[J].Bulletin of Geological Science and Technolo⁃ gy,2021,40(3):67-77.

    • [9] 刘厚彬,余安然,范宇,等.深层脆性页岩力学性能及破坏规律实验研究[J].地下空间与工程学报,2019,15(S2):604-608.LIU Houbin,YU Anran,FAN Yu,et al.Experimental research on mechanical properties anddistruction laws of deep brittle shale [J].Chinese Journal of Underground Space and Engineering,2019,15(S2):604-608.

    • [10] 马天寿,王浩男,刘梦云,等.页岩抗张力学行为各向异性实验与理论研究[J].中南大学学报:自然科学版,2020,51(5):1 391-1 401.MA Tianshou,WANG Haonan,LIU Mengyun,et al.Experimental and theoretical investigation on anisotropy of shale tensile me⁃ chanical behaviors[J].Journal of Central South University:Sci⁃ ence and Technology,2020,51(5):1 391-1 401.

    • [11] 李郑涛,张震,吴鹏程,等.川南深层各向异性页岩井壁失稳力学机理[J].西南石油大学学报:自然科学版,2021,43(4):11-25.LI Zhengtao,ZHANG Zhen,WU Pengcheng,et al.Mechanical mechanisms of wellbore instability of deep anisotropic shale in southern Sichuan[J].Journal of Southwest Petroleum University:Science & Technology Edition,2021,43(4):11-25.

    • [12] 赵金洲,任岚,蒋廷学,等.中国页岩气压裂十年:回顾与展望 [J].天然气工业,2021,41(8):121-142.ZHAO Jinzhou,REN Lan,JIANG Tingxue,et al.Ten years of gas shale fracturing in China:Review and prospect[J].Natural Gas In⁃ dustry,2021,41(8):121-142.

    • [13] 郭建春,赵志红,路千里,等.深层页岩缝网压裂关键力学理论研究进展[J].天然气工业,2021,41(1):102-117.GUO Jianchun,ZHAO Zhihong,LU Qianli,et al.Research prog⁃ ress in key mechanical theories of deep shale network fracturing [J].Natural Gas Industry,2021,41(1):102-117.

    • [14] 翟鸿宇,常旭,朱维,等.基于水力压裂实验的龙马溪组页岩各向异性特征研究[J].中国科学:地球科学,2021,51(3):380-397.ZHAI Hongyu,CHANG Xu,ZHU Wei,et al.Study on anisotropy of Longmaxi Shale using hydraulic fracturing experiment[J].Sci⁃ entia Sinica:Terrae,2021,51(3):380-397.

    • [15] 卢聪,马莅,郭建春,等.酸处理对页岩微观结构及力学性质的影响[J].天然气工业,2019,39(10):59-67.LU Cong,MA Li,GUO Jianchun,et al.Effect of acidizing treat⁃ ment on microstructures and mechanical properties of shale[J].Natural Gas Industry,2019,39(10):59-67.

    • [16] 杨国梁,毕京九,郭伟民,等.加载角度对层理页岩裂纹扩展影响的实验研究[J].爆炸与冲击,2021,41(9):27-39.YANG Guoliang,BI Jingjiu,GUO Weimin,et al.Experimental study on the effect of loading angle on crack propagation in bed⁃ ding shale[J].Explosion and Shock Waves,2021,41(9):27-39.

    • [17] XIE Qin,LI Shengxiang,LIU Xiling,et al.Effect of loading rate on fracture behaviors of shale under type Ⅰ loading[J].Journal of Central South University,2020,27(10):3 118-3 132.

    • [18] 王兴渝,朱哲明,邱豪,等.冲击荷载下层理对页岩内裂纹扩展行为影响规律的研究[J].岩石力学与工程学报,2019,38(8):1 542-1 556.WANG Xingyu,ZHU Zheming,QIU Hao,et al.Study of the effect of stratifications on crack propagation behaviors in shale under impacting loads[J].Chinese Journal of Rock Mechanics and Engi⁃ neering,2019,38(8):1 542-1 556.

    • [19] 管全中,董大忠,王淑芳,等.海相和陆相页岩储层微观结构差异性分析[J].天然气地球科学,2016,27(3):524-531.GUAN Quanzhong,DONG Dazhong,WANG Shufang,et al.Analy⁃ ses on differences of microstructure between marine and lacus⁃ trine facies shale reservoirs[J].Natural Gas Geoscience,2016,27(3):524-531.

    • [20] 高和群,曹海虹,丁安徐,等.海相页岩和陆相页岩等温吸附特性及控制因素[J].天然气地球科学,2013,24(6):1 290-1 297.GAO Hequn,CAO Haihong,DING Anxu,et al.Isotherm adsorp⁃ tion characteristic of marine and continental shale and its control⁃ ling factors[J].Natural Gas Geoscience,2013,24(6):1 290-1 297.

    • [21] 朱彤,俞凌杰,王烽.四川盆地海相、湖相页岩气形成条件对比及开发策略[J].天然气地球科学,2017,28(4):633-641.ZHU Tong,YU Lingjie,WANG Feng.Comparative analysis of the accumulation conditions and development strategies of the marine and lacustrine shale gas from the Sichuan Basin,China[J].Natu⁃ ral Gas Geoscience,2017,28(4):633-641.

    • [22] 张峰,荣莽,乌效鸣,等.陆相与海相页岩水相润湿渗吸特征 [J].科学技术与工程,2019,19(32):126-132.ZHANG Feng,RONG Mang,WU Xiaoming,et al.Characteristics of wettability and imbibition between continental and marine shales[J].Science Technology and Engineering,2019,19(32):126-132.

    • [23] 周立宏,刘学伟,付大其,等.陆相页岩油岩石可压裂性影响因素评价与应用——以沧东凹陷孔二段为例[J].中国石油勘探,2019,24(5):670-678.ZHOU Lihong,LIU Xuewei,FU Daqi,et al.Evaluation and appli⁃ cation of influencing factors on the fracturability of continental shale oil reservoir:a case study of Kong2 Member in Cangdong sag[J].China Petroleum Exploration,2019,24(5):670-678.

    • [24] 夏遵义,马海洋,房堃.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J].石油实验地质,2019,41(1):134-141.XIA Zunyi,MA Haiyang,FANG Kun.Rock mechanical properties and fracability of continental shale in Zhanhua Sag,Bohai Bay Ba⁃ sin[J].Petroleum Geology & Experiment,2019,41(1):134-141.

    • [25] 韩强,屈展,叶正寅,等.基于微米力学实验的页岩Ⅰ型断裂韧度表征[J].力学学报,2019,51(4):1 245-1 254.HAN Qiang,QU Zhan,YE Zhengyin,et al.Study on fracture toughness of modeⅠof shale based on micro-mechanical test[J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(4):1 245-1 254.

    • [26] 刘圣鑫,王宗秀,张林炎,等.基于纳米压痕的页岩微观力学性质分析[J].实验力学,2018,33(6):957-968.LIU Shengxin,WANG Zongxiu,ZHANG Linyan,et al.Microme⁃ chanics properties analysis of shale based on nano-indentation [J].Journal of Experimental Mechanics,2018,33(6):957-968.

    • [27] 时贤,蒋恕,卢双舫,等.利用纳米压痕实验研究层理性页岩岩石力学性质——以渝东南酉阳地区下志留统龙马溪组为例 [J].石油勘探与开发,2019,46(1):155-164.SHI Xian,JIANG Shu,LU Shuangfang,et al.Investigation of me⁃ chanical properties of bedded shale by nanoindentation tests:A case study on Lower Silurian Longmaxi Formation of Youyang ar⁃ ea in southeast Chongqing,China[J].Petroleum Exploration and Development,2019,46(1):155-164.

    • [28] 陈平,韩强,马天寿,等.基于微米压痕实验研究页岩力学特性 [J].石油勘探与开发,2015,42(5):662-670.CHEN Ping,HAN Qiang,MA Tianshou,et al.The mechanical properties of shale based on micro-indentation test[J].Petroleum Exploration and Development,2015,42(5):662-670.

    • [29] 陈立超,王生维.煤岩断裂力学性质对储层压裂改造的影响 [J].天然气地球科学,2020,31(1):122-131.CHEN Lichao,WANG Shengwei.Fracture properties of high-rank coal and its constraint on hydraulic fracturing stimulation of coal reservoir[J].Natural Gas Geoscience,2020,31(1):122-131.

    • [30] 刘俊新,李军润,尹彬瑞,等.基于能量平衡的新脆性指标与页岩失效机制分析[J].岩石力学与工程学报,2022,41(4):734-747.LIU Junxin,LI Junrun,YIN Binrui,et al.New brittleness index based on energy balance and analysis of failure mechanism of shale[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(4):734-747.

    • [31] 温韬,张馨,孙金山,等.基于峰前和峰后能量演化特征的岩石脆性评价[J].地球科学,2021,46(9):3 385-3 396.WEN Tao,ZHANG Xin,SUN Jinshan,et al.Brittle evaluation based on energy evolution at pre-peak and post-peak stage[J].Earth Science,2021,46(9):3 385-3 396.

    • [32] 陈立超,王生维,张典坤.煤岩脆性特征压痕法评价及储层改造意义[J].煤炭学报,2020,45(S2):955-964.CHEN Lichao,WANG Shengwei,ZHANG Diankun.Brittleness evaluation of coal rock based on indentation method and the sig⁃ nificance of coal reservoir stimulation[J].Journal of China Coal Society,2020,45(S2):955-964.

  • 参考文献

    • [1] 金之钧,王冠平,刘光祥,等.中国陆相页岩油研究进展与关键科学问题[J].石油学报,2021,42(7):821-835.JIN Zhijun,WANG Guanping,LIU Guangxiang,et al.Research progress and key scientific issues of continental shale oil in China [J].Acta Petrolei Sinica,2021,42(7):821-835.

    • [2] 焦方正.陆相低压页岩油体积开发理论技术及实践——以鄂尔多斯盆地长7段页岩油为例[J].天然气地球科学,2021,32(6):836-844.JIAO Fangzheng.Theoretical technologies and practices concern⁃ ing“volume development”of low pressure continental shale oil:Case study of shale oil in Chang7 member,Ordos Basin,China [J].Natural Gas Geoscience,2021,32(6):836-844.

    • [3] 周立宏,赵贤正,柴公权,等.陆相页岩油效益勘探开发关键技术与工程实践——以渤海湾盆地沧东凹陷古近系孔二段为例 [J].石油勘探与开发,2020,47(5):1 059-1 066.ZHOU Lihong,ZHAO Xianzheng,CHAI Gongquan,et al.Key ex⁃ ploration & development technologies and engineering practice of continental shale oil:A case study of Member2 of Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin,East Chi⁃ na[J].Petroleum Exploration and Development,2020,47(5):1 059-1 066.

    • [4] 袁余洋,刘永林,王瑛.黔西北地区龙马溪组页岩有机质和脆性矿物的控缝机制[J].岩石矿物学杂志,2020,39(6):808-818.YUAN Yuyang,LIU Yonglin,WANG Ying.Fracture-controlling mechanism of organic matter and brittle minerals in shale of Long⁃ maxi Formation in Northwestern Guizhou[J].Journal of Petrology and Mineralogy,2020,39(6):808-818.

    • [5] 王斌,邓继新,刘喜武,等.矿物组分对龙马溪组页岩动、静态弹性特征的影响[J].地球物理学报,2019,62(12):4 833-4 845.WANG Bin,DENG Jixin,LIU Xiwu,et al.The influence of rock composition on dynamic and static elastic properties of Longmaxi Formation shales[J].Chinese Journal of Geophysics,2019,62(12):4 833-4 845.

    • [6] XIONG Jian,LIU Kaiyuan,LIANG Lixi,et al.Investigation of in⁃ fluence factors of the fracture toughness of shale:A case study of the Longmaxi Formation shale in Sichuan Basin,China[J].Geo⁃ technical and Geological Engineering,2019,37(4):2 927-2 934.

    • [7] 石长有,刘向君,张茜,等.四川盆地龙马溪组页岩声波特性与断裂韧性实验研究[J].石油地质与工程,2019,33(6):43-46.SHI Changyou,LIU Xiangjun,ZHANG Qian,et al.Acoustic char⁃ acteristics and fracture toughness of shale in Longmaxi formation [J].Petroleum Geology and Engineering,2019,33(6):43-46.

    • [8] 解经宇,陆洪智,陈磊,等.龙马溪组层状页岩微观非均质性及力学各向异性特征[J].地质科技通报,2021,40(3):67-77.XIE Jingyu,LU Hongzhi,CHEN Lei,et al.Microscopic heteroge⁃ neity and mechanical anisotropy of the laminated shale in Long⁃ maxi Formation[J].Bulletin of Geological Science and Technolo⁃ gy,2021,40(3):67-77.

    • [9] 刘厚彬,余安然,范宇,等.深层脆性页岩力学性能及破坏规律实验研究[J].地下空间与工程学报,2019,15(S2):604-608.LIU Houbin,YU Anran,FAN Yu,et al.Experimental research on mechanical properties anddistruction laws of deep brittle shale [J].Chinese Journal of Underground Space and Engineering,2019,15(S2):604-608.

    • [10] 马天寿,王浩男,刘梦云,等.页岩抗张力学行为各向异性实验与理论研究[J].中南大学学报:自然科学版,2020,51(5):1 391-1 401.MA Tianshou,WANG Haonan,LIU Mengyun,et al.Experimental and theoretical investigation on anisotropy of shale tensile me⁃ chanical behaviors[J].Journal of Central South University:Sci⁃ ence and Technology,2020,51(5):1 391-1 401.

    • [11] 李郑涛,张震,吴鹏程,等.川南深层各向异性页岩井壁失稳力学机理[J].西南石油大学学报:自然科学版,2021,43(4):11-25.LI Zhengtao,ZHANG Zhen,WU Pengcheng,et al.Mechanical mechanisms of wellbore instability of deep anisotropic shale in southern Sichuan[J].Journal of Southwest Petroleum University:Science & Technology Edition,2021,43(4):11-25.

    • [12] 赵金洲,任岚,蒋廷学,等.中国页岩气压裂十年:回顾与展望 [J].天然气工业,2021,41(8):121-142.ZHAO Jinzhou,REN Lan,JIANG Tingxue,et al.Ten years of gas shale fracturing in China:Review and prospect[J].Natural Gas In⁃ dustry,2021,41(8):121-142.

    • [13] 郭建春,赵志红,路千里,等.深层页岩缝网压裂关键力学理论研究进展[J].天然气工业,2021,41(1):102-117.GUO Jianchun,ZHAO Zhihong,LU Qianli,et al.Research prog⁃ ress in key mechanical theories of deep shale network fracturing [J].Natural Gas Industry,2021,41(1):102-117.

    • [14] 翟鸿宇,常旭,朱维,等.基于水力压裂实验的龙马溪组页岩各向异性特征研究[J].中国科学:地球科学,2021,51(3):380-397.ZHAI Hongyu,CHANG Xu,ZHU Wei,et al.Study on anisotropy of Longmaxi Shale using hydraulic fracturing experiment[J].Sci⁃ entia Sinica:Terrae,2021,51(3):380-397.

    • [15] 卢聪,马莅,郭建春,等.酸处理对页岩微观结构及力学性质的影响[J].天然气工业,2019,39(10):59-67.LU Cong,MA Li,GUO Jianchun,et al.Effect of acidizing treat⁃ ment on microstructures and mechanical properties of shale[J].Natural Gas Industry,2019,39(10):59-67.

    • [16] 杨国梁,毕京九,郭伟民,等.加载角度对层理页岩裂纹扩展影响的实验研究[J].爆炸与冲击,2021,41(9):27-39.YANG Guoliang,BI Jingjiu,GUO Weimin,et al.Experimental study on the effect of loading angle on crack propagation in bed⁃ ding shale[J].Explosion and Shock Waves,2021,41(9):27-39.

    • [17] XIE Qin,LI Shengxiang,LIU Xiling,et al.Effect of loading rate on fracture behaviors of shale under type Ⅰ loading[J].Journal of Central South University,2020,27(10):3 118-3 132.

    • [18] 王兴渝,朱哲明,邱豪,等.冲击荷载下层理对页岩内裂纹扩展行为影响规律的研究[J].岩石力学与工程学报,2019,38(8):1 542-1 556.WANG Xingyu,ZHU Zheming,QIU Hao,et al.Study of the effect of stratifications on crack propagation behaviors in shale under impacting loads[J].Chinese Journal of Rock Mechanics and Engi⁃ neering,2019,38(8):1 542-1 556.

    • [19] 管全中,董大忠,王淑芳,等.海相和陆相页岩储层微观结构差异性分析[J].天然气地球科学,2016,27(3):524-531.GUAN Quanzhong,DONG Dazhong,WANG Shufang,et al.Analy⁃ ses on differences of microstructure between marine and lacus⁃ trine facies shale reservoirs[J].Natural Gas Geoscience,2016,27(3):524-531.

    • [20] 高和群,曹海虹,丁安徐,等.海相页岩和陆相页岩等温吸附特性及控制因素[J].天然气地球科学,2013,24(6):1 290-1 297.GAO Hequn,CAO Haihong,DING Anxu,et al.Isotherm adsorp⁃ tion characteristic of marine and continental shale and its control⁃ ling factors[J].Natural Gas Geoscience,2013,24(6):1 290-1 297.

    • [21] 朱彤,俞凌杰,王烽.四川盆地海相、湖相页岩气形成条件对比及开发策略[J].天然气地球科学,2017,28(4):633-641.ZHU Tong,YU Lingjie,WANG Feng.Comparative analysis of the accumulation conditions and development strategies of the marine and lacustrine shale gas from the Sichuan Basin,China[J].Natu⁃ ral Gas Geoscience,2017,28(4):633-641.

    • [22] 张峰,荣莽,乌效鸣,等.陆相与海相页岩水相润湿渗吸特征 [J].科学技术与工程,2019,19(32):126-132.ZHANG Feng,RONG Mang,WU Xiaoming,et al.Characteristics of wettability and imbibition between continental and marine shales[J].Science Technology and Engineering,2019,19(32):126-132.

    • [23] 周立宏,刘学伟,付大其,等.陆相页岩油岩石可压裂性影响因素评价与应用——以沧东凹陷孔二段为例[J].中国石油勘探,2019,24(5):670-678.ZHOU Lihong,LIU Xuewei,FU Daqi,et al.Evaluation and appli⁃ cation of influencing factors on the fracturability of continental shale oil reservoir:a case study of Kong2 Member in Cangdong sag[J].China Petroleum Exploration,2019,24(5):670-678.

    • [24] 夏遵义,马海洋,房堃.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J].石油实验地质,2019,41(1):134-141.XIA Zunyi,MA Haiyang,FANG Kun.Rock mechanical properties and fracability of continental shale in Zhanhua Sag,Bohai Bay Ba⁃ sin[J].Petroleum Geology & Experiment,2019,41(1):134-141.

    • [25] 韩强,屈展,叶正寅,等.基于微米力学实验的页岩Ⅰ型断裂韧度表征[J].力学学报,2019,51(4):1 245-1 254.HAN Qiang,QU Zhan,YE Zhengyin,et al.Study on fracture toughness of modeⅠof shale based on micro-mechanical test[J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(4):1 245-1 254.

    • [26] 刘圣鑫,王宗秀,张林炎,等.基于纳米压痕的页岩微观力学性质分析[J].实验力学,2018,33(6):957-968.LIU Shengxin,WANG Zongxiu,ZHANG Linyan,et al.Microme⁃ chanics properties analysis of shale based on nano-indentation [J].Journal of Experimental Mechanics,2018,33(6):957-968.

    • [27] 时贤,蒋恕,卢双舫,等.利用纳米压痕实验研究层理性页岩岩石力学性质——以渝东南酉阳地区下志留统龙马溪组为例 [J].石油勘探与开发,2019,46(1):155-164.SHI Xian,JIANG Shu,LU Shuangfang,et al.Investigation of me⁃ chanical properties of bedded shale by nanoindentation tests:A case study on Lower Silurian Longmaxi Formation of Youyang ar⁃ ea in southeast Chongqing,China[J].Petroleum Exploration and Development,2019,46(1):155-164.

    • [28] 陈平,韩强,马天寿,等.基于微米压痕实验研究页岩力学特性 [J].石油勘探与开发,2015,42(5):662-670.CHEN Ping,HAN Qiang,MA Tianshou,et al.The mechanical properties of shale based on micro-indentation test[J].Petroleum Exploration and Development,2015,42(5):662-670.

    • [29] 陈立超,王生维.煤岩断裂力学性质对储层压裂改造的影响 [J].天然气地球科学,2020,31(1):122-131.CHEN Lichao,WANG Shengwei.Fracture properties of high-rank coal and its constraint on hydraulic fracturing stimulation of coal reservoir[J].Natural Gas Geoscience,2020,31(1):122-131.

    • [30] 刘俊新,李军润,尹彬瑞,等.基于能量平衡的新脆性指标与页岩失效机制分析[J].岩石力学与工程学报,2022,41(4):734-747.LIU Junxin,LI Junrun,YIN Binrui,et al.New brittleness index based on energy balance and analysis of failure mechanism of shale[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(4):734-747.

    • [31] 温韬,张馨,孙金山,等.基于峰前和峰后能量演化特征的岩石脆性评价[J].地球科学,2021,46(9):3 385-3 396.WEN Tao,ZHANG Xin,SUN Jinshan,et al.Brittle evaluation based on energy evolution at pre-peak and post-peak stage[J].Earth Science,2021,46(9):3 385-3 396.

    • [32] 陈立超,王生维,张典坤.煤岩脆性特征压痕法评价及储层改造意义[J].煤炭学报,2020,45(S2):955-964.CHEN Lichao,WANG Shengwei,ZHANG Diankun.Brittleness evaluation of coal rock based on indentation method and the sig⁃ nificance of coal reservoir stimulation[J].Journal of China Coal Society,2020,45(S2):955-964.