en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

魏操(1996—),男,四川简阳人,在读博士研究生,从事油气井试井及产能评价相关研究。E-mail:caowei1996_cup@163.com。

中图分类号:TE353

文献标识码:A

文章编号:1009-9603(2022)06-0085-10

DOI:10.13673/j.cnki.cn37-1359/te.202107002

参考文献 1
LI Yang,HOU Jiagen,LI Yongqiang.Features and classified hier⁃ archical modeling of carbonate fracture-cavity reservoirs[J].Pe⁃ troleum Exploration and Development,2016,43(4):655-662.
参考文献 2
李阳.塔河油田碳酸盐岩缝洞型油藏开发理论及方法[J].石油学报,2013,34(1):115-121. LI Yang.The theory and method for development of carbonate frac⁃ tured-cavity reservoirs in Tahe oilfield[J].Acta Petrolei Sinica,2013,34(1):115-121.
参考文献 3
刘宝增.塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例[J].中国石油勘探,2020,25(3):83-95.LIU Baozeng.Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area,Tarim Basin-taking Shunbei No.1 and No.5 strike slip fault zones as examples[J].Chi⁃ na Petroleum Exploration,2020,25(3):83-95.
参考文献 4
XIAO Z Y,LI M J,HUANG S Y,et al.Source,oil charging history and filling pathways of the Ordovician carbonate reservoir in the Halahatang Oilfield,Tarim Basin,NW China[J].Marine and Pe⁃ troleum Geology,2016,73(1):59-71.
参考文献 5
LU X B,WANG Y,TIAN F,et al.New insights into the carbonate karstic fault system and reservoir formation in the Southern Tahe area of the Tarim Basin[J].Marine and Petroleum Geology,2017,86(4):587-605.
参考文献 6
姜瑞忠,刘秀伟,王星,等.煤层气藏多分支水平井非稳态产能模型[J].油气地质与采收率,2020,27(3):48-56.JIANG Ruizhong,LIU Xiuwei,WANG Xing,et al.Unsteady pro⁃ ductivity model for multi-branched horizontal wells in coalbed methane reservoir[J].Petroleum Geology and Recovery Efficien⁃ cy,2020,27(3):48-56.
参考文献 7
姜瑞忠,刘秀伟,崔永正,等.非稳态窜流多段压裂水平井井底压力分析[J].油气地质与采收率,2019,26(5):86-95.JIANG Ruizhong,LIU Xiuwei,CUI Yongzheng,et al.Bottomhole pressure analysis of multistage fractured horizontal well during unsteady crossflow[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(5):86-95.
参考文献 8
WARREN J E,ROOT P J.The behavior of naturally fractured res⁃ ervoirs[J].Society of Petroleum Engineers Journal,1963,3(3):245-255.
参考文献 9
KAZEMI H.Pressure transient analysis of naturally fractured res⁃ ervoirs with uniform fracture distribution[J].Society of Petroleum Engineers Journal,1969,9(4):451-462.
参考文献 10
DE SWAAN O A.Analytic solutions for determining naturally frac⁃ tured reservoir properties by well testing[J].Society of Petroleum Engineers Journal,1976,16(3):117-122.
参考文献 11
薛承瑾,戴卫华,张皎生.裂缝与井筒连通的三重介质油藏试井解释方法[J].油气地质与采收率,2003,10(3):39-41.XUE Chengjin,DAI Weihua,ZHANG Jiaosheng.Well test inter⁃ pretation method for triple-media oil reservoir in which fracture communicated with wellbore[J].Petroleum Geology and Recovery Efficiency,2003,10(3):39-41.
参考文献 12
WEI C,CHENG S Q,WANG Y,et al.Practical pressure-transient analysis solutions for a well intercepted by finite conductivity ver⁃ tical fracture in naturally fractured reservoirs[J].Journal of Petro⁃ leum Science and Engineering,2021,204(6):108-127.
参考文献 13
雷刚,张东晓,杨伟,等.缝洞型油藏井钻遇大尺度部分充填溶洞数学模型[J].地球科学——中国地质大学学报,2017,42(8):1 413-1 420.LEI Gang,ZHANG Dongxiao,YANG Wei,et al.Mathematical model for wells drilled in large-scale partially filled cavity in frac⁃ tured-cavity reservoirs[J].Earth Science-Journal of China Uni⁃ versity of Geosciences,2017,42(8):1 413-1 420.
参考文献 14
彭小龙,杜志敏,刘学利,等.大尺度溶洞裂缝型油藏试井新模型[J].西南石油大学学报:自然科学版,2008,30(2):74-77.PENG Xiaolong,DU Zhiming,LIU Xueli,et al.A new well test model for the big size cavity-fracture reservoirs[J].Journal of Southwest Petroleum University:Science & Technology Edition,2008,30(2):74-77.
参考文献 15
蔡明金,张福祥,牛新年,等.塔里木油田碳酸盐岩大尺度溶洞油藏试井新模型研究[J].油气井测试,2014,23(3):5-8.CAI Mingjin,ZHANG Fuxiang,NIU Xinnian,et al.A new well test interpretation model for the large scale karst cave carbonate reservoir in Tarim Oilfield[J].Well Testing,2014,23(3):5-8.
参考文献 16
常学军,姚军,戴卫华,等.裂缝和洞与井筒连通的三重介质油藏试井解释方法研究[J].水动力学研究与进展:A辑,2004,19(3):339-346.CHANG Xuejun,YAO Jun,DAI Weihua,et al.The study of well test interpretation method for a triple medium reservoir[J].Chi⁃ nese Journal of Hydrodynamics,2004,19(3):339-346.
参考文献 17
张福祥,陈方方,彭建新,等.井打在大尺度溶洞内的缝洞型油藏试井模型[J].石油学报,2009,30(6):912-915.ZHANG Fuxiang,CHEN Fangfang,PENG Jianxin,et al.A well test model for wells drilled in big-size cavity of naturally frac⁃ tured vuggy carbonate reservoirs[J].Acta Petrolei Sinica,2009,30(6):912-915.
参考文献 18
林加恩,李亮,杨慧珠.管流与渗流耦合流动理论研究初探[J].西安石油大学学报:自然科学版,2007,22(2):11-15.LIN Jiaen,LI Liang,YANG Huizhu.Primary investigation of the coupling of channel flow with seepage[J].Journal of Xi'an Shiyou University:Natural Science Edition,2007,22(2):11-15.
参考文献 19
尹洪军,邢翠巧,计秉玉,等.大尺度溶洞发育的缝洞型油藏试井解释模型研究[J].特种油气藏,2018,25(5):84-88.YIN Hongjun,XING Cuiqiao,JI Bingyu,et al.Well test interpreta⁃ tion model for fracture-cavity reservoir with well-developed large-scale caves[J].Special Oil & Gas Reservoirs,2018,25(5):84-88.
参考文献 20
杜鑫,卢志炜,李冬梅,等.缝洞型油藏波动和流动耦合模型井底压力分析[J].应用数学和力学,2019,40(4):355-374.DU Xin,LU Zhiwei,LI Dongmei,et al.Pressure transient analysis of the fractured vuggy reservoir model coupling oil flow and wave propagation[J].Applied Mathematics and Mechanics,2019,40(4):355-374.
参考文献 21
杜鑫,李冬梅,徐燕东,等.井洞相连的缝洞型油藏试井新模型 [J].水动力学研究与进展:A辑,2018,33(5):552-561.DU Xin,LI Dongmei,XU Yandong,et al.A new analytical well test model for fractured vuggy reservoirs with vug connecting with wellbore[J].Chinese Journal of Hydrodynamics,2018,33(5):552-561.
参考文献 22
徐燕东.考虑重力因素的断溶体储层“井-洞-缝”模型试井解释方法[J].计算物理,2020,37(2):189-197.XU Yandong.An interpretation method with“well-cave-crack” model of dissolves reservoir considering gravity factors[J].Chi⁃ nese Journal of Computational Physics,2020,37(2):189-197.
参考文献 23
LI Y,YU Q Y,JIA C X,et al.Rate transient analysis for coupling Darcy flow and free flow in bead-string fracture-caved carbonate reservoirs[J].Journal of Petroleum Science and Engineering,2020,195(1):109-119.
参考文献 24
DU X,LI Q Y,LU Z W,et al.Pressure transient analysis for multivug composite fractured vuggy carbonate reservoirs[J].Journal of Petroleum Science and Engineering,2020,193(5):89-111.
参考文献 25
VAN EVERDINGEN A F,HURST W.The application of the La⁃ place transformation to flow problems in reservoirs[J].Journal of Petroleum Technology,1949,1(12):305-324.
参考文献 26
STEHFEST H.Algorithm368:Numerical inversion of Laplace transforms[D5][J].Communications of the ACM,1970,13(1):47-49.
参考文献 27
李爱芬,张东,高成海.封闭定容型缝洞单元注水替油开采规律[J].油气地质与采收率,2012,19(3):94-97.LI Aifen,ZHANG Dong,GAO Chenghai.Law of water injector pro⁃ duction in fractured-vuggy unit with enclosed boundary and con⁃ stant volume[J].Petroleum Geology and Recovery Efficiency,2012,19(3):94-97.
目录contents

    摘要

    顺北油田包含溶洞、高角度裂缝、溶蚀孔洞和岩石基质4种储集介质,溶洞与高角度裂缝串联形成垂向串珠状缝洞体是常见的缝洞连通模式,钻井过程中经常出现钻柱放空和泥浆漏失的现象,这些复杂的地质和工程因素导致常规的多重介质模型难以拟合实测的试井数据。提出多个溶洞区域和裂缝区域串联的物理模型表征复杂的垂向串珠结构,溶洞区域仅包含溶洞介质,流体遵守自由流,裂缝区域包含高角度裂缝、溶蚀孔洞和基质,流体遵守达西定律,进而建立井洞相连的串珠状缝洞体试井模型,绘制试井典型图版,进行参数敏感性分析。结果表明:溶洞储集阶段和线性流阶段是串珠状缝洞体的典型流动阶段;根据试井压力导数曲线的斜率能识别溶洞和常规多重介质;重力影响下试井典型曲线会出现类似于封闭边界的压力响应特征,应采取措施降低重力的影响以提高串珠状缝洞体的开发效果。最后,应用所建模型解释了顺北油田典型井,除能解释常规的储层参数外,还能反演现有试井方法无法解释的溶洞等效半径、溶洞等效高度等参数。

    Abstract

    Shunbei Oilfield contains four types of storage media(i.e.,caves,high-angle fractures,vugs,and rock matrix). The vertical beads-on-string structure formed by caves and high-angle fractures in series is a common fracture-cavity con- nection pattern. During drilling,drilling break and mud loss are prone to occur. These complex geological and engineering factors make it difficult for traditional multiple media models to fit the measured well test data. This paper proposes a physi- cal model with multiple cave regions and multiple fracture regions in connection in series to characterize the complex verti- cal beads-on-string structure. The cave regions only contain caves in which the fluids are assumed to obey free flow. The fracture regions contain high-angle fractures,vugs,and rock matrix in which the flow obeys Darcy’s law. On this basis,the paper constructs a well test model for the beads-on-string structure with a wellbore-cave connection,draws type curves, and conducts a parameter sensitivity analysis. The following results are obtained:the cave storage regime and linear flow re- gime are the typical flow stages of vertical beads-on-string structure;the caves and conventional multiple media can be dis- tinguished by the slope of pressure derivative curves;the type curves under the influence of gravity show pressure response characteristics similar to a closed boundary,so the measures should be taken to reduce the influence of gravity for improv- ing the development effect of the vertical beads-on-string structure. Finally,the proposed model is applied to interpret the representative wells in Shunbei Oilfield. Besides the conventional reservoir parameters,the parameters that cannot be inter- preted by existing well test methods can also be obtained by inversion,such as equivalent cave radius and equivalent cave height.

  • 缝洞型油藏一直是油气田勘探开发的热点,近年来,中国在塔里木盆地取得了较好的勘探成果,陆续开发了塔河油田、顺北油田等多个大型缝洞型油藏[1-2]。顺北油田是由大型构造断裂活动和多期岩溶作用形成的断控岩溶油藏,储层埋深超过 6 km,地面露头、测井、岩心和地震剖面显示储层发育溶洞、高角度裂缝、溶蚀孔洞和岩石基质 4 种介质[3]。溶洞和高角度裂缝的连通关系复杂,水平串珠结构和垂向串珠结构是油藏中最常见的缝洞连通模式[4-5]。钻井过程中,钻杆断裂情况占 23%,断裂最长可达29 m;泥浆漏失情况占63.7%,漏失量最大可达3 483.55 m3。这些复杂的地质情况和工程因素给储层评价带来了困难。

  • 试井分析是评价储层的重要手段[6-7],在 War⁃ ren-Root 模型[8]、Kazemi 模型[9]和 De-swaan 模型[10] 的基础上,中外学者提出了大量缝洞型油藏试井模型。然而,传统的模型一般考虑三重介质,模型的建立基于经典的达西定律,很难精确描述溶洞中流体流动,特别是当井直接钻入溶洞内[11-15]。随着缝洞型油藏的开发,学者们认识到了溶洞的存在。常学军等考虑裂缝和溶洞与井筒相连,提出了三重介质油藏试井分析方法[16],张福祥等建立了井钻入溶洞内的缝洞型油藏试井模型[17],林加恩等使用管流与渗流耦合来解决溶洞内的渗流问题[18],尹洪军等将溶洞考虑为扩大的井筒,建立了溶洞发育的缝洞型油藏试井解释模型[19],杜鑫等联立质量、能量和动量守恒方程,建立了波动和流动耦合模型来分析井底的压力动态[20-21],在文献[21]的基础上,徐燕东分析了重力对试井特征曲线的影响[22]。但是,上述研究仅考虑了一个溶洞的情况,而串珠状溶洞往往是多个溶洞连接在一起。

  • 围绕串珠状溶洞的试井模型和渗流理论研究, LI等建立了横向串珠缝洞体产量递减分析模型[23], DU 等利用多区复合模型建立了横向串珠缝洞体试井模型[24]。然而,上述方法只考虑了溶洞、裂缝和基质3种介质,没有考虑溶蚀孔洞;且没有提出针对垂向串珠结构的试井分析方法。

  • 综合分析油藏的地质情况和工程因素,考虑 4 种介质和重力影响,建立井洞相连的垂向串珠结构试井模型,分析典型特征曲线,将提出的模型在顺北油田进行实例应用和试井解释,提供一种评估串珠状缝洞体储层参数的试井分析方法。

  • 1 模型建立

  • 1.1 物理模型

  • 提出2个溶洞区域和裂缝区域串联的物理模型 (图1a)来表征垂向串珠结构(图1b)。井筒直接和溶洞区域相连,溶洞区域仅包含溶洞介质,等效半径为 rf,溶洞区域 ii=1,2)的顶高和底高分别为 h2(i-1)h2i-1,由于溶洞区域未充填,流体假设为自由流(即流体穿过溶洞区域的压降很小,建模时可以忽略);裂缝区域包含高角度裂缝、溶蚀孔洞和基质介质,裂缝区域jj=1,2)的顶高和底高分别为h2j-1h2j,由于裂缝区域内高角度裂缝比较发育,流动方向考虑为沿垂直方向单向流动,孔洞和基质内流体以拟稳态窜流方式流入裂缝。其他基本假设如下:① 储层原始地层压力为 pi,单相微可压缩原油的体积系数为 B,油井以定产量 q生产。②溶洞区域 i的储集系数为Cvi,井筒储集系数为C,油藏的综合压缩系数为 ct,流体压缩系数为 cf。③裂缝区域 j中,裂缝、孔洞和基质的渗透率分别为Kfj KvjKmj,孔隙度分别为 ϕfj ϕvj ϕmj ,流体黏度分别为 μfjμvjμmj。④考虑重力影响,忽略毛管压力的影响。

  • 图1 垂向串珠结构示意

  • Fig.1 Vertical beads-on-string structure

  • 1.2 数学模型

  • 1.2.1 模型建立

  • 根据基本假设,溶洞区域内流体遵守自由流,流体流过溶洞区域造成的压降可忽略,易得溶洞区域Ⅰ界面处的压力连续方程为:

  • pwf(z=0,t)=pf1z=h1,t=pcv1
    (1)
  • 考虑造成溶洞区域Ⅰ内流体质量发生改变的3 个因素:①溶洞区域Ⅰ内流体流入井筒。②裂缝区域Ⅰ的流体流入溶洞区域Ⅰ。③岩石和流体的压缩性。根据质量守恒定律,得到溶洞区域Ⅰ的质量连续方程为:

  • qB=πrf2Kμf1pf1zz=h1-Ccv1dpcv1dt
    (2)
  • 使用相同的方式,溶洞区域Ⅱ界面处的压力连续方程可表示为:

  • pf1z=h2,t=pf2z=h3,t=pcv2
    (3)
  • 溶洞区域Ⅱ的质量连续方程为:

  • πrf2Kμf1pf1zz=h2=πrf2Kμf2pf2zz=h3-Ccv2dpcv2dt
    (4)
  • 由于裂缝区域Ⅰ的高角度裂缝发育,假设主要的流动为沿着垂直方向的一维线性流动,由于重力方向与流动方向相反,根据达西定律,裂缝区域Ⅰ 任意一点的渗流速度为:

  • vz=-Kμf1pf1z-ρg
    (5)
  • 孔洞和基质内流体以拟稳态窜流的方式流入裂缝介质,裂缝区域Ⅰ的质量守恒方程可写为:

  • (ϕρ)t+ρvz=ρqv1+qm1
    (6)
  • 根据 Warren-Root 模型,介质之间的窜流量可分别表示为:

  • qv1=-αKμv1pv1-pf1
    (7)
  • qm1=-αKμm1pm1-pf1
    (8)
  • 结合岩石和流体的状态方程,将(5),(7)和(8) 式分别代入(6)式,得到裂缝区域Ⅰ中裂缝、孔洞、基质的渗流方程分别为:

  • 2pf1z2-2ρgcfpf1z+αKv1Kf1pv1-pf1+αKm1Kf1pm1-pf1=ϕμctKf1pf1t
    (9)
  • -αKμv1pv1-pf1=ϕctv1pv1t
    (10)
  • -αKμm1pm1-pf1=ϕctm1pm1t
    (11)
  • 同理可得到裂缝区域Ⅱ中裂缝、孔洞、基质的渗流方程分别为:

  • 2pf2z2-2ρgcfpf2z+αKv2Kf2pv2-pf2+αKm2Kf2pm2-pf2=ϕμctKf2pf2t
    (12)
  • -αKμv2pv2-pf2=ϕctv2pv2t
    (13)
  • -αKμm2pm2-pf2=ϕctm2pm2t
    (14)
  • 模型的初始条件是:

  • pf1(t=0)=pf2(t=0)=pcv1(t=0)=pcv2(t=0)=pi
    (15)
  • 考虑了3种外边界条件:

  • pf2(z,t)=pi pf2zz=h4,t=0 pf2z=h4,t=pi
    (16)
  • 1.2.2 模型求解

  • 为了便于求解,将(1)—(4)式和(9)—(16)式无量纲化并进行Laplace变换(表1)。

  • 表1 无量纲定义

  • Table1 Dimensionless definitions

  • 得到溶洞区域的无量纲方程组为:

  • p-flDzD=z1D=p-wfDzD=0=p-cvlD-1s=p-flDzDzD=zID-Cv1Dsp-cv1Dp-flDzD=z2D=p-f2DzD=z3D=p-cv2Dp-flDzDzD=z2D=1M12p-f2DzDzD=z3D-Cv2Dsp-cv2D
    (17)
  • 裂缝区域的无量纲方程组为:

  • 2p-f1DzD2-GDp-f1DzD=sD1(s)p-f1D2p-f2DzD2-GDp-f2DzD=sD2(s)p-f2D
    (18)
  • 其中:

  • (19)
  • M1j=Kμf1Kμfj
    (20)
  • W1j=ϕctf1+v1+m1ϕctfj+vj+mj
    (21)
  • 初始条件是:

  • p-flDtD=0=p-f2DtD=0=p-v1DtD=0=p-v2DtD=0=0
    (22)
  • 外边界条件是:

  • p-f2DzD,s=0 p-f2DzDzD=z4D,s=0 p-f2DzD=z4D,s=0
    (23)
  • 求解(18)式,得到模型的通解:

  • p-f1DzD,s=c1er1zD+c2er2zDp-f2DzD,s=c3er3zD+c4er4zD
    (24)
  • 其中:

  • r1=GD+GD2+4sD1(s)2
    (25)
  • r2=GD-GD2+4sD1(s)2
    (26)
  • r3=GD+GD2+4sD2(s)2
    (27)
  • r4=GD-GD2+4sD2(s)2
    (28)
  • 根据边界条件和初始条件即可确定c1c4,获得模型的唯一解。

  • 对于无限大边界:

  • c1=er2z2D-r2z1Dser1z2Dr2-CvlDs-r1-Cv1Dser1-r2z1D+r2z2D-r2-Cv1Dsr1-r2er1z2Dr4M12-Cv2Ds-r2c2=-1s+c1r1-Cv1Dser1z1Dr2-Cv1Dser2z1Dc3=0c4=c1r1-r2er1z2Dr4M12-Cv2Ds-r2er4z3D
    (29)
  • 对于封闭边界:

  • c1=er2z2Dsr2-CvlDser2z1Der1z2D-r1-Cv1Dsr2-Cv1Dser1-r2z1D+r2z2D+r1-r2X1r4er4-r3z4D+r3z3D+r1z2D-r3er1z2D+r4z3Dc2=-1s+c1r1-Cv1Dser1z1Dr2-Cv1Dser2z1Dc3=-c4r4r3er4-r3z4Dc4=c1r3r1-r2er1z2DX1X1=r3r4M12-r2-Cv2Dser4z3D-r4r3M12-r2-Cv2Dser4-r3z4D+r3z3D
    (30)
  • 对于定压边界:

  • c1=er2z2Dsr2-CvlDser2z1Der1z2D-r1-CvlDsr2-CviDser1-r2z1D+r2z2D+r1-r2X2er4-r3z4D+r3z3D+r1z2D-er1z2D+r4z3Dc2=-1s+c1r1-CvlDser1z1Dr2-Cv1Dser2z1Dc3=-c4er4-r3z4Dc4=c1r1-r2er1z2DX2X2=r4M12-r2-Cv2Dser4z3D-r3M12-r2-Cv2Dser4-r3z4D+r3z3D
    (31)
  • c1c2代入(1)式即可得到模型的井底压力解:

  • p-wfD=c1er1z1ID+c2er2z1ID
    (32)
  • 如果考虑井储和表皮效应,利用杜哈美原理获得井底压力解[25]

  • p-wfD,CS=p-wfD+Ss1+cDssp-wfD+S
    (33)
  • 对(33)式进行 Stehfest 数值反演即可得到实空间下的井底压力解,绘制双对数图版[26]

  • 2 典型图版和流动阶段

  • 给定基础参数包括:CD=0.05,S=0.1,Cv1D=10, Cv2D=500,z1D=1,z2D=5,z3D=10,z4D=20,ωf =0.01,ωv= 0.14,ωm=0.85,λv=0.001,λm=0.000 1,GD=0,M12=1, W12=1,绘制了垂向串珠结构的试井典型曲线(图2,图3)。由图2和图3可见,试井典型曲线可划分为4 个典型流动阶段:①井筒储集阶段,压力与压力导数的斜率为 1。②溶洞Ⅰ储集阶段,反映溶洞Ⅰ内的流体流动,典型特征是压力导数曲线“下凹”且出现单位斜率直线。③溶洞Ⅱ储集阶段,反映溶洞Ⅱ 内的流体流动,典型特征与溶洞Ⅰ储集阶段的相同。④边界响应段,对于封闭边界,压力和压力导数曲线上翘且斜率为1;对于无限大边界,压力和压力导数曲线的斜率为 1/2,反映裂缝区域线性流,这与常规无限大边界的径向流特征有差别;对于定压边界,压力导数曲线下掉。值得注意的是双溶洞模型中裂缝区域的流动特征被溶洞区域掩盖了。为了阐述完整的流动阶段,给出单溶洞单裂缝区域串联的试井典型曲线。裂缝区域主要包含3个流动阶段(图3):①孔洞窜流阶段,压力导数曲线“下凹”。 ②基质窜流阶段,压力导数曲线“下凹”。③线性流阶段,压力和压力导数曲线的斜率为1/2。与溶洞介质引起的压力导数曲线“下凹”不同,常规多重介质之间窜流引起的压力导数曲线“下凹”的斜率往往不等于1。这为识别溶洞和常规的多重介质提供了理论依据。

  • 图2 双溶洞双裂缝区域模型试井典型图版

  • Fig.2 Type curves of two-cave-two-region model

  • 图3 单溶洞单裂缝区域模型试井典型图版

  • Fig.3 Type curves of single-cave-single-region model

  • 另外,分析了重力对试井典型曲线的影响。与封闭边界相似,重力影响下试井典型曲线在后期出现斜率为1的压力和压力导数曲线(图3)。因此,开发串珠状缝洞油藏应考虑重力对流动的影响。顺北油田采取的“注水替油”措施减轻了重力的影响,已经取得了较好的开发效果[27]

  • 3 参数敏感性

  • 给定基础参数 CD=0.05,S=0.1,Cv1D=10,z1D=1, z2D=5,z3D=10,z4D=20,ωf =0.01,ωv=0.14,ωm=0.85,λv= 0.001,λm=0.000 1,GD=0,M12=1,W12=1,分析参数敏感性。

  • 3.1 无量纲溶洞储集系数

  • 设置3组不同无量纲溶洞储集系数,即Cv2D分别为300,500,700。由图4可见,无量纲溶洞储集系数主要影响溶洞储集阶段的宽度和深度,无量纲溶洞储集系数越大,下凹的宽度和深度越大。

  • 图4 无量纲溶洞储集系数对试井典型曲线的影响

  • Fig.4 Effect of dimensionless cave storage coefficient on type curves

  • 3.2 裂缝长度

  • 保持溶洞Ⅰ的高度不变,改变Z2D来表示不同的裂缝长度,即Z2D分别为3,5,7。由图5可见,裂缝长度主要影响溶洞Ⅱ储集阶段的出现时间,裂缝长度越大,溶洞Ⅱ储集阶段出现时间越晚,因为压力波需要更长的时间穿过裂缝区域。

  • 3.3 无量纲重力系数

  • 设置 3组不同无量纲重力系数,即 GD分别为 0,0.01,0.001。由图6可见,重力影响下试井典型曲线在后期会出现斜率为 1 的压力和压力导数曲线,曲线上翘的时间与无量纲重力系数有关,无量纲重力系数越大,曲线上翘的时间越早。因此,重力可以视为封闭边界,重力的大小相当于封闭边界的距离。

  • 图5 裂缝长度对试井典型曲线的影响

  • Fig.5 Effect of fracture length on type curves

  • 图6 无量纲重力系数对试井典型曲线的影响

  • Fig.6 Effect of dimensionless gravity coefficient on type curves

  • 3.4 窜流系数

  • 设置 3 组不同的基质窜流系数,即 λm 分别为 0.000 1,0.000 2,0.000 3,来分析其对试井典型曲线的影响。由图7可见,与常规认识一致,窜流系数主要影响窜流阶段出现的时间,窜流系数越大,窜流阶段出现的时间越早。

  • 图7 窜流系数对试井典型曲线的影响

  • Fig.7 Effect of interporosity flow coefficient on type curves

  • 3.5 储容比

  • 改变孔洞储容比和基质储容比,即 ωv分别为 0.10,0.14,0.18,ωm分别为0.81,0.85,0.89,来分析其对试井典型曲线的影响。由图8 可见,储容比主要影响窜流阶段下凹的深度,储容比越大,窜流阶段下凹的深度越大。

  • 图8 储容比对试井典型曲线的影响

  • Fig.8 Effect of storativity ratio on type curves

  • 4 实例应用

  • 顺北油田是塔里木盆地新发现的断控岩溶油藏,构造破碎带控制着油藏的主要储量,地震剖面显示构造破碎带发育大量的串珠状缝洞体,钻井过程中经常发生钻杆放空和泥浆漏失的情况。现有试井分析方法解释的参数很难与地质情况吻合,为了阐述新建模型的应用,选取顺北油田典型井进行解释。

  • 顺北 Y 井钻入垂向串珠状缝洞体(图9),日产量为 65 m3 /d,压力恢复测试时长为 255 h,实测试井曲线出现了溶洞储集阶段和窜流阶段,该井基础参数包括:井径为0.1 m,储层有效孔隙度为10%,综合压缩系数为 0.000 836 MPa-1,地层原油体积系数为 1.114,地层原油黏度为 2.242 mPa·s。使用提出的模型对该井进行解释,理论双对数曲线与实测数据的拟合效果较好(图10),表2列出了试井解释结果,油藏的平均渗透率为 796 mD,渗透性较好。此外,还获得了常规试井方法无法解释的溶洞等效半径为52 m,溶洞Ⅰ等效高度为2.6 m。

  • 图9 顺北Y井地震剖面

  • Fig.9 Seismic profile of Well Shunbei Y

  • 图10 顺北Y井压力和压力导数拟合结果

  • Fig.10 Fitting results of pressure and its derivative of Well Shunbei Y

  • 表2 顺北Y井解释结果

  • Table2 Interpretation results of Well Shunbei Y

  • 5 结论

  • 详细分析了3种外边界条件下垂向串珠状缝洞体的试井典型曲线,其典型流动阶段包括溶洞储集阶段和裂缝区域线性流阶段。

  • 溶洞储集阶段和窜流阶段的压力导数曲线都会出现“下凹”,溶洞储集阶段的典型特征是压力导数曲线的斜率为 1,而窜流阶段压力导数曲线的斜率不等于 1,这为通过试井技术识别溶洞和常规的多重介质提供了理论依据。

  • 在串珠状缝洞体中,重力影响下试井典型曲线会出现类似封闭边界的压力响应特征,开发过程中应采取措施减轻重力的影响以提高串珠状缝洞型油藏的开发效果,顺北油田实施的“注水替油”措施已取得不错的效果。

  • 顺北油田发育垂向串珠状缝洞体,应用新建模型解释了一口典型井,除能解释常规的储层参数外,也能反演现有试井方法无法解释的溶洞等效半径、溶洞等效高度等参数。

  • 符号解释

  • B——原油体积系数;

  • c1c2c3c4——常数;

  • cf ——流体压缩系数,Pa-1

  • ct ——综合压缩系数,Pa-1

  • 下标cv——溶洞;

  • C——井筒储集系数,m3 /Pa;

  • Ccv1——溶洞区域Ⅰ储集系数,m3 /MPa;

  • Ccv2——溶洞区域Ⅱ储集系数,m3 /MPa;

  • Cvi ——溶洞区域i储集系数,m3 /Pa;

  • 下标D——无量纲;

  • D js)——裂缝区域j窜流函数;

  • 下标f——裂缝介质;

  • g——重力加速度,m/s2,其值为9.8;

  • GD——无量纲重力系数;

  • h——溶洞等效高度,m;

  • h1——溶洞区域Ⅰ底深,即溶洞Ⅰ等效高度,m;

  • h2——裂缝区域Ⅰ底深,m;

  • h3——溶洞区域Ⅱ底深,m;

  • h4——裂缝区域Ⅱ底深,m;

  • 下标i——溶洞序号,分别为1和2;

  • 下标j——裂缝序号,分别为1和2;

  • K——渗透率,D;

  • KfjKmjKvj ——裂缝区域 j 的裂缝、基质和孔洞渗透率, D;

  • KfKmKv——裂缝、基质和孔洞渗透率,D;

  • 下标m——基质介质;

  • M1j ——裂缝区域Ⅰ和裂缝区域j的流度比;

  • pcvi ——第i个溶洞区域压力,Pa;

  • pcv1——溶洞区域Ⅰ压力,Pa;

  • pcv2——溶洞区域Ⅱ压力,Pa;

  • pf ——裂缝压力,Pa;

  • pfj ——裂缝区域j裂缝介质压力,Pa;

  • pf1——裂缝区域Ⅰ裂缝介质压力,Pa;

  • pf2——裂缝区域Ⅱ裂缝介质压力,Pa;

  • pi ——原始地层压力,Pa;

  • pm1——裂缝区域Ⅰ基质介质压力,Pa;

  • pm2——裂缝区域Ⅱ基质介质压力,Pa;

  • pv1——裂缝区域Ⅰ孔洞介质压力,Pa;

  • pv2——裂缝区域Ⅱ孔洞介质压力,Pa;

  • pwf——井底流压,Pa;

  • pwf,CS——考虑井储表皮的井底流压,Pa;

  • q——油井产量,m3 /s;

  • qm1——裂缝区域Ⅰ基质向裂缝的窜流量,m3 /s;

  • qv1——裂缝区域Ⅰ孔洞向裂缝的窜流量,m3 /s;

  • r——径向坐标系;

  • r1r2r3r4——常数;

  • rf ——溶洞等效半径,m;

  • rw——井筒半径,m;

  • s——Laplace变量,无量纲;

  • S——表皮系数;

  • t——生产时间,s;

  • 下标v——孔洞介质;

  • vz——裂缝区域任意一点的渗流速度,m/s;

  • W1j ——裂缝区域Ⅰ和裂缝区域j的储容比;

  • X1X2——常数;

  • z——纵向距离,m;

  • zDz1Dz2Dz3Dz4D——无量纲纵向距离;

  • α——形状因子;

  • λmλv——基质、孔洞窜流系数;

  • λmjλvj——裂缝区域j的基质、孔洞窜流系数;

  • μ——流体黏度,Pa·s;

  • μfj μmjμvj ——裂缝区域j的裂缝、基质和孔洞流体黏度, Pa·s;

  • ρ——流体密度,kg/m3

  • ϕ——孔隙度;

  • ϕfj ϕmjϕvj ——裂缝区域j的裂缝、基质和孔洞孔隙度;

  • ωf ωmωv——裂缝、基质和孔洞储容比;

  • ωfjωmjωvj ——裂缝区域j的裂缝、基质、孔洞储容比。

  • 参考文献

    • [1] LI Yang,HOU Jiagen,LI Yongqiang.Features and classified hier⁃ archical modeling of carbonate fracture-cavity reservoirs[J].Pe⁃ troleum Exploration and Development,2016,43(4):655-662.

    • [2] 李阳.塔河油田碳酸盐岩缝洞型油藏开发理论及方法[J].石油学报,2013,34(1):115-121. LI Yang.The theory and method for development of carbonate frac⁃ tured-cavity reservoirs in Tahe oilfield[J].Acta Petrolei Sinica,2013,34(1):115-121.

    • [3] 刘宝增.塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例[J].中国石油勘探,2020,25(3):83-95.LIU Baozeng.Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area,Tarim Basin-taking Shunbei No.1 and No.5 strike slip fault zones as examples[J].Chi⁃ na Petroleum Exploration,2020,25(3):83-95.

    • [4] XIAO Z Y,LI M J,HUANG S Y,et al.Source,oil charging history and filling pathways of the Ordovician carbonate reservoir in the Halahatang Oilfield,Tarim Basin,NW China[J].Marine and Pe⁃ troleum Geology,2016,73(1):59-71.

    • [5] LU X B,WANG Y,TIAN F,et al.New insights into the carbonate karstic fault system and reservoir formation in the Southern Tahe area of the Tarim Basin[J].Marine and Petroleum Geology,2017,86(4):587-605.

    • [6] 姜瑞忠,刘秀伟,王星,等.煤层气藏多分支水平井非稳态产能模型[J].油气地质与采收率,2020,27(3):48-56.JIANG Ruizhong,LIU Xiuwei,WANG Xing,et al.Unsteady pro⁃ ductivity model for multi-branched horizontal wells in coalbed methane reservoir[J].Petroleum Geology and Recovery Efficien⁃ cy,2020,27(3):48-56.

    • [7] 姜瑞忠,刘秀伟,崔永正,等.非稳态窜流多段压裂水平井井底压力分析[J].油气地质与采收率,2019,26(5):86-95.JIANG Ruizhong,LIU Xiuwei,CUI Yongzheng,et al.Bottomhole pressure analysis of multistage fractured horizontal well during unsteady crossflow[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(5):86-95.

    • [8] WARREN J E,ROOT P J.The behavior of naturally fractured res⁃ ervoirs[J].Society of Petroleum Engineers Journal,1963,3(3):245-255.

    • [9] KAZEMI H.Pressure transient analysis of naturally fractured res⁃ ervoirs with uniform fracture distribution[J].Society of Petroleum Engineers Journal,1969,9(4):451-462.

    • [10] DE SWAAN O A.Analytic solutions for determining naturally frac⁃ tured reservoir properties by well testing[J].Society of Petroleum Engineers Journal,1976,16(3):117-122.

    • [11] 薛承瑾,戴卫华,张皎生.裂缝与井筒连通的三重介质油藏试井解释方法[J].油气地质与采收率,2003,10(3):39-41.XUE Chengjin,DAI Weihua,ZHANG Jiaosheng.Well test inter⁃ pretation method for triple-media oil reservoir in which fracture communicated with wellbore[J].Petroleum Geology and Recovery Efficiency,2003,10(3):39-41.

    • [12] WEI C,CHENG S Q,WANG Y,et al.Practical pressure-transient analysis solutions for a well intercepted by finite conductivity ver⁃ tical fracture in naturally fractured reservoirs[J].Journal of Petro⁃ leum Science and Engineering,2021,204(6):108-127.

    • [13] 雷刚,张东晓,杨伟,等.缝洞型油藏井钻遇大尺度部分充填溶洞数学模型[J].地球科学——中国地质大学学报,2017,42(8):1 413-1 420.LEI Gang,ZHANG Dongxiao,YANG Wei,et al.Mathematical model for wells drilled in large-scale partially filled cavity in frac⁃ tured-cavity reservoirs[J].Earth Science-Journal of China Uni⁃ versity of Geosciences,2017,42(8):1 413-1 420.

    • [14] 彭小龙,杜志敏,刘学利,等.大尺度溶洞裂缝型油藏试井新模型[J].西南石油大学学报:自然科学版,2008,30(2):74-77.PENG Xiaolong,DU Zhiming,LIU Xueli,et al.A new well test model for the big size cavity-fracture reservoirs[J].Journal of Southwest Petroleum University:Science & Technology Edition,2008,30(2):74-77.

    • [15] 蔡明金,张福祥,牛新年,等.塔里木油田碳酸盐岩大尺度溶洞油藏试井新模型研究[J].油气井测试,2014,23(3):5-8.CAI Mingjin,ZHANG Fuxiang,NIU Xinnian,et al.A new well test interpretation model for the large scale karst cave carbonate reservoir in Tarim Oilfield[J].Well Testing,2014,23(3):5-8.

    • [16] 常学军,姚军,戴卫华,等.裂缝和洞与井筒连通的三重介质油藏试井解释方法研究[J].水动力学研究与进展:A辑,2004,19(3):339-346.CHANG Xuejun,YAO Jun,DAI Weihua,et al.The study of well test interpretation method for a triple medium reservoir[J].Chi⁃ nese Journal of Hydrodynamics,2004,19(3):339-346.

    • [17] 张福祥,陈方方,彭建新,等.井打在大尺度溶洞内的缝洞型油藏试井模型[J].石油学报,2009,30(6):912-915.ZHANG Fuxiang,CHEN Fangfang,PENG Jianxin,et al.A well test model for wells drilled in big-size cavity of naturally frac⁃ tured vuggy carbonate reservoirs[J].Acta Petrolei Sinica,2009,30(6):912-915.

    • [18] 林加恩,李亮,杨慧珠.管流与渗流耦合流动理论研究初探[J].西安石油大学学报:自然科学版,2007,22(2):11-15.LIN Jiaen,LI Liang,YANG Huizhu.Primary investigation of the coupling of channel flow with seepage[J].Journal of Xi'an Shiyou University:Natural Science Edition,2007,22(2):11-15.

    • [19] 尹洪军,邢翠巧,计秉玉,等.大尺度溶洞发育的缝洞型油藏试井解释模型研究[J].特种油气藏,2018,25(5):84-88.YIN Hongjun,XING Cuiqiao,JI Bingyu,et al.Well test interpreta⁃ tion model for fracture-cavity reservoir with well-developed large-scale caves[J].Special Oil & Gas Reservoirs,2018,25(5):84-88.

    • [20] 杜鑫,卢志炜,李冬梅,等.缝洞型油藏波动和流动耦合模型井底压力分析[J].应用数学和力学,2019,40(4):355-374.DU Xin,LU Zhiwei,LI Dongmei,et al.Pressure transient analysis of the fractured vuggy reservoir model coupling oil flow and wave propagation[J].Applied Mathematics and Mechanics,2019,40(4):355-374.

    • [21] 杜鑫,李冬梅,徐燕东,等.井洞相连的缝洞型油藏试井新模型 [J].水动力学研究与进展:A辑,2018,33(5):552-561.DU Xin,LI Dongmei,XU Yandong,et al.A new analytical well test model for fractured vuggy reservoirs with vug connecting with wellbore[J].Chinese Journal of Hydrodynamics,2018,33(5):552-561.

    • [22] 徐燕东.考虑重力因素的断溶体储层“井-洞-缝”模型试井解释方法[J].计算物理,2020,37(2):189-197.XU Yandong.An interpretation method with“well-cave-crack” model of dissolves reservoir considering gravity factors[J].Chi⁃ nese Journal of Computational Physics,2020,37(2):189-197.

    • [23] LI Y,YU Q Y,JIA C X,et al.Rate transient analysis for coupling Darcy flow and free flow in bead-string fracture-caved carbonate reservoirs[J].Journal of Petroleum Science and Engineering,2020,195(1):109-119.

    • [24] DU X,LI Q Y,LU Z W,et al.Pressure transient analysis for multivug composite fractured vuggy carbonate reservoirs[J].Journal of Petroleum Science and Engineering,2020,193(5):89-111.

    • [25] VAN EVERDINGEN A F,HURST W.The application of the La⁃ place transformation to flow problems in reservoirs[J].Journal of Petroleum Technology,1949,1(12):305-324.

    • [26] STEHFEST H.Algorithm368:Numerical inversion of Laplace transforms[D5][J].Communications of the ACM,1970,13(1):47-49.

    • [27] 李爱芬,张东,高成海.封闭定容型缝洞单元注水替油开采规律[J].油气地质与采收率,2012,19(3):94-97.LI Aifen,ZHANG Dong,GAO Chenghai.Law of water injector pro⁃ duction in fractured-vuggy unit with enclosed boundary and con⁃ stant volume[J].Petroleum Geology and Recovery Efficiency,2012,19(3):94-97.

  • 参考文献

    • [1] LI Yang,HOU Jiagen,LI Yongqiang.Features and classified hier⁃ archical modeling of carbonate fracture-cavity reservoirs[J].Pe⁃ troleum Exploration and Development,2016,43(4):655-662.

    • [2] 李阳.塔河油田碳酸盐岩缝洞型油藏开发理论及方法[J].石油学报,2013,34(1):115-121. LI Yang.The theory and method for development of carbonate frac⁃ tured-cavity reservoirs in Tahe oilfield[J].Acta Petrolei Sinica,2013,34(1):115-121.

    • [3] 刘宝增.塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例[J].中国石油勘探,2020,25(3):83-95.LIU Baozeng.Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area,Tarim Basin-taking Shunbei No.1 and No.5 strike slip fault zones as examples[J].Chi⁃ na Petroleum Exploration,2020,25(3):83-95.

    • [4] XIAO Z Y,LI M J,HUANG S Y,et al.Source,oil charging history and filling pathways of the Ordovician carbonate reservoir in the Halahatang Oilfield,Tarim Basin,NW China[J].Marine and Pe⁃ troleum Geology,2016,73(1):59-71.

    • [5] LU X B,WANG Y,TIAN F,et al.New insights into the carbonate karstic fault system and reservoir formation in the Southern Tahe area of the Tarim Basin[J].Marine and Petroleum Geology,2017,86(4):587-605.

    • [6] 姜瑞忠,刘秀伟,王星,等.煤层气藏多分支水平井非稳态产能模型[J].油气地质与采收率,2020,27(3):48-56.JIANG Ruizhong,LIU Xiuwei,WANG Xing,et al.Unsteady pro⁃ ductivity model for multi-branched horizontal wells in coalbed methane reservoir[J].Petroleum Geology and Recovery Efficien⁃ cy,2020,27(3):48-56.

    • [7] 姜瑞忠,刘秀伟,崔永正,等.非稳态窜流多段压裂水平井井底压力分析[J].油气地质与采收率,2019,26(5):86-95.JIANG Ruizhong,LIU Xiuwei,CUI Yongzheng,et al.Bottomhole pressure analysis of multistage fractured horizontal well during unsteady crossflow[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(5):86-95.

    • [8] WARREN J E,ROOT P J.The behavior of naturally fractured res⁃ ervoirs[J].Society of Petroleum Engineers Journal,1963,3(3):245-255.

    • [9] KAZEMI H.Pressure transient analysis of naturally fractured res⁃ ervoirs with uniform fracture distribution[J].Society of Petroleum Engineers Journal,1969,9(4):451-462.

    • [10] DE SWAAN O A.Analytic solutions for determining naturally frac⁃ tured reservoir properties by well testing[J].Society of Petroleum Engineers Journal,1976,16(3):117-122.

    • [11] 薛承瑾,戴卫华,张皎生.裂缝与井筒连通的三重介质油藏试井解释方法[J].油气地质与采收率,2003,10(3):39-41.XUE Chengjin,DAI Weihua,ZHANG Jiaosheng.Well test inter⁃ pretation method for triple-media oil reservoir in which fracture communicated with wellbore[J].Petroleum Geology and Recovery Efficiency,2003,10(3):39-41.

    • [12] WEI C,CHENG S Q,WANG Y,et al.Practical pressure-transient analysis solutions for a well intercepted by finite conductivity ver⁃ tical fracture in naturally fractured reservoirs[J].Journal of Petro⁃ leum Science and Engineering,2021,204(6):108-127.

    • [13] 雷刚,张东晓,杨伟,等.缝洞型油藏井钻遇大尺度部分充填溶洞数学模型[J].地球科学——中国地质大学学报,2017,42(8):1 413-1 420.LEI Gang,ZHANG Dongxiao,YANG Wei,et al.Mathematical model for wells drilled in large-scale partially filled cavity in frac⁃ tured-cavity reservoirs[J].Earth Science-Journal of China Uni⁃ versity of Geosciences,2017,42(8):1 413-1 420.

    • [14] 彭小龙,杜志敏,刘学利,等.大尺度溶洞裂缝型油藏试井新模型[J].西南石油大学学报:自然科学版,2008,30(2):74-77.PENG Xiaolong,DU Zhiming,LIU Xueli,et al.A new well test model for the big size cavity-fracture reservoirs[J].Journal of Southwest Petroleum University:Science & Technology Edition,2008,30(2):74-77.

    • [15] 蔡明金,张福祥,牛新年,等.塔里木油田碳酸盐岩大尺度溶洞油藏试井新模型研究[J].油气井测试,2014,23(3):5-8.CAI Mingjin,ZHANG Fuxiang,NIU Xinnian,et al.A new well test interpretation model for the large scale karst cave carbonate reservoir in Tarim Oilfield[J].Well Testing,2014,23(3):5-8.

    • [16] 常学军,姚军,戴卫华,等.裂缝和洞与井筒连通的三重介质油藏试井解释方法研究[J].水动力学研究与进展:A辑,2004,19(3):339-346.CHANG Xuejun,YAO Jun,DAI Weihua,et al.The study of well test interpretation method for a triple medium reservoir[J].Chi⁃ nese Journal of Hydrodynamics,2004,19(3):339-346.

    • [17] 张福祥,陈方方,彭建新,等.井打在大尺度溶洞内的缝洞型油藏试井模型[J].石油学报,2009,30(6):912-915.ZHANG Fuxiang,CHEN Fangfang,PENG Jianxin,et al.A well test model for wells drilled in big-size cavity of naturally frac⁃ tured vuggy carbonate reservoirs[J].Acta Petrolei Sinica,2009,30(6):912-915.

    • [18] 林加恩,李亮,杨慧珠.管流与渗流耦合流动理论研究初探[J].西安石油大学学报:自然科学版,2007,22(2):11-15.LIN Jiaen,LI Liang,YANG Huizhu.Primary investigation of the coupling of channel flow with seepage[J].Journal of Xi'an Shiyou University:Natural Science Edition,2007,22(2):11-15.

    • [19] 尹洪军,邢翠巧,计秉玉,等.大尺度溶洞发育的缝洞型油藏试井解释模型研究[J].特种油气藏,2018,25(5):84-88.YIN Hongjun,XING Cuiqiao,JI Bingyu,et al.Well test interpreta⁃ tion model for fracture-cavity reservoir with well-developed large-scale caves[J].Special Oil & Gas Reservoirs,2018,25(5):84-88.

    • [20] 杜鑫,卢志炜,李冬梅,等.缝洞型油藏波动和流动耦合模型井底压力分析[J].应用数学和力学,2019,40(4):355-374.DU Xin,LU Zhiwei,LI Dongmei,et al.Pressure transient analysis of the fractured vuggy reservoir model coupling oil flow and wave propagation[J].Applied Mathematics and Mechanics,2019,40(4):355-374.

    • [21] 杜鑫,李冬梅,徐燕东,等.井洞相连的缝洞型油藏试井新模型 [J].水动力学研究与进展:A辑,2018,33(5):552-561.DU Xin,LI Dongmei,XU Yandong,et al.A new analytical well test model for fractured vuggy reservoirs with vug connecting with wellbore[J].Chinese Journal of Hydrodynamics,2018,33(5):552-561.

    • [22] 徐燕东.考虑重力因素的断溶体储层“井-洞-缝”模型试井解释方法[J].计算物理,2020,37(2):189-197.XU Yandong.An interpretation method with“well-cave-crack” model of dissolves reservoir considering gravity factors[J].Chi⁃ nese Journal of Computational Physics,2020,37(2):189-197.

    • [23] LI Y,YU Q Y,JIA C X,et al.Rate transient analysis for coupling Darcy flow and free flow in bead-string fracture-caved carbonate reservoirs[J].Journal of Petroleum Science and Engineering,2020,195(1):109-119.

    • [24] DU X,LI Q Y,LU Z W,et al.Pressure transient analysis for multivug composite fractured vuggy carbonate reservoirs[J].Journal of Petroleum Science and Engineering,2020,193(5):89-111.

    • [25] VAN EVERDINGEN A F,HURST W.The application of the La⁃ place transformation to flow problems in reservoirs[J].Journal of Petroleum Technology,1949,1(12):305-324.

    • [26] STEHFEST H.Algorithm368:Numerical inversion of Laplace transforms[D5][J].Communications of the ACM,1970,13(1):47-49.

    • [27] 李爱芬,张东,高成海.封闭定容型缝洞单元注水替油开采规律[J].油气地质与采收率,2012,19(3):94-97.LI Aifen,ZHANG Dong,GAO Chenghai.Law of water injector pro⁃ duction in fractured-vuggy unit with enclosed boundary and con⁃ stant volume[J].Petroleum Geology and Recovery Efficiency,2012,19(3):94-97.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告