-
目前中外主要中高渗透常规砂岩油田均已进入成熟开发阶段,含水率多大于 90%,可采储量采出程度大于 80%[1-5]。世界上最著名的几个砂岩油田如东德克萨斯油田、大庆喇萨杏油田和罗马仕金油田的可采储量采出程度分别为 97.5%,92.7% 和 77.7%,其中东德克萨斯油田含水率大于 99%,大庆喇萨杏油田含水率达94.6%[5-6]。
-
中外636个常规砂岩油藏天然能量一次采收率和最终采收率统计分布中值分别为 15% 和 38.1%[7]。而以水驱开发为主要提高采收率方法的 477 个常规砂岩油藏(渗透率大于 50 mD,原油黏度小于50 mPa·s)最终采收率统计分布中值为43.4%,比笼统统计分析结果的 38.1% 高出 5.3%[7],更实际反映了常规砂岩油藏水驱开发的最终采收率状况。中国有研究结果给出含水率大于 80% 的高含水油田采出程度为 33.47%,最终采收率为 41%,部分油田达到45%以上[1,8]。统计结果表明,常规砂岩油田注水开发最终采收率多为35%~50%。特高含水阶段高油水比条件下产出液的处理费用大幅度上升,大量生产井被迫关井停产是油田开发面临的主要挑战。与国外油田相比,中国众多的老油田产层为多层砂岩,非均质性更强且原油性质相对较差,进一步提高水驱采收率的难度更大。
-
常规提高采收率的方法包括 2 方面:①通过改善油藏管理,优化井网和分层注水,利用加密井、水平井等措施和技术扩大波及体积提高最终采收率[7-15]。②利用强化采油(EOR)方法进一步扩大波及体积和提高驱油效率[16-18]。但 EOR 方法需较大投入,在低油价条件下很难获得经济效益。大量研究表明,注水开发过程中润湿性的变化有助于改善最终采收率,长期水驱可起到既扩大波及体积又提高驱油效率的双重作用[2-3,18-20]。为此,笔者深入分析成熟开发油田进入特高含水和极限含水阶段进一步改善注水开发效果提高采收率的可行性,并提出技术对策。
-
1 可行性分析
-
水驱开发是最为成熟、经济有效且应用最为广泛的以保持油藏压力为主要目标的二次采油方法。室内实验及成熟开发油田实践表明,特高含水阶段采油给油田开发带来了挑战,同时长期注水冲刷导致油藏条件变化也在一定程度上为进一步提高采收率带来了机遇,在含水率大于98%的条件下高孔隙体积倍数注水可提高驱油效率。根据油藏具体条件,通过水驱开发进一步提高最终采收率达到 50%~70%具有可行性。
-
1.1 室内实验分析
-
1.1.1 润湿性改变
-
高孔隙体积倍数水驱实验和注水开发晚期的取心资料表明长期注水导致储层孔隙结构发生变化。具体表现在岩石表面的黏土矿物变少,大孔隙比例增多,孔隙度、渗透率增加,而这些变化在中高渗透储层和河道砂岩中的表现更为突出[19-21]。储层岩石经大量注入水冲刷后,原来具亲油特征的表面特性逐渐转变为偏亲水性。
-
大庆油田长垣北部萨葡油层原始储层岩石为偏亲油性,经长期水驱,最终含水饱和度为 60%~99% 的岩样全部转化为偏亲水性。亲水性增强,有利于进一步提高驱油效率[19-20]。与早期评价结果相比较,大庆喇萨杏油田水驱最终采收率提高约为 5%~10%[1,11]。
-
1.1.2 驱油效率提高
-
驱油效率是指在油水流度比一定,均质油藏条件下的极限采收率。通常认为理论驱油效率为 50%~61.6%[8]。已有室内实验探讨高孔隙体积倍数注水条件下的驱油效率[2-3,18,21-25],尽管最终结果不完全一致,但总体上认为残余油饱和度降低,可提高驱油效率达70%以上。
-
大庆油田利用天然岩心开展高孔隙体积倍数注水驱油室内实验[2,21,24],注水量在 10 000 PV 以上时,岩心一直出油[18]。14块岩心最终含水饱和度平均为 86%,最高达 99.2%,残余油饱和度平均为 16.6%,最低为 9.6%。驱油效率平均为 82.9%,最高达99.1%。
-
孤岛、埕东、胜坨油田 5 口密闭取心井的 1 186 块样品的驱油效率统计结果表明:在特高含水阶段,134块样品的驱油效率超过 70%,剩余油饱和度为 16.4%,其中有 4 块样品驱油效率甚至超过 90%,剩余油饱和度为 3.9%[25]。根据大庆油田密闭取心分析结果,PⅠ1-3 油层强水洗段驱油效率平均为 67.3%,最高驱油效率可达90%[26]。
-
1.2 实例应用分析
-
大庆油田在 511 井组 SⅡ7+8 油层开展 75 m 井距条件下的高孔隙体积倍数注水采油现场试验[21,24]。中心井 511井试验开始和结束时的含水率分别为 98.9% 和 99.2%。试验期间,注入孔隙体积倍数增加 4.2 倍,采出程度提高 7.3%。胜利油田在孤东七区西开展 Ng52+3油层小井距的注水开发试验[27],注入量由1.8 PV增加到5.1 PV,含水率由98% 增加到98.5%,而采出程度则大幅度增加了8.7个百分点。
-
上述试验说明在含水率达 98%后,通过强化注水和采液仍可进一步提高最终采收率。研究者指出石油工业上通常把含水率为 95% 或 98% 时的采收率作为最终采收率,在大庆 511 井组小井距试验中,换油率为 86 m3 /t,这在经济上是合理的,因此经济含水界限应该如何确定须重新研究[24]。
-
大庆油田小井距试验证实达到极限含水阶段后通过高孔隙体积倍数注水可进一步提高采收率,技术上是可行的。高孔隙体积倍数注水采油阶段注入水利用率较低,大庆 511 井组小井距试验每采出 1% 石油地质储量需注入 0.6 PV 的水,必须寻求经济有效的注水方式。
-
中外477个常规砂岩油藏的最终采收率平均为 43.7%,其中 30% 的油藏最终采收率大于 50%,3% 的油藏最终采收率接近或大于70%(图1)。在最终采收率大于70%的油藏中,既有相对均质的滨岸砂坝储层,也有非均质性相对较强的曲流河、辫状河砂岩储层。而在最终采收率大于 50% 的油藏中, 57% 的油藏主要驱动类型为溶解气驱或弱天然水驱,采用人工注水开发提高采收率为 20%~46%。 43% 的油藏以强边底水驱驱动能量为主,天然能量开发最终采收率也可达50%~70%以上(图2)。
-
图1 477个常规砂岩油藏最终采收率分布
-
Fig.1 Ultimate recovery distribution of 477 conventional sandstone reservoirs
-
著名的东德克萨斯油田预期最终采收率为 78.4%[3]。2006年以来一直在含水率大于 98% 的极限含水条件下产油,2009 年含水率达 99.1%,到 2020年底,石油地质储量采出程度已达78%(图3)。
-
图2 注水开发油藏天然能量采收率与最终采收率交会图 (最终采收率大于50%的常规砂岩油藏)
-
Fig.2 Primary recovery versus ultimate recovery of waterflooding reservoirs(reservoirs with ultimate recovery greater than 50%)
-
图3 东德克萨斯油田开发历史曲线
-
Fig.3 East Texas Oil Field development history
-
东德克萨斯油田开发过程中受商业利益驱动采用几十米的小井距开采,客观上扩大了波及体积。在高渗透、储层连通状况好且相对均质、原油黏度低等有利的储层和流体性质条件下,且与露头相连、地表水可连续补充的强天然水驱,辅之边缘注水,可形成长期高孔隙体积倍数注水采油,使得最终采收率高达近 80%[5,28-29]。如果按波及体积系数为 0.9 计算,到 2020 年,驱油效率已达 87.7%。该大型整装油田的实例充分说明,长期高孔隙体积倍数水驱可以达到远高于常规认识的驱油效率,到达极限含水阶段时,采用经济有效的实用技术仍可继续提高采收率。
-
综上所述,长期高孔隙体积倍数注水可以提高采收率,但现有技术、经济条件长期注水难以获得经济效益,一些油田或断块在进入特高或极限含水阶段只能关停或废弃。急需一些经济可行的技术使关停老井重新注水采油,延长油田开采周期,从而提高采收率。
-
2 技术对策
-
应用适合具体油藏特征的低成本、有效技术提高特高含水期水驱最终采收率的主要途径包括:① 以单砂体为单元的注采开发,减缓层间和平面非均质性的影响,最大程度地扩大水驱波及体积。②实现长期高孔隙体积倍数注水,延长油田开发生命期,进一步提高驱替效率。
-
2.1 扩大波及体积
-
储层的非均质性特别是侧向连通性是影响注水波及体积的关键因素。三角洲沉积砂岩储层在井距为200 m条件下井间仍分布未钻遇的孤立分流河道砂体。断层遮挡、层间渗透率差异、单一砂层平面岩性、物性变差等因素均可形成注水未完全波及的剩余油富集区。目前中国广泛应用调剖、分层注水等是挖潜剩余油的有效技术[30-33]。进一步扩大波及体积的油藏管理技术和措施主要包括:①通过周期注水,即脉冲注水、改变液流方向等方式提高水驱波及体积。周期注水可提高产量 10%,降低含水率20%[34-35]。著名的罗马仕金油田预测的最终采收率为 60%,油田进入成熟开发阶段采用控水、周期注水、控制采油速度等措施。1986年以来含水率为 84%~86%,目前石油地质储量采出程度已达 47.6%。②进一步缩小单砂体的生产和注水井距。以大庆油田为代表的多层非均质油田单层系井距多超过 200 m,但进入特高含水和极限含水阶段地面的各类井的综合井距已远小于 200 m。因此可以利用几十米的近井距生产井并结合可行的完井工艺逐层上返开采物性相近的储层段或厚层单砂体,最大程度提高水驱波及体积。在中国石油印度尼西亚某油田提高采收率实践中,针对纵向非均质性强、油层多的特点,采用双油管、多封隔器与滑套组合完井(图4)。应用单井接替开采不同物性的油层,使常规开采无经济效益的油层得以有效开发[36]。③利用大量关停老井的上部管柱侧钻降低钻井费用开采井间孤立砂体或分流线部位的剩余油。密井网测井信息揭示的三角洲前缘分流河道砂体形态表明,在井距为126~215 m条件下井间仍有大量的窄分流河道砂体未被钻遇[2]。目前基于三维地震、测井信息及沉积学分析的储层综合表征技术已可以揭示这些砂体的井间分布。在特高含水阶段,对关、停老井实施侧钻,可以充分利用已钻井的上部井筒及油田生产设备来控制成本,达到经济有效挖潜井间剩余油的目的(图5)。④靠近断层高含油饱和度部位平行断层面钻新井。针对钻遇的多层砂岩储层,可以采用智能完井技术实现不动管柱可选的单一层段接替或所有砂体混合开采。巴西某油田产层为复杂断块、复杂油水分布的三角洲沉积砂岩油藏,包含 100 多个油层[37]。实施沿断层面钻加密井 43 口,日产油量由 350 m3 /d 增至 1 100 m3 /d,累积产量占该油田的 15%,实现了二次开发 (图6)。
-
图4 双油管和多封隔器完井示意
-
Fig.4 Schematic diagram of completion with dual tubings and multi-packers
-
图5 三角洲前缘分流河道砂体井间老井侧钻挖潜示意
-
Fig.5 Schematic diagram showing poorly swept inter-well delta distributary channel sands and producing through old well sidetracking
-
2.2 提高驱油效率
-
2.2.1 自流水注水技术
-
自流水注水技术是指在油藏顶部或者底部存在大型水体时,利用水层的重力及与油层之间的压差,将独立的高压水层中的地层水源注入开发目的层位,以提高地层压力驱动原油的一种开采方式。与传统的注水开发方式相比,具有成本低,工艺简单,无需地面设备、注水管线等特点。该技术已应用于中东、北美和亚太一些国家的油田[38-42]。马来西亚国家石油公司尝试在开发晚期高含水阶段采用自流水注水提高最终采收率。中国平湖油田、惠州 25-3 油田曾开展了自流水注入现场试验研究[43-44]。诸多学者对于自流水的注水量、注水速度、技术政策界限、相关油藏的可行性等方面进行了研究[45-47]。
-
图6 巴西某油田沿断层面钻井剖面及钻井前后日产油量变化(据文献[37]修改)
-
Fig.6 Drilling profile along fault planes and daily oil production change of an oilfield in Brazil(Modified from Reference[37])
-
自流水注水技术是一种经济有效的保持油藏压力二次采油方法,既可以应用于复杂断块油田的局部注水补充能量,也可以应用于油田开发晚期极限含水阶段高孔隙体积倍数注入驱替采油。印度尼西亚某油田对断块油藏衰竭停产的老井实施自流水注水(图7),1 a后,对应的停产油井开始产油,产量逐渐增加,日产油量由初期的8 m3 /d增至95 m3 / d,提高采收率为8%。
-
2.2.2 低矿化度水驱技术
-
室内实验和现场应用已证实低矿化度水驱技术可以提高采收率,该技术又被业界称为先进水驱油技术[19,48-54]。多数研究认为其机理类似于碱水驱,即生成表面活性剂,改变润湿性,降低表面张力,同时剥离泥质颗粒也有所贡献。阿拉斯加库珀茹克油藏单井化学示踪剂测试结果证实高矿化度水驱后的残余油饱和度为 39%~43%,应用低矿化度水驱后,残余油饱和度降低了9%~17%[48]。试验结果同时揭示出提高采收率程度与高岭石含量呈正相关。高岭石含量由 7.6% 增至 14%,采收率由 9%提高到17%。
-
BP 公司在阿拉斯加北坡恩迪科特油田的低矿化度水驱现场试验提高采收率 10% 以上。试验过程中首先采用高矿化度水驱建立含水基线,实施低矿化度水驱三个月后对应生产井开始见效,表现为产量上升,含水率由95%降低到92%(图8)。
-
低矿化度水驱技术具有易于应用、低成本、有助于改善注入能力减少结垢等优点,也无需地面处理、注入液配制和操作的特殊设施,可应用于特高含水采油阶段进一步提高采收率。
-
2.2.3 同井注采技术
-
近年来井下油水分离装置研究取得了长足进展并进一步实现了同井注采,从而大幅度降低了水驱开发成本[55-58]。同井注采是在同一口井上实现注水与采油一体化的开发技术,在井筒内将高含水率采出液油水分离,分离出的水回注到油层而将分离后的低含水率采出液采到地面,由此大大地降低了注入和采出液处理费用。
-
同井注采技术在中国最初应用于海上油田高含水油井,主要解决举升和集输能耗高等问题。该技术在大庆油田的应用已实现含水率为99.9%产出液的油井开采,通过井下油水分离和注入,产出液含水率降低为 80%,大幅度减少了地面产出液油水分离与处理过程费用,从而延长了采油井经济有效的开采年限,预计可提高采收率为14%~20%[18]。
-
图7 停产油井注自流水剖面及恢复生产后日产油量(据文献[42]修改)
-
Fig.7 Dump flooding profile and daily oil production of a depleted well after recovery(Modified from Reference[42])
-
图8 恩迪科特油田低矿化度水驱现场试验产油量及含水率曲线(据文献[49]修改)
-
Fig.8 Production and water cut performance of Endicott Field under low salinity waterflooding test (Modified from Reference[49])
-
3 结论
-
大量研究和应用实例证明长期高孔隙体积倍数注水既可以扩大波及体积也可以提高驱油效率。长期高孔隙体积倍数注水可使驱油效率达 70% 以上。大量油田类比实例说明强水驱开发油藏利用天然水驱能量开采最终采收率可达 50%~70%,而对于溶解气驱或弱天然水驱为主的油藏,注水可以提高采收率为 20%~46%,同样取得高达 70% 的最终采收率。特高含水和极限含水阶段通过高孔隙体积倍数注水驱油具有技术可行性,但受经济效益的制约。进入特高含水开发阶段的成熟开发油田具有大量的近井距开发井和完善的生产设施,以此为基础,在应用周期注水、关停老井侧钻、沿断层面高含油饱和度区钻加密井等技术进一步扩大水驱开发波及体积的基础上,应用自流水注水、低矿化度水驱、同井注采工艺技术可有效降低注入、产出水处理费用和其他设施成本,提高最终采收率。另外,针对不同规模、开采经济界限的特定油藏,其应用可行性还需进一步深入研究。
-
参考文献
-
[1] 袁士义,王强.中国油田开发主体技术新进展与展望[J].石油勘探与开发,2018,45(4):657-668.YUAN Shiyi,WANG Qiang.New progress and prospect of oil⁃ fields development technologies in China[J].Petroleum Explora⁃ tion and Development,2018,45(4):657-668.
-
[2] 袁庆峰,朱丽莉,陆会民,等.水驱油田晚期开发特征及提高采收率主攻方向[J].大庆石油地质与开发,2019,38(5):34-40.YUAN Qingfeng,ZHU Lili,LU Huimin,et al.Development char⁃ acteristics and main tackled EOR research direction for the water⁃ flooded oilfield at the late stage[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):34-40.
-
[3] 方越,李洪生,于春生,等.高注入倍数油水两相渗流特征研究 [J].石油地质与工程,2019,33(1):56-59.FANG Yue,LI Hongsheng,YU Chunsheng,et al.Seepage charac⁃ teristics of oil-water two-phase with high injection ratio[J].Petro⁃ leum Geology and Engineering,2019,33(1):56-59.
-
[4] LU Liuli,LIU Zhibin,LIU Haohan,et al.Study on technical mea⁃ sures of Romashkino Oil Field after entering ultra-high water cut stage[J].Engineering,2013,5:622-628.
-
[5] WANG F P,AMBROSE W A,HENTZ T F,et al.Engineering and geologic characterization of giant East Texas oil field:north and south pilot studies[R].SPE 115683,2008.
-
[6] 王广昀,王凤兰,赵波,等.大庆油田公司勘探开发形势与发展战略[J].中国石油勘探,2021,26(1):55-73.WANG Guangyun,WANG Fenglan,ZHAO Bo,et al.Exploration and development situation and development strategy of Daqing Oilfield Company[J].China Petroleum Exploration,2021,26(1):55-73.
-
[7] LU Xiaoguang,SUN Shaoqing,DODDS Rich.Toward 70% recov⁃ ery factor:knowledge of reservoir characteristics and IOR/EOR methods from global analogs[R].SPE 179586,2016.
-
[8] 纪淑红,田昌炳,石成方,等.高含水阶段重新认识水驱油效率 [J].石油勘探与开发,2012,39(3):338-345.JI Shuhong,TIAN Changbing,SHI Chengfang,et al.New under⁃ standing on water-oil displacement efficiency in a high water-cut stage[J].Petroleum Exploration and Development,2012,39(3):338-345.
-
[9] LU Xiaoguang,XU John.Waterflooding optimization:a pragmatic and cost-effective approach to improve oil recovery from mature fields[R].SPE 186431,2017.
-
[10] CARPENTER Chris.Best practices for waterflooding optimization improve oil recovery in mature fields[J].Journal of Petroleum Technology,2019,71(1):58-59.
-
[11] LU Xiaoguang,XU John,FENG Lijing,et al.How over 60% recov⁃ ery achievable in a multi-layer,heterogeneous sandstone reservoir [R].SPE 194833,2019.
-
[12] AMARO Iris Perez,CHELHOD Nellys Chek-Yan,LAPREABIGOTT Marcelo.Workflow for optimization of waterflood perfor⁃ mance:field example from El Furrial Field-East Venezuela Basin [R].SPE 199121,2020.
-
[13] OMARA E A,EL HAWARY A F,NOSSEIR M,et al.Identifying opportunities in a complex mature oil reservoir,a company’s ex⁃ perience[R].IPTC 17538,2014.
-
[14] YADAV Atul,MALKOV Anton,OMARA Essam,et al.A new con⁃ tinuous waterflood operations optimization for a mature oil field by using analytical workflows that improve reservoir characterization [R].SPE 198586,2019.
-
[15] 武毅,石利华,阴艳芳,等.辽河油田注水开发技术与实践[J].特种油气藏,2020,27(6):40-46.WU Yi,SHI Lihua,YIN Yanfang,et al.Technologies and practice of water-flooding development in Liaohe oilfield[J].Special Oil & Gas Reservoirs,2020,27(6):40-46.
-
[16] 卢祥国,曹豹,谢坤,等.非均质油藏聚合物驱提高采收率机理再认识[J].石油勘探与开发,2021,48(1):148-155.LU Xiangguo,CAO Bao,XIE Kun,et al.EOR mechanisms of poly⁃ mer flooding in a heterogeneous oil reservoir[J].Petroleum Explo⁃ ration and Development,2021,48(1):148-155.
-
[17] BABADAGLI Tayfun.Philosophy of EOR[R].SPE 196362,2019.
-
[18] 王德民.技术创新大幅度增加大庆油田可采储量确保油田长期高产[J].大庆石油地质与开发,2019,38(5):8-17.WANG Demin.Technical innovation greatly increases the recover⁃ able reserve and ensure long-term high production of Daqing Oil⁃ field[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):8-17.
-
[19] 程松林,李丽,李春兰.考虑水驱油藏润湿性变化的数值模拟方法[J].水动力学研究与进展,2003,18(6):786-791.CHENG Songlin,LI Li,LI Chunlan.Reservoir numerical simula⁃ tion with variable rock wettability[J].Journal of Hydrodynamics,2003,18(6):786-791.
-
[20] THYNE Geoffrey.Wettability alteration in reservoirs:how it ap⁃ plies to Alaskan oil production[R].SPE 180370,2016.
-
[21] 巢华庆.大庆油田提高采收率研究与实践[M].北京:石油工业出版社,2006:96-106.CHAO Huaqing.Research and practice of EOR in Daqing Oilfield [M].Beijing:Petroleum Industry Press,2006:96-106.
-
[22] 窦宏恩.高含水期油田提高原油采收率的新理论[J].特种油气藏,2009,16(6):89-93.DOU Hong’en.A new theory of improving oil recovery factor for oilfields in extra high water cut stage[J].Special Oil & Gas Reser⁃ voirs,2009,16(6):89-93.
-
[23] 聂法健.东濮油田不同相带岩心高倍数水驱前后渗流特征对比研究[J].石油地质与工程,2017,31(2):87-90.NIE Fajian.Comparative study on percolation characteristics of different facies of Dongpu oilfield before and after high-multiple water flooding[J].Petroleum Geology and Engineering,2017,31(2):87-90.
-
[24] 张景存,颜五和,刘青年.高注水倍数采油的矿场实践[J].石油勘探与开发,1986,12(1):50-54.ZHANG Jingcun,YAN Wuhe,LIU Qingnian.Field practice of pro⁃ duction with very high water cut under water flooding[J].Petro⁃ leum Exploration and Development,1986,12(1):50-54.
-
[25] 陈燕虎,侯玉培,许强,等.特高含水期油藏数值模拟应用技术探讨——以胜二区为例[J].科学技术与工程,2014,14(5):215-218.CHEN Yanhu,HOU Yupei,XU Qiang,et al.Discussion on the nu⁃ merical simulation applied technologies at extra-high water-cut stage-taking the second region of Shengtuo oilfield as an example [J].Science Technology and Engineering,2014,14(5):215-218.
-
[26] 兰玉波,赵永胜,魏国章.矿场密闭取心与室内模拟的驱油效率分析[J].大庆石油学院学报,2005,29(4):43-45.LAN Yubo,ZHAO Yongsheng,WEI Guozhang.Analysis of dis⁃ placement efficiency of field pressure coring and lab test[J].Pe⁃ troleum Geology & Oilfield Development in Daqing,2005,29(4):43-45.
-
[27] 王宝瑜,曹绪龙.孤东油田小井距注水示踪剂的选择及现场实施[J].油田化学,1990,7(1):23-28.WANG Baoyu,CAO Xulong.Selecting and testing tracers for flooding water flow in close well spacing district in Gudong oilfield [J].Oilfield Chemistry,1990,7(1):23-28.
-
[28] WANG F P,AMBROSE W A,HENTZ T F,et al.Engineering and geologic characterization of giant East Texas oil field:north and south pilot studies[R].SPE 115683,2008.
-
[29] HALBOUTY M T.East Texas Field-U.S.A//FOSTER N H,BEAU⁃ MONT E A.Stratigraphic traps II:AAPG Treatise of Petroleum Ge⁃ ology,Atlas of Oil and Gas Fields[M].Tulsa:AAPG,1991:189-206.
-
[30] 李贺.大庆长垣油田特高含水后期水驱控水提效试验区开发效果[J].大庆石油地质与开发,2021,40(4):94-100.LI He.Evaluation on development effects of water cut control and efficiency-improvement test areas at the late stage of ultra-high water cut in Daqing Placanticline Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(4):94-100.
-
[31] 罗云龙,卢祥国,曹豹,等.智能分注分采技术改善水驱开发效果评价方法[J].油气地质与采收率,2021,28(2):119-126.LUO Yunlong,LU Xiangguo,CAO Bao,et al.Evaluation method of intelligent separate injection-production technique for improv⁃ ing water-flooding development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(2):119-126.
-
[32] 徐冰.纵向非均质储层凝胶调剖剩余油分布特征实验研究[J].油气地质与采收率,2020,27(6):71-80.XU Bing.Experimental study on distribution characteristics of re⁃ maining oil in vertical heterogeneous reservoirs by gel profile con⁃ trol[J].Petroleum Geology and Recovery Efficiency,2020,27(6):71-80.
-
[33] 刘平礼,张峰超,高尚,等.BZ油田注水井调剖酸化联作体系研究[J].油气藏评价与开发,2019,9(2):60-64.LIU Pingli,ZHANG Fengchao,GAO Shang,et al.Study on com⁃ bined system of profile control and acidification of injection wells in BZ oilfield[J].Reservoir Evaluation and Development,2019,9(2):60-64.
-
[34] SHCHIPANOV A,SURGUCHEV L M,JAKOBSEN S R.Improved oil recovery by cyclic injection and production[R].SPE 116873,2008.
-
[35] 孙志刚,杨海博,杨勇,等.注采交替提高采收率物理模拟实验 [J].断块油气田,2019,26(1):88-92.SUN Zhigang,YANG Haibo,YANG Yong,et al.Physical simula⁃ tion experiment by alternation of injection and production to im⁃ prove oil recovery[J].Fault-Block Oil and Gas Field,2019,26(1):88-92.
-
[36] 吕晓光,张学文,刘永喜,等.基于油藏特征的完井方法[J].石油勘探与开发,2008,35(4):509-512.LÜ Xiaoguang,ZHANG Xuewen,LIU Yongxi,et al.Improving de⁃ velopment profit by using reservoir based completion[J].Petro⁃ leum Exploration and Development,2008,35(4):509-512.
-
[37] BORBA C,TAKEGUMA M S,SOUZA FILHO E J,et al.Revital⁃ization of Pilar Field(Sergipe-Alagoas Basin,Brazil)using deviat⁃ ed wells along fault Planes-a successful experience[R].SPE 89469,2004.
-
[38] FUJITA Kazuo.Pressure maintenance by formation water dumping for the Ratawi limestone oil reservoir,offshore Khafji[J].Journal of Petroleum Technology,1982,34(4):738-754.
-
[39] SHIZAWI Wafa,SUBHI Hamed,RASHIDI Ahmed,et al.En⁃ hancement of oil recovery through“dump-flood”water injection concept in satellite field[R].SPE 142361,2011.
-
[40] QUTTAINAH R,AL-HUNAIF J.Umm Gudair dumpflood pilot project,the applicability of dumpflood to enhance sweep & main⁃ tain reservoir pressure[R].SPE 68721,2001.
-
[41] QUTTAINAH R,AL-MARAGHI E.Umm Gudair production pla⁃ teau extension,the applicability of full field dumpflood injection to maintain reservoir pressure and extend production plateau[R].SPE 97624,2005.
-
[42] SUGGUST Alister,KHALID Aizuddin,USOP Mohammad Zul⁃ fiqar,et al.Pioneering secondary recovery strategies in a complex geological environment and challenging reservoirs located in off⁃ shore Sarawak[R].SPE 205811,2021.
-
[43] 周俊昌,罗勇,严维锋.国内第一口自流注水井钻井实践[J].中国海上油气,2011,23(1):43-45,52.ZHOU Junchang,LUO Yong,YAN Weifeng.Drilling practice of the domestic first water dumping well[J].China Offshore Oil and Gas,2011,23(1):43-45,52.
-
[44] 黄映仕,余国达,罗东红,等.惠州25-3油田薄层油藏自流注水开发试验[J].中国海上油气,2015,27(6):74-79.HUANG Yingshi,YU Guoda,LUO Donghong,et al.Dump flood⁃ ing experiment in thin layer reservoir development in HZ25-3 oil⁃ field[J].China Offshore Oil and Gas,2015,27(6):74-79.
-
[45] 唐永亮,王倩,李二鹏,等.塔中4油田巴楚组油藏自流注水技术可行性[J].新疆石油地质,2016,37(1):74-77.TANG Yongliang,WANG Qian,LI Erpeng,et al.Feasibility study of dumpflooding technology for Bachu reservoir in Tazhong4 oil⁃ field,Tarim Basin[J].Xinjiang Petroleum Geology,2016,37(1):74-77.
-
[46] 刘睿,黄捍东,孙传宗,等.自流注水开发可行性与技术政策界限研究[J].科学技术与工程,2015,15(1):48-53.LIU Rui,HUANG Handong,SUN Chuanzong,et al.Study on feasi⁃ bility and technical policies of dumpflooding development[J].Sci⁃ ence Technology and Engineering,2015,15(1):48-53.
-
[47] 江同文,肖阳,刘子龙,等.哈拉哈塘油田缝洞型油藏自流注水耦合计算模型[J].新疆石油地质,2019,40(1):74-78.JIANG Tongwen,XIAO Yang,LIU Zilong,et al.A dumpflood cou⁃ pling calculation model of fractured ⁃vuggy reservoirs in Halahat⁃ ang Oilfield[J].Xinjiang Petroleum Geology,2019,40(1):74-78.
-
[48] MCGUIRE P L,CHATHAM J R,PASKVAN F K,et al.Low salini⁃ ty oil recovery:an exciting new EOR opportunity for Alaska’s North Slope[R].SPE 93903,2005.
-
[49] SECCOMBE J C,LAGER A,WEBB K J,et al.Improving water⁃ flood recovery:LoSalTM EOR field evaluation[R].SPE 113480,2008.
-
[50] THYNE G.Wettability alteration in reservoirs:how it applies to Alaskan oil production[R].SPE 180370,2016.
-
[51] LAGE A,WEBB K,SECCOMBE J.Low salinity waterflood,Endi⁃ cott,Alaska:geochemical study & field evidence of multicompo⁃ nent ion exchange[R].Cambridge:16th European Symposium on Improved Oil Recovery,2011.
-
[52] VLEDDER P,FONSECA J C,WELLS T,et al.Low salinity water flooding:proof of wettability alteration on a field wide scale[R].SPE 129564,2010.
-
[53] SECCOMBE J,LAGER A,JERAULD G,et al.Demonstration of low-salinity EOR at interwell scale,Endicott Field,Alaska[R].SPE 129692,2010.
-
[54] 王锐,伦增珉,吕成远,等.中外提高采收率新技术研究现状及发展趋势[J].油气地质与采收率,2021,28(5):81-86.WANG Rui,LUN Zengmin,LÜ Chengyuan,et al.Research status and development trends of worldwide new technologies for en⁃ hanced oil recovery[J].Petroleum Geology and Recovery Efficien⁃ cy,2021,28(5):81-86.
-
[55] 程心平,刘敏,罗昌华,等.海上油田同井注采技术开发与应用 [J].石油矿场机械,2010,39(10):82-87.CHENG Xinping,LIU Min,LUO Changhua,et al.Development and application of single well integral injection/production tech⁃ nique[J].Oil Field Equipment,2010,39(10):82-87.
-
[56] 杨树人,谢威.同井注采油水分离器的优化设计[J].特种油气藏,2011,18(6):106-108.YANG Shuren,XIE Wei.Optimization design of oil-water separa⁃ tor for injection-production in the same well[J].Special Oil & Gas Reservoirs,2011,18(6):106-108.
-
[57] 刘合,高扬,裴晓含,等.旋流式井下油水分离同井注采技术发展现状及展望[J].石油学报,2018,39(4):463-471.LIU He,GAO Yang,PEI Xiaohan,et al.Progress and prospect of downhole cyclone oil-water separation with single-well injection production technology[J].Acta Petrolei Sinica,2018,39(4):463-471.
-
[58] 刘合,郝忠献,王连刚,等.人工举升技术现状与发展趋势[J].石油学报,2015,36(11):1 441-1 448.LIU He,HAO Zhongxian,WANG Liangang,et al.Current techni⁃ cal status and development trend of artificial lift[J].Acta Petrolei Sinica,2015,36(11):1 441-1 448.
-
摘要
常规砂岩油田注水开发最终采收率多为35%~50%。基于大量室内实验、应用实例和中外油田案例类比,分析了特高含水开发阶段进一步提高水驱油藏驱油效率的可行性。讨论了水驱油藏在周期注水、关停老井侧钻、多油层逐层上返或沿断层面钻加密井等扩大注水波及体积基础上,长期高孔隙体积倍数注水、低矿化度水驱等经济可行的提高驱油效率思路和方法。室内研究和矿场实践结果表明,长期注水开发砂岩油藏润湿性由偏亲油性向偏亲水性转化,残余油饱和度降低,有利于提高驱油效率。依据成熟开发油田大量类比实例,在油层和流体性质较为有利的条件下,强天然水驱油藏依靠天然能量开采,或弱天然能量油藏通过注水开发最终采收率可达 70%。采用自流水注水、低矿化度水驱、同井注采工艺等技术已证实是经济可行的。特高含水开发阶段老油田已有的大量开发井和配套设施为进一步提高采收率提供了基础。应用经济可行的长期高孔隙体积倍数注水思路有望将水驱开发油田采收率进一步提高至50%~70%。
Abstract
The ultimate recovery of the conventional waterflooding sandstone reservoir ranges from 35% to 50%. This paper illustrates the feasibility of further improving the displacement efficiency of waterflooding reservoirs at the extra-high water cut development stage based on previous laboratory experiments,field applications,and global oilfield development cases. The economically feasible ideas and methods including long-term and large pore volume(PV)waterflooding and low salini- ty waterflooding etc. for improving the displacement efficiency are discussed in waterflooding reservoirs after improving sweep efficiency measures,such as the cyclic waterflooding,shut-in old well sidetracking,upward and layered waterflood- ing in multiple layers,or new infill wells along fault planes. Laboratory experiments and field applications reveal that the wettability of sandstone reservoirs changes from the oil-wet to the water-wet,and the saturation of residual oil reduces after long-term waterflooding,which can improve the displacement efficiency. Mature oilfield development cases indicate that with favorable reservoir and fluid properties,the ultimate recovery can reach 70% when reservoirs with strong natural water- flooding are developed by natural energy,or that with weak natural energy are developed by waterflooding. It has been prov- en that technologies such as dump flooding,low salinity waterflooding,and injecting and producing through one well are ec- onomically feasible. A large number of developed wells and existing facilities in mature field provide a basis for improving the recovery at the extra-high water cut development stage. The application of long-term and large PV waterflooding that is economically feasible is expected to increase the ultimate recovery to 50%-70%.