en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张钰祥(1994—),男,山东东营人,博士,从事油气渗流理论与应用方向的研究。E-mail:zhangyuxiang94cn@163.com。

通讯作者:

杨胜来(1961—),男,河北辛集人,教授,博士。E-mail:yangsl@cup.edu.cn。

中图分类号:TE122.2+3

文献标识码:A

文章编号:1009-9603(2023)01-0049-11

DOI:10.13673/j.cnki.cn37-1359/te.202203041

参考文献 1
SALIMIDELSHAD Y,MORADZADEH A,KAZEMZADEH E,et al.Experimental investigation of changes in petrophysical proper⁃ ties and structural deformation of carbonate reservoirs[J].Petro⁃ leum Exploration and Development,2019,46(3):565-575.
参考文献 2
YANG Yongfei,LIU Zhihui,SUN Zhixue,et al.Research on stress sensitivity of fractured carbonate reservoirs based on CT technolo⁃ gy[J].Energies,2017,10(11):1 833.
参考文献 3
YANG Yongfei,TAO Liu,YANG Haiyuan,et al.Stress sensitivity of fractured and vuggy carbonate:an X-Ray computed tomogra⁃ phy analysis[J].Journal of Geophysical Research:Solid Earth,2020,125(3):e2019JB018759.
参考文献 4
WANG Fuyong,LI Yiqiang,TANG Xiang,et al.Petrophysical properties analysis of a carbonate reservoir with natural fractures and vugs using X-ray computed tomography[J].Journal of Natural Gas Science and Engineering,2016,28:215-225.
参考文献 5
FU Shuaishi,ZHANG Lianjin,LI Yingwen,et al.Influence of stress sensitivity on water-gas flow in carbonate rocks[J].Geoflu⁃ ids,2020,2020:1-12.
参考文献 6
张钰祥,杨胜来,王蓓东,等.用径向流产能模拟法确定超深层碳酸盐岩气藏储层物性下限——以高石梯-磨溪区块为例[J/OL].大庆石油地质与开发:1-8[2022-08-09].DOI:10.19597/J.ISSN.1000-3754.202203021.ZHANG Yuxiang,YANG Shenglai,WANG Beidong,et al.Deter⁃ mining ultra-deep carbonate gas reservoir property cutoffs by ra⁃ dial flow productivity simulation method:Taking Gaoshiti-Moxi Block as an example[J/OL].Petroleum Geology & Oilfield Devel⁃ opment in Daqing:1-8[2022-08-09].DOI:10.19597/J.ISSN.1000-3754.202203021.
参考文献 7
于吉旺,庞雄奇,郑定业,等.普光地区深层碳酸盐岩气藏主控因素及有利区预测[J].特种油气藏,2022,29(3):28-35.YU Jiwang,PANG Xiongqi,ZHENG Dingye,et al.Main control⁃ ling factors and favorable area prediction of deep carbonate gas reservoirs in Puguang Area[J].Special Oil & Gas Reservoirs,2022,29(3):28-35.
参考文献 8
蔡珺君,彭先,李骞,等.四川盆地重点海相碳酸盐岩气藏产能评价现状及展望[J].断块油气田,2021,28(5):655-660.CAI Junjun,PENG Xian,LI Qian,et al.Present situation and pros⁃ pect of productivity evaluation of key marine carbonate gas reser⁃ voirs in Sichuan Basin[J].Fault-Block Oil and Gas Field,2021,28(5):655-660.
参考文献 9
夏威,蔡潇,丁安徐,等.南川地区栖霞-茅口组碳酸盐岩储集空间研究[J].油气藏评价与开发,2021,11(2):197-203.XIA Wei,CAI Xiao,DING Anxu,et al.Reservoir spaces of car⁃ bonate rocks in Qixia-Maokou Formation of Nanchuan area[J].Reservoir Evaluation and Development,2021,11(2):197-203.
参考文献 10
李程辉,李熙喆,高树生,等.高石梯-磨溪区块灯影组碳酸盐岩气藏孔隙结构特征[J].科学技术与工程,2015,15(24):72-78,101.LI Chenghui,LI Xizhe,GAO Shusheng,et al.Pore structure char⁃ acteristics of Dengying Formation carbonate gas reservoir of Gaoshiti-Moxi block[J].Science Technology and Engineering,2015,15(24):72-78,101.
参考文献 11
闫海军,邓惠,万玉金,等.四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义[J].天然气地球科学,2020,31(8):1 152-1 160.YAN Haijun,DENG Hui,WAN Yujin,et al.The gas well produc⁃ tivity distribution characteristics in strong heterogeneity carbon⁃ ate gas reservoir in the fourth Member of Dengying Formation in Moxi area,Sichuan Basin[J].Natural Gas Geoscience,2020,31(8):1 152-1 160.
参考文献 12
刘义成,徐伟,邓惠.气藏描述方法:SY/T 6110—2016[S].北京:石油工业出版社,2016.LIU Yicheng,XU Wei,DENG Hui.The method for gas reservoir description:SY/T 6110-2016[S].Beijing:Petroleum Industry Press,2016.
参考文献 13
王璐,杨胜来,彭先,等.缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯—磨溪地区灯四段为例[J].吉林大学学报:地球科学版,2019,49(4):947-958.WANG Lu,YANG Shenglai,PENG Xian,et al.Pore structure characteristics and storage-seepage capability of multi-type res⁃ ervoirs in fracture-cavity carbonate gas reservoirs:A case study of Deng-4 Member in Gaoshiti-Moxi area,Sichuan Basin[J].Journal of Jilin University:Earth Science Edition,2019,49(4):947-958.
参考文献 14
曲岩涛,戴志坚,李桂梅,等.岩心分析方法:GB/T 29172— 2012[S].北京:石油工业出版社,2012.QU Yantao,DAI Zhijian,LI Guimei,et al.Practices for core analy⁃ sis:GB/T 29172-2012[S].Beijing:Petroleum Industry Press,2012.
参考文献 15
曲岩涛,房会春,朱健,等.储层敏感性流动实验评价方法:SY/T 5358—2010[S].北京:石油工业出版社,2010.QU Yantao,FANG Huichun,ZHU Jian,et al.Formation damage evaluation by flow test:SY/T 5358-2010[S].Beijing:Petroleum Industry Press,2010.
参考文献 16
CHOQUETTE P W,PRAY L C.Geologic nomenclature and classi⁃ fication of porosity in sedimentary carbonates[J].AAPG Bulletin,1970,54(2):207-250.
参考文献 17
AL-KHARUSI A S,BLUNT M J.Network extraction from sand⁃ stone and carbonate pore space images[J].Journal of Petroleum Science and Engineering,2007,56(4):219-231.
参考文献 18
ZHANG Yuxiang,YANG Shenglai,ZHANG Zheng,et al.Multi⁃ scale pore structure characterization of an ultra-deep carbonate gas reservoir[J].Journal of Petroleum Science and Engineering,2022,208:109751.
参考文献 19
李骞,张钰祥,李滔,等.基于数字岩心建立的评价碳酸盐岩完整孔喉结构的方法——以川西北栖霞组为例[J].油气地质与采收率,2021,28(3):53-61.LI Qian,ZHANG Yuxiang,LI Tao,et al.A method for evaluating complete pore-throat structure of carbonate rocks based on digital cores:A case study of Qixia Formation in northwest Sichuan[J].Petroleum Geology and Recovery Efficiency,2021,28(3):53-61.
目录contents

    摘要

    超深层碳酸盐岩气藏埋藏深,应力状态复杂,非均质性极强,应力变化前后孔喉结构的变化规律尚不明确。选取高石梯-磨溪区块台内灯四气藏储层岩心,通过CT扫描得到应力实验和压裂实验前后不同类型储层的孔喉尺寸分布、缝洞占比和连通性等,研究应力和压裂对超深层碳酸盐岩储层孔喉结构的影响规律。结果表明:在受压恢复后,孔洞型和缝洞型岩心的孔隙和喉道个数均大幅度下降且主要集中在半径在 1 mm 以下的微孔、中孔和 0.04 mm以下的微喉,孔隙平均半径、喉道平均半径和喉道平均长度均大幅度增加,缝洞比例大幅度增加,孔隙和喉道总体积趋于减小;孔洞型岩心连通孔喉体积占比大幅下降,而缝洞型岩心由于裂缝发育,其连通孔喉体积占比维持原有水平。压裂后,孔洞型岩心孔隙个数大幅度下降,减少的孔隙半径主要集中在0.5 mm以下的微孔和中孔,孔隙平均半径大幅度上升,增加的孔隙半径主要集中在0.5~0.8 mm,孔隙体积总体呈上升趋势,喉道个数、喉道平均半径、喉道平均长度和喉道总体积均趋于增加,缝洞比例大幅度增加,连通孔喉体积大幅度提高。实验表明超深层碳酸盐岩储层受压恢复后,渗流能力不降反而大幅度提升,压裂主要通过提高孔喉空间中裂缝占比来改善孔喉连通性。

    Abstract

    Ultra-deep carbonate gas reservoirs are deeply buried,with complex stress states and extremely strong heteroge- neity,and the change laws of pore and throat structures before and after stress changes is not clear. In this paper,the cores from Deng4 gas reservoir in Gaoshiti-Moxi block were selected,and CT experiments were conducted to obtain the size dis- tribution of pores and throats,the proportion of pores and vugs,and the connectivity of various reservoirs before and after the stress experiment and fracturing experiment. In addition,the effects of stress and fracturing on the pore and throat struc- tures of ultra-deep carbonate reservoirs were studied. The research results reveal that the pores and throats in the pore-vug and fracture-vug cores decrease obviously after recovery from stress,and most of them are the micropores and mesopores with a radius of less than1 mm and the micro-throats with a radius of less than 0.04 mm. The average pore radius,average throat radius,average throat length,as well as the proportion of fractures and vugs all rise significantly,while the total vol-ume of pores and throats tends to decline. The volume ratio of connected pores and throats in the pore-vug cores decreases significantly,while the volume ratio of connected pores and throats in the fracture-vug cores remains at the original level due to the development of fractures. After fracturing,the pores in the pore-vug cores decrease sharply and the reduced pores are mainly micropores and mesopores with a radius below 0.5 mm. The average pore radius greatly increases,while the most increased pore radii are in 0.5-0.8 mm. There is an upward trend in the pore volume,the throats,average throat ra- dius,average throat length as well as total throat volume,and the proportion of fractures and vogs and the volume of con- nected pores and throats increase drastically. The experiments indicate that after recovery from stress,the flow capacity of the ultra-deep carbonate reservoir does not decrease but greatly increases,and fracturing mainly improves the connectivity of pores and throats by increasing the proportion of fractures in the pore-throat space.

  • 已有学者通过 CT 扫描方法来研究应力对碳酸盐岩样品储集空间变化的影响。SALIMIDELSHAD 等利用声波速度和 CT 扫描分析来研究循环压力作用于碳酸盐岩储层,岩石物理性质的变化、多孔介质中孔隙结构的变化和储层中流体运移的变化[1]。 YANG 等通过 CT 扫描技术从不同类型碳酸盐岩岩心中提取数字岩心模型,并在此基础上进行孔隙级流动模拟,研究应力加载和卸载循环过程中裂缝形态的变化以及对岩样流动特性的影响[2-3]。WANG 等利用CT扫描技术对基质型、裂缝型和孔洞型碳酸盐岩样品的物性进行分析,研究裂缝和孔洞对孔渗关系、岩心孔喉结构的非均质性、渗透率和孔隙度应力敏感性以及油层相对渗透率的影响[4]。FU 等利用 X 射线断层扫描,在加压和减压过程中获得孔隙型、裂缝-孔隙型和裂缝-孔洞型碳酸盐岩的数字岩心,并采用格子玻尔兹曼方法和孔隙网络模型模拟不同围压下的渗透率和气水两相流[5]。目前针对超深层碳酸盐岩在承受应力及压裂前后孔喉结构影响规律的研究较少。超深层碳酸盐岩气藏储层承受的地层应力巨大,与中浅层的应力条件相差甚大,生产过程中的应力状态“巨变”,可能导致承受应力前后储层孔喉结构参数测定结果存在差异[6-9]。因此通过CT扫描,对应力实验和压裂实验前后的超深层碳酸盐岩岩心样品进行研究,得到实验前后孔喉分布特征及连通性变化的规律,从而为现场气藏开发提供理论支持。

  • 1 应力实验及压裂实验

  • 1.1 实验样品

  • 选取高石梯-磨溪区块台内灯四气藏 4 块全直径岩心进行 CT扫描,4块岩心的岩石物性及扫描参数见表1,4块岩心实验前后如图1所示,其中DS4对应压裂实验,其余3块岩心对应应力实验。

  • 表1 实验岩心基本物性参数

  • Table1 Basic physical property parameters of core samples

  • 4块全直径岩心均为中-细晶云岩,XRD分析结果表明,其矿物组分非常接近,白云石占 95.7%~99.1%,萤石占 0.2%~3.9%,石英占 0.4%~3.2%,方解石含量在0.5%以下,白云石晶体表面伴有少量沥青质和伊利石充填[10]。目的储层受构造运动和后期次生作用影响,孔隙结构以晶间孔和晶间溶孔为主,同时发育溶洞和微裂缝[11]

  • 4块全直径岩心孔隙度为 5%~12%,渗透率为 0.03~43 mD,充分体现了超深层碳酸盐岩储层的非均质性。参考行业标准[12] 和灯影组储集类型划分标准[13],将 4 块全直径岩心分为孔洞型和缝洞型。其中 DS2 和 DS4 为孔洞型,DS5 和 DS6 为缝洞型。而后对各类型岩心提取应力实验及压裂实验前后的数字岩心,并进一步分析应力对超深层碳酸盐岩气藏各类型储层孔隙空间的影响规律。

  • 1.2 实验步骤

  • 应力实验实验步骤和数据处理参照岩心分析方法[14] 和储层敏感性流动实验评价方法[15],对 4 块全直径岩心进行地层条件下的应力实验,实验温度为 110℃,围压为 130 MPa,流压为 56 MPa。每一个岩心的应力实验分为降流压过程和升流压过程,分别模拟实际的生产过程和关井压力恢复过程。应力实验前后对各岩心进行同一分辨率下的CT扫描。实验结果(图2)表明,和以往实验结果不同,各类型岩心在孔隙压力升压阶段均展现更好的渗流能力。在各个净应力点,应力实验后孔洞型岩心 DS2的渗透率是应力实验前的1.1~6.1倍,缝洞型岩心DS5是 2.0~21.0倍,缝洞型岩心DS6是1.7~9.1倍;一次降压升压后,DS2渗透率变为初始渗透率的105.6%,DS5 渗透率变为初始渗透率的 199.1%,DS6渗透率变为初始渗透率的174.2%。

  • 图1 应力实验及压裂实验前后不同类型岩心照片

  • Fig.1 Photos of different cores before and after stress experiment and fracturing experiment

  • 图2 不同类型岩心渗透率保持率随净应力变化曲线

  • Fig.2 Variation curves of permeability retention rates with net stress of different cores

  • 压裂实验将目的岩心轴向垂直放置,在端面两侧均匀加载轴压,直至岩心被压裂为止。压裂实验前后对岩心进行同一分辨率下的CT扫描。

  • 2 CT扫描结果分析

  • 对4块不同类型的全直径岩心进行应力实验及压裂实验前后的CT扫描对比分析,主要针对全直径岩心中发育的对渗透率有较大贡献的中孔、大孔、微喉、小喉、中喉、微缝、小缝及以上尺度的孔隙空间,研究承受应力前后同一位置区域(包括全直径岩心、孔隙发育处和裂缝发育处)的孔喉数量、孔喉平均尺寸、孔隙尺寸分布、喉道尺寸分布、连通孔喉体积比和孔缝洞占比等,以分析应力对于超深层碳酸盐岩气藏储层孔喉结构、孔喉大小、连通性和缝洞发育程度等的影响。本文孔喉尺寸的分类标准参照 CHOQUETTE 等 1970 年提出的碳酸盐岩孔喉尺寸分类标准[16]

  • 本次实验所使用的 CT 测试仪器为美国通用电气公司生产的phoenix v|tome|x m 微米CT扫描仪,应力实验和压裂实验前后的 CT 扫描分辨率均为 37 μm。将实验前后的全直径岩心放置在CT仪器的载物台上,调节设备参数进行扫描。CT 扫描结束后,使用专业的数据处理软件 VOLUME GRAPHICS STUDIO MAX和FEI AVIZO对实验前后重建好的三维模型数据进行处理,选用同一阈值分割不同类型岩心的岩石基体和孔隙空间,使用最大球法[17-19] 提取孔隙网络模型。在对全直径岩心分析完成后,对实验前后同一岩心选择同一位置进行处理,每一个岩心分别选择孔隙发育处和裂缝发育处进行分析,体素值均为500×500×500。

  • 2.1 孔喉发育情况

  • 由于CT扫描主要反映尺寸大于37 μm的孔喉,因此数字岩心得到的孔隙度略低于实验得到的孔隙度。分析全直径岩心和孔隙发育处、裂缝发育处实验前后的孔隙发育情况(表2)可知,孔洞型岩心 DS2 应力实验后孔隙个数在全直径处减少 6.63%,在孔隙发育处减少 76.35%,在裂缝发育处减少 61.18%;孔隙平均半径在全直径处增加5.57%,在孔隙发育处增加 46.69%,在裂缝发育处增加 25.27%; 孔隙总体积在全直径处增加 2.10%,在孔隙发育处减少 6.91%,在裂缝发育处减少 34.12%。缝洞型岩心 DS5 在应力实验后,孔隙个数在全直径处减少 40.89%,在孔隙发育处减少 52.51%,在裂缝发育处增加 57.17%;孔隙平均半径在全直径处增加 14.94%,在孔隙发育处增加 37.29%,在裂缝发育处减少 7.56%;孔隙总体积在全直径处增加 4.32%,在孔隙发育处减少40.39%,在裂缝发育处增加1.28%。缝洞型岩心 DS6在应力实验后,孔隙个数在全直径处减少 61.16%,在孔隙发育处减少 53.65%,在裂缝发育处减少67.83%;孔隙平均半径在全直径处增加 22.11%,在孔隙发育处增加 23.27%,在裂缝发育处增加 31.93%;孔隙总体积在全直径处减少 14.89%,在孔隙发育处减少 27.77%,在裂缝发育处减少 8.48%。孔洞型岩心 DS4 在压裂实验后,孔隙个数在全直径处减少 87.84%,在孔隙发育处减少 78.43%,在裂缝发育处减少 76.35%;孔隙平均半径在全直径处增加 169.27%,在孔隙发育处增加 185.70%,在裂缝发育处增加 128.63%;孔隙总体积在全直径处减少13.70%(一部分原因是压裂后部分岩样缺失),在孔隙发育处增加32.91%,在裂缝发育处增加375.71%。

  • 分析不同类型岩心实验前后喉道发育情况(表3)可知,应力实验后,孔洞型岩心DS2喉道个数在孔隙发育处降低5.46%,在裂缝发育处增加46.86%;喉道平均半径在孔隙发育处增加24.88%,在裂缝发育处减少 24.43%;喉道平均长度在孔隙发育处增加 8.94%,在裂缝发育处减少 7.49%;喉道总体积在孔隙发育处增加 15.35%,在裂缝发育处减少 3.99%。缝洞型岩心 DS5 喉道个数在孔隙发育处降低 5.20%,在裂缝发育处降低 0.09%;喉道平均半径在孔隙发育处降低14.35%,在裂缝发育处减少5.16%; 喉道平均长度在孔隙发育处降低 6.95%,在裂缝发育处增加 4.52%;喉道总体积在孔隙发育处降低 14.35%,在裂缝发育处降低 5.16%。缝洞型岩心 DS6喉道个数在孔隙发育处降低 70.15%,在裂缝发育处降低53.39%;喉道平均半径在孔隙发育处增加 88.51%,在裂缝发育处增加 77.26%;喉道平均长度在孔隙发育处增加 21.40%,在裂缝发育处增加 35.57%;喉道总体积在孔隙发育处降低2.11%,在裂缝发育处增加 87.55%。孔洞型岩心 DS4 在压裂实验后,喉道个数在孔隙发育处减少 13.01%,在裂缝发育处增加 153.35%;喉道平均半径在孔隙发育处降低 19.93%,在裂缝发育处增加 23.01%;喉道平均长度在孔隙发育处增加28.07%,在裂缝发育处增加 42.57%;喉道总体积在孔隙发育处降低8.11%,在裂缝发育处增加 453.78%。压裂实验后,孔隙发育处和裂缝发育处的喉道个数、喉道总体积和喉道平均半径的变化趋势相反;孔隙发育处喉道个数减少,虽然喉道平均长度增加,但喉道平均半径减小幅度更大导致喉道总体积减小;裂缝发育处的喉道个数、喉道平均长度和平均半径均增加,导致喉道总体积增加。

  • 表2 不同类型岩心实验前后孔隙发育情况对比

  • Table2 Comparison of pore development in different cores before and after experiments

  • 注:0.69/0.7表示实验前数据/实验后数据。

  • 表3 不同类型岩心实验前后喉道发育情况对比

  • Table3 Comparison of throat development in different cores before and after experiments

  • 注:2 694/2 547表示实验前数据/实验后数据。

  • 2.2 孔喉分布规律

  • 2.2.1 全直径岩心

  • 首先对实验前后全直径岩心的孔喉结构进行分析,得到对应的数字岩心(图3)。可以发现,应力实验后,DS2,DS5和DS6的孔隙均倾向于变大,缝洞更加发育;压裂后的DS4的孔隙更加发育,轴向上的裂缝十分明显。由不同类型全直径岩心的孔隙半径分布(表4)可看出,孔洞型岩心 DS2 在应力实验后孔隙半径为 0.05~0.25 mm 的中孔变少,0.25~1.26 mm 的中孔变多,1.26~2.00 mm 的中孔基本不变,大于 2.00 mm 的大孔变多;缝洞型岩心 DS5 在应力实验后,孔隙数量基本在全孔隙尺寸分布上大幅度减少;缝洞型岩心DS6在应力实验后,孔隙数量在孔隙半径为 0.05~1.26 mm 的中孔范围内大幅减少,在 1.26~1.87 mm的中孔范围内减少,在>1.87 mm的中孔和大孔范围内增加;孔洞型岩心 DS4在压裂实验后,孔隙数量在全孔隙尺寸分布上均大幅度减少。

  • 图3 实验前后全直径岩心的数字岩心

  • Fig.3 Digital cores of full-diameter cores before and after experiments

  • 表4 实验前后全直径岩心不同孔隙的数量分布

  • Table4 Distribution of pores with different radii in full-diameter cores before and after experiments

  • 注:96 780/88 874表示实验前数据/实验后数据。

  • 2.2.2 孔隙发育处

  • 分析各类型岩心孔隙发育处的数字岩心和提取的对应的孔隙网络模型,将应力实验和压裂实验前后的模型进行对比,得到实验前后孔隙发育处的孔隙尺寸数量分布和喉道尺寸数量分布。

  • 由各类型岩心应力实验前后孔隙发育处的数字岩心和孔隙网络模型(图4)可以直观地发现,无论是应力实验还是压裂实验,实验后部分孔喉尺寸明显变大。结合孔喉尺寸分布(表5,表6),孔洞型岩心DS2孔隙数量在孔隙半径为0.05~1.46 mm的中孔范围内减少,在>1.46 mm 的中孔和大孔范围内保持不变;缝洞型岩心 DS5孔隙数量在孔隙半径为 0.05~0.85 mm的中孔范围内减少,在>0.85 mm的中孔和大孔范围内保持不变;缝洞型岩心 DS6孔隙数量在孔隙半径为 0.05~1.87 mm 的中孔范围内减少,在>1.87 mm 的中孔和大孔范围内保持不变;孔洞型岩心DS4孔隙数量在孔隙半径为0.05~0.85 mm的中孔范围内减少,在>0.85 mm 的中孔和大孔范围内增加。孔洞型岩心 DS2 喉道数量在喉道半径为 0.018~0.042 mm 的微喉和小喉上减少,在 0.042~0.234 mm的小喉上增加,在>0.234 mm的中喉上维持不变;缝洞型岩心 DS5 喉道数量在喉道半径为 0.018~0.042 mm 的微喉和小喉上增加,在>0.042 mm 的小喉和中喉上减少;缝洞型岩心 DS6 喉道数量在全喉道尺寸上减少;孔洞型岩心 DS4 喉道数量在喉道半径为 0.018~0.042 mm 的微喉和小喉上增加,在>0.042 mm的小喉和中喉上减少。

  • 2.2.3 裂缝发育处

  • 由各类型岩心应力实验前后裂缝发育处的数字岩心和孔隙网络模型(图5)可以直观地发现,应力实验后 DS2,DS5 和 DS6 裂缝发育处连通的大孔隙和大喉道增多,一些孤立的小孔隙减少;压裂实验后 DS4裂缝发育处连通的孔隙、大喉道以及孤立的小孔喉都增多。结合实验前后各类型岩心裂缝发育处的孔喉尺寸分布(表7,表8),孔洞型岩心 DS2 孔隙数量在全尺寸范围内减少;缝洞型岩心 DS5孔隙数量在孔隙半径为0.05~1.46 mm的中孔范围内增加,在>1.46 mm的中孔和大孔范围内减少; 缝洞型岩心DS6孔隙数量在0.05~1.06 mm的中孔范围内减少,在>1.06 mm的中孔和大孔范围内增加; 孔洞型岩心DS4孔隙数量在全尺寸范围内减少。孔洞型岩心 DS2 喉道数量在喉道半径为 0.018~0.138 mm 的微喉和小喉处增加,在>0.138 mm 的小喉和中喉处减少;缝洞型岩心 DS5 喉道数量在 0.018~0.066 mm 的微喉和小喉处大幅增加,在>0.066 mm 的小喉和中喉处大幅减少;喉道数量在0.018~0.042 mm 的微喉和小喉处大幅减少,在>0.042 mm 的小喉和中喉处大幅增加;压裂实验后孔洞型岩心 DS4 喉道数量在全尺寸范围内大幅度增加。

  • 结合全直径岩心和孔隙发育处、裂缝发育处应力实验前后的孔喉发育情况和孔喉分布规律可知,无论孔洞型还是缝洞型岩心,无论孔隙发育处还是裂缝发育处,在应力实验后,孔隙个数均大幅度下降且主要集中在半径在1 mm以下的微孔和中孔,孔隙半径均大幅度增加,孔隙总体积总体呈减小的趋势。应力实验后孔隙发育处和裂缝发育处的孔喉变化趋势基本一致,喉道数量趋于减少,且主要集中在半径<0.04 mm 的微喉和小喉,喉道平均半径和喉道平均长度趋于增加,但由于微喉数量减少幅度更大,喉道总体积趋于减小。喉道尺寸增加导致应力实验后超深层碳酸盐岩储层岩样渗透率升高。孔洞型岩心DS4在压裂后,孔隙个数大幅度下降,减少的孔隙半径主要集中在 0.5 mm 以下的微孔和中孔,孔隙平均半径大幅度上升,增加的孔隙半径主要集中在 0.5~0.8 mm 的中孔,孔隙总体积总体呈上升趋势。压裂实验后裂缝发育处的喉道在数量和尺寸上均更发育,而孔隙发育处的喉道被挤压从而变少变细长。

  • 图4 不同类型岩心实验前后孔隙发育处数字岩心和孔隙网络模型

  • Fig.4 Digital pores and pore network models of pore-developed parts in different cores before and after experiments

  • 表5 实验前后各类型岩心孔隙发育处不同孔隙的数量分布

  • Table5 Distribution of pores with different radii of pore-developed parts in different cores before and after experiments

  • 注:6 269/1 354表示实验前数据/实验后数据。

  • 表6 实验前后各类型岩心孔隙发育处不同喉道的数量分布

  • Table6 Distribution of throats with different radii of pore-developed parts in different cores before and after experiments

  • 注:783/417表示实验前数据/实验后数据。

  • 2.3 孔缝洞分布规律及连通性评价

  • 分析不同类型岩心应力实验前后连通性(表9) 可知,应力实验后孔洞型岩心 DS2全直径岩心连通孔喉体积占比降低了46.07%,孔隙数量占比降低了 51.78%,洞数量占比提高了约 78 倍,裂缝数量占比提高了 21.47%;缝洞型岩心 DS5全直径岩心连通孔喉体积占比提高了 9.21%,孔隙数量占比降低了 41.27%,洞数量占比提高了约 55 倍,裂缝数量占比降低了 44.25%;缝洞型岩心 DS6全直径岩心连通孔喉体积占比降低了 5.68%,孔隙数量占比降低了 56.29%,洞数量占比提高了约109倍,裂缝数量占比提高了 33.29%。压裂实验后,孔洞型岩心 DS4全直径岩心连通孔喉体积占比提高了66.85%,孔隙数量占比降低了 75.35%,洞数量占比提高了约 26倍,裂缝数量占比提高了约 25 倍。由此可见,应力实验后,孔洞型岩心由于连通性差,连通孔喉体积占比下降幅度较大,缝洞型岩心由于裂缝发育,连通孔喉体积占比下降幅度不大,甚至有小幅上涨;无论孔洞型还是缝洞型岩心,应力实验后,孔隙数量均下降,导致洞数量占比增多,裂缝也更加发育,因此岩心的渗流能力大幅度提升。对比应力实验后的孔洞型岩心DS2,孔洞型岩心DS4在压裂后,连通孔喉体积占比大幅提高,裂缝数量占比提高的幅度比洞数量更大,这证明压裂主要通过提高孔隙空间中裂缝占比来改善超深层碳酸盐岩储层样品的孔喉连通性。

  • 3 结论

  • 不同于中浅层储层,超深层碳酸盐岩储层岩心在经历应力实验后,孔隙和喉道个数均大幅度下降且主要集中在半径小于 1 mm 的微孔和中孔以及半径小于 0.04 mm 的微喉和小喉,孔隙和喉道半径均大幅度增加,孔隙和喉道总体积总体呈减小的趋势;孔洞型岩心在压裂后孔隙和喉道个数大幅度下降,孔隙和喉道平均半径大幅度上升,增加的孔隙半径主要集中在 0.5~0.8 mm 的中孔,孔隙和喉道体积总体呈上升趋势。

  • 不同于以往研究,超深层碳酸盐岩储层缝洞型和孔洞型岩心在承受应力后孔隙平均半径和喉道平均半径增加,洞数量占比增多,裂缝也更加发育,从而导致渗流能力大幅度提高,同应力条件下为承受应力前的 1.1~21.0 倍;孔洞型岩心在压裂后连通孔喉体积大幅提高,裂缝数量占比大幅度提高,表明压裂主要通过提高裂缝占比改善超深层碳酸盐岩储层样品的孔喉连通性。

  • 图5 各类型岩心实验前后裂缝发育处数字岩心和孔隙网络模型

  • Fig.5 Digital pores and pore network models of fracture-developed parts in different cores before and after experiments

  • 表7 实验前后各类型岩心裂缝发育处不同孔隙数量分布

  • Table7 Distribution of pores with different radii of fracture-developed parts in various cores before and after experiments

  • 注:7 182/2 615表示实验前数据/实验后数据。

  • 表8 实验前后各类型岩心裂缝发育处不同喉道数量分布

  • Table8 Distribution of throats with different radii of fracture-developed parts in various cores before and after the experiments

  • 注:920/1 637表示实验前数据/实验后数据。

  • 表9 不同类型岩心实验前后孔缝洞分布及连通性数据对比

  • Table9 Comparison of pore-fracture-vug distribution and connectivity data for different cores before and after experiments

  • 注:46.23/24.93表示实验前数据/实验后数据。

  • 参考文献

    • [1] SALIMIDELSHAD Y,MORADZADEH A,KAZEMZADEH E,et al.Experimental investigation of changes in petrophysical proper⁃ ties and structural deformation of carbonate reservoirs[J].Petro⁃ leum Exploration and Development,2019,46(3):565-575.

    • [2] YANG Yongfei,LIU Zhihui,SUN Zhixue,et al.Research on stress sensitivity of fractured carbonate reservoirs based on CT technolo⁃ gy[J].Energies,2017,10(11):1 833.

    • [3] YANG Yongfei,TAO Liu,YANG Haiyuan,et al.Stress sensitivity of fractured and vuggy carbonate:an X-Ray computed tomogra⁃ phy analysis[J].Journal of Geophysical Research:Solid Earth,2020,125(3):e2019JB018759.

    • [4] WANG Fuyong,LI Yiqiang,TANG Xiang,et al.Petrophysical properties analysis of a carbonate reservoir with natural fractures and vugs using X-ray computed tomography[J].Journal of Natural Gas Science and Engineering,2016,28:215-225.

    • [5] FU Shuaishi,ZHANG Lianjin,LI Yingwen,et al.Influence of stress sensitivity on water-gas flow in carbonate rocks[J].Geoflu⁃ ids,2020,2020:1-12.

    • [6] 张钰祥,杨胜来,王蓓东,等.用径向流产能模拟法确定超深层碳酸盐岩气藏储层物性下限——以高石梯-磨溪区块为例[J/OL].大庆石油地质与开发:1-8[2022-08-09].DOI:10.19597/J.ISSN.1000-3754.202203021.ZHANG Yuxiang,YANG Shenglai,WANG Beidong,et al.Deter⁃ mining ultra-deep carbonate gas reservoir property cutoffs by ra⁃ dial flow productivity simulation method:Taking Gaoshiti-Moxi Block as an example[J/OL].Petroleum Geology & Oilfield Devel⁃ opment in Daqing:1-8[2022-08-09].DOI:10.19597/J.ISSN.1000-3754.202203021.

    • [7] 于吉旺,庞雄奇,郑定业,等.普光地区深层碳酸盐岩气藏主控因素及有利区预测[J].特种油气藏,2022,29(3):28-35.YU Jiwang,PANG Xiongqi,ZHENG Dingye,et al.Main control⁃ ling factors and favorable area prediction of deep carbonate gas reservoirs in Puguang Area[J].Special Oil & Gas Reservoirs,2022,29(3):28-35.

    • [8] 蔡珺君,彭先,李骞,等.四川盆地重点海相碳酸盐岩气藏产能评价现状及展望[J].断块油气田,2021,28(5):655-660.CAI Junjun,PENG Xian,LI Qian,et al.Present situation and pros⁃ pect of productivity evaluation of key marine carbonate gas reser⁃ voirs in Sichuan Basin[J].Fault-Block Oil and Gas Field,2021,28(5):655-660.

    • [9] 夏威,蔡潇,丁安徐,等.南川地区栖霞-茅口组碳酸盐岩储集空间研究[J].油气藏评价与开发,2021,11(2):197-203.XIA Wei,CAI Xiao,DING Anxu,et al.Reservoir spaces of car⁃ bonate rocks in Qixia-Maokou Formation of Nanchuan area[J].Reservoir Evaluation and Development,2021,11(2):197-203.

    • [10] 李程辉,李熙喆,高树生,等.高石梯-磨溪区块灯影组碳酸盐岩气藏孔隙结构特征[J].科学技术与工程,2015,15(24):72-78,101.LI Chenghui,LI Xizhe,GAO Shusheng,et al.Pore structure char⁃ acteristics of Dengying Formation carbonate gas reservoir of Gaoshiti-Moxi block[J].Science Technology and Engineering,2015,15(24):72-78,101.

    • [11] 闫海军,邓惠,万玉金,等.四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义[J].天然气地球科学,2020,31(8):1 152-1 160.YAN Haijun,DENG Hui,WAN Yujin,et al.The gas well produc⁃ tivity distribution characteristics in strong heterogeneity carbon⁃ ate gas reservoir in the fourth Member of Dengying Formation in Moxi area,Sichuan Basin[J].Natural Gas Geoscience,2020,31(8):1 152-1 160.

    • [12] 刘义成,徐伟,邓惠.气藏描述方法:SY/T 6110—2016[S].北京:石油工业出版社,2016.LIU Yicheng,XU Wei,DENG Hui.The method for gas reservoir description:SY/T 6110-2016[S].Beijing:Petroleum Industry Press,2016.

    • [13] 王璐,杨胜来,彭先,等.缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯—磨溪地区灯四段为例[J].吉林大学学报:地球科学版,2019,49(4):947-958.WANG Lu,YANG Shenglai,PENG Xian,et al.Pore structure characteristics and storage-seepage capability of multi-type res⁃ ervoirs in fracture-cavity carbonate gas reservoirs:A case study of Deng-4 Member in Gaoshiti-Moxi area,Sichuan Basin[J].Journal of Jilin University:Earth Science Edition,2019,49(4):947-958.

    • [14] 曲岩涛,戴志坚,李桂梅,等.岩心分析方法:GB/T 29172— 2012[S].北京:石油工业出版社,2012.QU Yantao,DAI Zhijian,LI Guimei,et al.Practices for core analy⁃ sis:GB/T 29172-2012[S].Beijing:Petroleum Industry Press,2012.

    • [15] 曲岩涛,房会春,朱健,等.储层敏感性流动实验评价方法:SY/T 5358—2010[S].北京:石油工业出版社,2010.QU Yantao,FANG Huichun,ZHU Jian,et al.Formation damage evaluation by flow test:SY/T 5358-2010[S].Beijing:Petroleum Industry Press,2010.

    • [16] CHOQUETTE P W,PRAY L C.Geologic nomenclature and classi⁃ fication of porosity in sedimentary carbonates[J].AAPG Bulletin,1970,54(2):207-250.

    • [17] AL-KHARUSI A S,BLUNT M J.Network extraction from sand⁃ stone and carbonate pore space images[J].Journal of Petroleum Science and Engineering,2007,56(4):219-231.

    • [18] ZHANG Yuxiang,YANG Shenglai,ZHANG Zheng,et al.Multi⁃ scale pore structure characterization of an ultra-deep carbonate gas reservoir[J].Journal of Petroleum Science and Engineering,2022,208:109751.

    • [19] 李骞,张钰祥,李滔,等.基于数字岩心建立的评价碳酸盐岩完整孔喉结构的方法——以川西北栖霞组为例[J].油气地质与采收率,2021,28(3):53-61.LI Qian,ZHANG Yuxiang,LI Tao,et al.A method for evaluating complete pore-throat structure of carbonate rocks based on digital cores:A case study of Qixia Formation in northwest Sichuan[J].Petroleum Geology and Recovery Efficiency,2021,28(3):53-61.

  • 参考文献

    • [1] SALIMIDELSHAD Y,MORADZADEH A,KAZEMZADEH E,et al.Experimental investigation of changes in petrophysical proper⁃ ties and structural deformation of carbonate reservoirs[J].Petro⁃ leum Exploration and Development,2019,46(3):565-575.

    • [2] YANG Yongfei,LIU Zhihui,SUN Zhixue,et al.Research on stress sensitivity of fractured carbonate reservoirs based on CT technolo⁃ gy[J].Energies,2017,10(11):1 833.

    • [3] YANG Yongfei,TAO Liu,YANG Haiyuan,et al.Stress sensitivity of fractured and vuggy carbonate:an X-Ray computed tomogra⁃ phy analysis[J].Journal of Geophysical Research:Solid Earth,2020,125(3):e2019JB018759.

    • [4] WANG Fuyong,LI Yiqiang,TANG Xiang,et al.Petrophysical properties analysis of a carbonate reservoir with natural fractures and vugs using X-ray computed tomography[J].Journal of Natural Gas Science and Engineering,2016,28:215-225.

    • [5] FU Shuaishi,ZHANG Lianjin,LI Yingwen,et al.Influence of stress sensitivity on water-gas flow in carbonate rocks[J].Geoflu⁃ ids,2020,2020:1-12.

    • [6] 张钰祥,杨胜来,王蓓东,等.用径向流产能模拟法确定超深层碳酸盐岩气藏储层物性下限——以高石梯-磨溪区块为例[J/OL].大庆石油地质与开发:1-8[2022-08-09].DOI:10.19597/J.ISSN.1000-3754.202203021.ZHANG Yuxiang,YANG Shenglai,WANG Beidong,et al.Deter⁃ mining ultra-deep carbonate gas reservoir property cutoffs by ra⁃ dial flow productivity simulation method:Taking Gaoshiti-Moxi Block as an example[J/OL].Petroleum Geology & Oilfield Devel⁃ opment in Daqing:1-8[2022-08-09].DOI:10.19597/J.ISSN.1000-3754.202203021.

    • [7] 于吉旺,庞雄奇,郑定业,等.普光地区深层碳酸盐岩气藏主控因素及有利区预测[J].特种油气藏,2022,29(3):28-35.YU Jiwang,PANG Xiongqi,ZHENG Dingye,et al.Main control⁃ ling factors and favorable area prediction of deep carbonate gas reservoirs in Puguang Area[J].Special Oil & Gas Reservoirs,2022,29(3):28-35.

    • [8] 蔡珺君,彭先,李骞,等.四川盆地重点海相碳酸盐岩气藏产能评价现状及展望[J].断块油气田,2021,28(5):655-660.CAI Junjun,PENG Xian,LI Qian,et al.Present situation and pros⁃ pect of productivity evaluation of key marine carbonate gas reser⁃ voirs in Sichuan Basin[J].Fault-Block Oil and Gas Field,2021,28(5):655-660.

    • [9] 夏威,蔡潇,丁安徐,等.南川地区栖霞-茅口组碳酸盐岩储集空间研究[J].油气藏评价与开发,2021,11(2):197-203.XIA Wei,CAI Xiao,DING Anxu,et al.Reservoir spaces of car⁃ bonate rocks in Qixia-Maokou Formation of Nanchuan area[J].Reservoir Evaluation and Development,2021,11(2):197-203.

    • [10] 李程辉,李熙喆,高树生,等.高石梯-磨溪区块灯影组碳酸盐岩气藏孔隙结构特征[J].科学技术与工程,2015,15(24):72-78,101.LI Chenghui,LI Xizhe,GAO Shusheng,et al.Pore structure char⁃ acteristics of Dengying Formation carbonate gas reservoir of Gaoshiti-Moxi block[J].Science Technology and Engineering,2015,15(24):72-78,101.

    • [11] 闫海军,邓惠,万玉金,等.四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义[J].天然气地球科学,2020,31(8):1 152-1 160.YAN Haijun,DENG Hui,WAN Yujin,et al.The gas well produc⁃ tivity distribution characteristics in strong heterogeneity carbon⁃ ate gas reservoir in the fourth Member of Dengying Formation in Moxi area,Sichuan Basin[J].Natural Gas Geoscience,2020,31(8):1 152-1 160.

    • [12] 刘义成,徐伟,邓惠.气藏描述方法:SY/T 6110—2016[S].北京:石油工业出版社,2016.LIU Yicheng,XU Wei,DENG Hui.The method for gas reservoir description:SY/T 6110-2016[S].Beijing:Petroleum Industry Press,2016.

    • [13] 王璐,杨胜来,彭先,等.缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯—磨溪地区灯四段为例[J].吉林大学学报:地球科学版,2019,49(4):947-958.WANG Lu,YANG Shenglai,PENG Xian,et al.Pore structure characteristics and storage-seepage capability of multi-type res⁃ ervoirs in fracture-cavity carbonate gas reservoirs:A case study of Deng-4 Member in Gaoshiti-Moxi area,Sichuan Basin[J].Journal of Jilin University:Earth Science Edition,2019,49(4):947-958.

    • [14] 曲岩涛,戴志坚,李桂梅,等.岩心分析方法:GB/T 29172— 2012[S].北京:石油工业出版社,2012.QU Yantao,DAI Zhijian,LI Guimei,et al.Practices for core analy⁃ sis:GB/T 29172-2012[S].Beijing:Petroleum Industry Press,2012.

    • [15] 曲岩涛,房会春,朱健,等.储层敏感性流动实验评价方法:SY/T 5358—2010[S].北京:石油工业出版社,2010.QU Yantao,FANG Huichun,ZHU Jian,et al.Formation damage evaluation by flow test:SY/T 5358-2010[S].Beijing:Petroleum Industry Press,2010.

    • [16] CHOQUETTE P W,PRAY L C.Geologic nomenclature and classi⁃ fication of porosity in sedimentary carbonates[J].AAPG Bulletin,1970,54(2):207-250.

    • [17] AL-KHARUSI A S,BLUNT M J.Network extraction from sand⁃ stone and carbonate pore space images[J].Journal of Petroleum Science and Engineering,2007,56(4):219-231.

    • [18] ZHANG Yuxiang,YANG Shenglai,ZHANG Zheng,et al.Multi⁃ scale pore structure characterization of an ultra-deep carbonate gas reservoir[J].Journal of Petroleum Science and Engineering,2022,208:109751.

    • [19] 李骞,张钰祥,李滔,等.基于数字岩心建立的评价碳酸盐岩完整孔喉结构的方法——以川西北栖霞组为例[J].油气地质与采收率,2021,28(3):53-61.LI Qian,ZHANG Yuxiang,LI Tao,et al.A method for evaluating complete pore-throat structure of carbonate rocks based on digital cores:A case study of Qixia Formation in northwest Sichuan[J].Petroleum Geology and Recovery Efficiency,2021,28(3):53-61.