-
润湿性是储层岩石重要的特征参数之一,尤其是对于微纳米孔喉发育、矿物组成复杂、具有显著毛细管效应的储层[1-3]。岩石润湿性的客观认识对储层的采出程度、剩余油的分布、采收率的提高具有十分重要的意义[4-5]。随着页岩油等非常规油气的勘探与开发,一些学者发现页岩油储层的润湿性为水湿[6-7],而部分学者认为是油湿[7-8],油湿储层和水湿储层的原油动用特征大相径庭。因此,研究页岩油储层润湿性识别和评价的新方法,深化润湿性对页岩油储层原油动用程度的认识是非常紧迫的科学技术问题。
-
自 20 世纪 30 年代以来,中外研究者在分析流体与岩石之间相互作用关系的基础上,提出了多种评价岩石润湿性的方法,其中 USBM 方法和自吸法是目前室内实验评价储层岩石润湿性最常用的方法[9-12]。但这2种方法不仅实验周期较长,而且无法为测井技术所用[13]。而低场核磁共振(NMR)作为一种高效、无损、快速测量流体及其分布的技术,不仅广泛应用于实验室岩心分析[14-20],同时也是一种重要的地球物理测井方法[21-23]。有学者也常用该项技术评价储层岩石的润湿性。HOWARD 基于不同含水饱和度下的一维核磁共振 T2图谱,建立了饱和水的弛豫移动与含水饱和度和润湿性之间的关系[24];FLEURY 等基于亲油和亲水的表面积定义评价岩样润湿性的一维NMR润湿指数[25],但这些方法需将油相和水相的弛豫信息完全分离。随着二维核磁共振技术的出现和发展,扩散-弛豫(D-T2)和 T1-T2二维图谱成为解释和评价储层流体类型及分布的重要工具,MINH 等借助 D-T2图谱建立了一种润湿性的表征方法,但该方法难以适用于具有极短弛豫组分信息的页岩油储层[26],而利用T1-T2二维图谱表征页岩油储层润湿性的相关研究鲜有报道。
-
为此,笔者以鄂尔多斯盆地西 233 区块长 7 段页岩油储层为研究对象,开展完全饱和水及束缚水状态下的核磁共振T1-T2二维图谱测试;在2种状态下T1-T2二维图谱变化特征分析的基础上,建立基于核磁共振T1-T2二维图谱的润湿性评价方法,并与基于核磁共振技术的自吸法润湿性实验评价结果对比分析,获得储层岩石的润湿性;同时,完成平行岩样基于核磁共振技术的岩心水驱油实验,并结合简化的毛细管数模型,分析润湿性对鄂尔多斯盆地页岩油动用特征的影响。
-
1 实验岩样
-
8块实验岩样取自鄂尔多斯盆地陇东地区西 233区块长7段页岩油藏,且所有岩样均从同一口井的相邻位置钻取,以保证岩样的岩性及润湿性等特征一致。其中 1#和 2#岩样用于开展完全饱和水和束缚水状态下的核磁共振 T1-T2二维图谱测试,3#, 4#和 5#岩样用于开展基于核磁共振技术的自吸法润湿性实验[27],6#,7#和 8#岩样用于开展基于核磁共振技术的岩心水驱油实验,岩样的具体物性参数见表1。
-
选取实验岩样的铸体薄片和恒速压汞实验结果表明,岩样的岩性为极细-细粒岩屑砂岩,岩屑主要包含石英岩岩屑、片岩岩屑、低副变质岩岩屑和粉砂岩岩屑;成岩作用主要表现为压实、黏土矿物的转化、交代作用及弱溶蚀作用;岩样的孔隙欠发育,且以粒间孔和溶蚀孔为主(图1a),孔隙形状主要呈多边形或三角形,孔隙半径主要为 80~430 μm,最大为510 μm(图1b);喉道主要以点状孔喉为主,其平均喉道半径为0.263 4 μm;岩样整体连通性差,配位数为0~1个。
-
2 润湿性实验
-
2.1 实验器材
-
参照油藏岩石润湿性测定方法[27]中自吸法的实验流程设置润湿性实验装置,主要包括岩心驱替系统、自吸瓶(最小分度值为0.02 mL)和核磁共振装置(磁场强度为 0.5 T、氢质子共振频率为 21.3 MHz)。
-
实验用水分别为等矿化度模拟地层水(CaCl2溶液)和矿化度为55 000 mg/L的MnCl2水溶液(屏蔽岩心中水相的核磁共振信号)。实验用油为煤油和白油混合的模拟油,其黏度约等于地层条件下原油的黏度,为1.5 mPa·s。
-
2.2 实验步骤
-
主要目的为建立一种基于核磁共振 T1-T2二维图谱润湿性评价的新方法,缩短室内评价润湿性的实验周期和实验流程。为此,设计 2 个润湿性实验方案,一个是基于核磁共振T1-T2二维图谱测试的润湿性实验;另一个是为了对比验证该方法的准确性,选取平行岩样开展基于核磁共振技术的自吸法润湿性实验。
-
2.2.1 基于核磁共振 T1-T2二维图谱测试的润湿性实验
-
该实验的具体步骤为:①将岩心抽真空至 133 Pa,然后在 20 MPa 下饱和模拟地层水(CaCl2溶液) 48 h以上,测量饱和水岩心的质量并计算其孔隙度 (要求与氦孔隙度的相对偏差小于 2%),测量岩样完全饱和水状态下的核磁共振 T1-T2二维图谱。② 以实验用油驱替饱和水的岩样,建立束缚水饱和度,然后将岩样浸没在实验用油中,在地层温度下老化15 d,测量岩样老化后的核磁共振T1-T2二维图谱。
-
2.2.2 基于核磁共振技术的自吸法润湿性实验
-
该实验的具体步骤为:①岩样抽真空加压饱和矿化度为55 000 mg/L的MnCl2水溶液。②用模拟油驱替饱和水的岩样以建立束缚水饱和度,然后将岩样在地层温度下老化 15 d,测量岩样老化后的核磁共振 T2谱曲线。③在自吸瓶中装满 MnCl2水溶液,并将老化后的岩样放入吸水仪中进行自吸水排油实验;当吸水排油量连续 24 h稳定不变时结束自吸水排油实验,测量自吸水排油量(Vo1)和岩样的 T2谱曲线。③用 MnCl2水溶液驱替自吸水排油后的岩样,直到岩样出口端含水率达到99.95%时结束水驱油实验,记录水驱排油量(Vo2)和岩样的 T2谱曲线。 ④在吸油仪中装满模拟油,并将水驱油后的岩样放入自吸瓶中进行自吸油排水实验,当自吸油排水量连续 24 h稳定不变时结束实验,记录自吸油排水量 (Vw1)与岩样的 T2谱曲线。⑤用模拟油驱替自吸油排水后的岩样,直到岩样出口端含油率为99.95%时结束驱替,记录油驱排水量(Vw2)和岩样的 T2谱曲线。
-
图1 6#岩样的铸体薄片和恒速压汞实验分析结果
-
Fig.1 Experiment results of cast thin section and constant rate mercury injection of sample 6#
-
2.3 实验结果
-
2.3.1 基于核磁共振T1-T2二维图谱实验
-
由 1#和 2#岩样在完全饱和水和束缚水状态下的核磁共振 T1图谱、T2图谱及 T1-T2二维图谱(图2) 可以看出,在完全饱和水状态下,岩样的 T1-T2二维图谱呈长条形展布,表明水与岩样颗粒表面接触面积较大,且核磁共振纵向弛豫时间 T1主要分布在 1~200 ms,核磁共振弛豫时间T2为1~200 ms,T1/T2 值为 1~100,部分 T1/T2值超过 100。油驱之后,T1-T2二维图谱出现 3 个信号峰,右上角长弛豫时间对应的(T2大于 30 ms,T1大于 100 ms)为油峰,原因为孔喉半径越大对应的毛细管阻力越小,因此油驱水过程中油相将优先赋存于大孔喉(对应长 T2);通常胶质等固体成分会表现出 T2更短,因此胶质成分的 T1/T2值较大,T2小于 2 ms的部分对应岩样中的胶质成分;T2为 2~20 ms(T1为 10~100 ms)对应的为束缚水。3个信号峰的 T1/T2值不同,油峰的 T1/T2值为 3~10,束缚水峰的T1/T2值为10~50,胶质对应的峰值主要集中在100以上。
-
2.3.2 基于核磁共振技术的自吸法润湿性实验
-
由于在实验过程中,实验用水是无信号的 Mn⁃ Cl2溶液,因此获取的 T2谱曲线仅代表油相信号;T2 谱曲线的变化反映的是实验岩样中油相的变化。图3展示了 3#,4#和 5#岩样在自吸法润湿性实验过程中的核磁共振 T2谱,可以看出束缚水状态下(自吸水排油前),3 块实验岩样的 T2谱呈现单峰特征,且峰值对应的弛豫时间约为 30 ms;在自吸水排油后、水驱油后、自吸油排水后和油驱水后,核磁共振的 T2谱曲线形态未发生显著变化,仅为面积的增加或减小,且变化主要集中在 1~1 000 ms。此外,通过进一步对比不同状态下的核磁共振 T2谱的面积发现(面积变化幅度越大,说明岩样中产油量或增油量越多),3 块岩样的水驱油量大于油驱水量;自吸油排水量大于自吸水排油量,且主要发生在弛豫时间为 1~100 ms对应的孔喉中。在油驱水过程中核磁共振 T2谱面积变化很小,这一方面表明油驱水量很小,另一方面也说明采用常规的计量仪器很难准确获取该部分的体积,通过 3 块岩样计量获取的不同状态下对应的产油量和产水量也印证了这一认识(表2)。
-
图2 岩样完全饱和水和束缚水状态下的核磁共振T1-T2二维图谱
-
Fig.2 Two-dimensional NMR T1-T2 maps of rock samples in fully saturated water and irreducible water states
-
图3 自吸法润湿性实验中的核磁共振T2谱
-
Fig.3 NMR T2 maps in spontaneous imbibition wettability experiments
-
3 基于核磁共振技术的岩心水驱油实验
-
3.1 实验器材
-
构建的水驱油核磁共振实验装置主要包括岩心夹持器、中间容器、核磁共振仪、高精度驱替泵等。依据所选区块的生产压力、井距等资料,确定岩心水驱油实验的驱替压差为1.8 MPa。
-
实验用水为矿化度为55 000 mg/L的MnCl2水溶液;实验用油为煤油与白油混合的模拟油,其黏度约等于地层条件下原油的黏度,为1.5 mPa·s。
-
3.2 实验流程
-
参照 GB/T 28912—2012[28]进行岩心水驱油实验,主要实验步骤为:①将岩样抽真空至 133 Pa,然后在 20 MPa 下饱和实验水(MnCl2溶液)48 h 以上,测量饱和水岩样的质量并计算其孔隙度(要求与氦孔隙度的相对偏差小于 2%)。②以实验用油驱替饱和水的岩样,确定束缚水饱和度,然后将岩样浸没在实验用油中,在地层温度下老化 15 d后测定老化后岩样的 T2谱曲线,且核磁测试参数与自吸法润湿性实验所用参数一致。③将岩样放入岩心夹持器中,在驱替压差为 1.8 MPa下进行水驱油实验,记录驱替过程中累积产水量、累积产油量、驱替压力和驱替时间。当驱替至 30 PV 后停止,取出岩样测量其质量和T2谱曲线。
-
为确保实验结果的准确性,在自吸法润湿性实验和水驱油实验过程中,每次测量核磁共振 T2谱之前,需对核磁共振装置进行定标。
-
3.3 实验结果
-
3 块岩样在束缚水状态下(即水驱油之前)的核磁共振 T2谱曲线均呈现双峰特征(图4a—4c),其中 8#岩样在短弛豫时间(T2为0.01~3.41 ms)和长弛豫时间(T2为3.41~394.87 ms)对应的信号幅度峰值相同;而 6#和 7#岩样的短弛豫时间(T2为 0.01~5.94 ms)对应的信号幅度峰值低于长弛豫时间(T2 为 3.63~1 000 ms)的峰值。这说明原油在这两类储层岩样中的分布表现出较强的非均匀性;另一方面,相对于7#和8#岩样,6#岩样中的原油主要赋存于更小的孔喉空间。在压差为1.8 MPa状态下驱替后,这两类岩样核磁共振信号幅度峰值的降低均来自于T2 大于 3.0 ms 以上对应的孔喉。同时,驱替后 3 块岩样的T2弛豫时间小于1.0 ms的信号量有所增加。
-
图4 基于核磁共振技术的岩心水驱油实验结果
-
Fig.4 Results of core water flooding experiment based on NMR technology
-
4 储层岩石润湿性表征
-
亲水性较强的岩样在饱和油后束缚水分布于细微孔喉及较大孔喉表面,而非润湿的油相则分布于孔喉中央,油与孔喉表面的作用力明显较弱,其在岩石孔喉中不反映液固之间的相互作用,几乎呈现自由流体状态。根据核磁共振表面弛豫原理,含氢流体与孔喉表面的相互作用力越强,其弛豫时间越短,反之则弛豫时间越长[29-30]。因此,非润湿的油相分布于弛豫时间较长的部分,而润湿流体水相则分布在弛豫时间较短的部分;当岩样亲油时,润湿流体油相分布于较大孔喉表面且与孔喉表面的相互作用力很强,必然导致部分油相的弛豫时间缩短,水相弛豫时间变长,宏观上则表现为饱和油状态下水相的核磁共振图谱较完全饱和水的核磁共振图谱向右偏移。基于上述原理,通过分析完全饱和水和束缚水状态下水相的核磁共振图谱的弛豫信息及其变化可快速评价储层岩样的润湿性。此外,T2和 T1均可反映岩样中流体与孔喉表面的相互作用力强弱,其计算公式如下:
-
通过对比(1)式和(2)式发现,在忽略流体弛豫时间的情况下,横向弛豫时间仍受扩散弛豫时间的影响,无法准确地反映流体与孔喉壁面之间的表面弛豫特征。而 T1谱由于不受扩散弛豫时间的影响,因此更适合用来研究表面弛豫,以表征流体与孔喉壁面的作用力强度。
-
基于上述原理,笔者提取 2 块岩样在完全饱和水和束缚水状态下的水相核磁共振 T1谱(图5),可以看出油驱以后,2 块岩样的核磁共振 T1谱短弛豫部分的信号幅度明显减小(1~10 ms),其核磁共振T1谱整体向右偏移。这种现象表明,油驱水后,水与孔喉壁面的作用力强度明显降低,反映出自由流体的弛豫特征,因此2块岩样总体应表现为油湿特性。为进一步验证这一结果,笔者结合核磁共振技术测试了 3 块平行岩样相对润湿指数,并且为了避免常规计量装置带来的计量误差,采用水渗吸、水驱油、油渗吸和油驱水不同阶段的核磁共振 T2谱来计算水湿指数和油湿指数[31]:
-
图5 岩样完全饱和水和束缚水状态下水相的核磁共振T1谱
-
Fig.5 NMR T1 maps of water of rock samples in fully saturated water and irradiated water states
-
基于(3)式—(5)式及岩样在4个不同阶段的核磁共振 T2谱曲线,分别计算得到 3 块岩样的相对润湿指数为-0.90,-0.51和-0.67(表2),对应的润湿性表现为油湿特征,这与基于完全饱和水和束缚水状态下的核磁共振 T1-T2二维图谱分析的结果一致。因此,通过测试完全饱和水和束缚水状态下水相信号的核磁共振 T1-T2二维图谱的变化,并分析评价 2 种状态下水相核磁共振 T1谱的弛豫信息及变化特征,可有效地评价储层岩样的润湿性;同时,该方法也缩短了自吸法润湿性实验的周期,具有较高的实用性。
-
5 润湿性对油水两相流动特征的影响
-
通过新方法评价陇东地区西 233区块长 7段页岩油储层岩样的润湿性,表现为油湿,这势必导致该地区在水驱油过程中储层孔喉中流体的流动规律和最终采收率与常规水湿储层的差异较大。为此,进一步选取平行岩样开展基于核磁共振技术的岩心水驱油实验,分析评价油湿条件下原油在孔喉空间中的流动特征。
-
基于核磁共振基本原理将(1)式简化为 T2与 r 之间的关系[32]。同时,结合目前获取转换系数 C 的方法(将毛细管压力曲线和核磁共振 T2谱转换至同一坐标轴条件下进行刻度对比,从而求得转换系数[33])与恒速压汞实验结果,确定 6#岩样的转换系数。由于开展岩心水驱油实验的3块岩样来自相同井的相邻位置,因此6#岩样的转换系数也可用于7# 和8#岩样。此外,基于实验岩样的孔喉分布和储层岩石孔喉划分标准[33],将本次实验岩样的孔喉根据大小分为 3 类:孔喉半径小于 3.05 μm 为小孔喉, 3.05~30.05 μm 为中等孔喉,大于 30.05 μm 为大孔喉。
-
基于实验岩样中原油在束缚水和 1.8 MPa驱替压力状态下的赋存特征,计算得到岩样的不同孔喉区间中的原油赋存特征和驱油效率。在束缚水状态下,岩样中的原油主要赋存在中等孔喉和小孔喉,其中中等孔喉中原油占 30.01%~44.88%,小孔喉中原油占28.91%~42.88%,大孔喉中原油含量较少,仅占21.37%~27.12%;水驱油过程中,储层岩样中优先动用中等-大孔喉中的原油,其中中等孔喉中原油的采出程度为53.44%,大孔喉中的采出程度在 62.34% 以上,这与 YANG 等的研究成果一致[32]。究其原因为笔者采用的注水毛细管数约为 1.9×10-7 (毛细管数为黏滞力与毛细管压力的比值,对应压降Δp为1.8 MPa),这远小于以往学者对于低毛细管数的界定(通常认为毛细管数低于 10-6 为低毛细管数),且实验岩样的润湿性表现为油湿特征。因此在水驱油过程中,毛细管压力占主导作用,且表现为阻力。根据毛细管压力的定义公式[34]:
-
较大孔喉半径对应的毛细管压力较小,因此注入水优先动用毛细管阻力较小的中等-大孔喉中的原油,毛细管阻力较大的小孔喉则被注入水绕过形成剩余油。同时该实验结果也给予了启示,即对于油湿储层如何提高小孔喉的动用效果对提高水驱采收率至关重要。
-
先前学者也发现通过增加毛细管数的方式可以有效提高中等-小孔喉的动用效果[35],但其忽略了润湿性的影响。实际上通过简化的毛细管数理论模型可以发现,对于油湿储层,在增加注入水毛细管数的同时逐渐改变储层岩石的润湿性,使其油湿特征逐渐减弱,黏滞力相对于毛细管力对流体的控制作用逐渐增强,注入水更易沿着小孔喉流动,进而小孔喉的动用效果更佳。假设注入水进入孔喉半径为 r1的孔喉空间,且油相黏度为 1.5 mPa·s,水相黏度为 1 mPa·s,则其孔喉两端的压降可以表示为:
-
通过(7)式计算获取不同注入水毛细管数和不同接触角(即不同润湿性)下黏滞力引起的压降以及毛细管阻力引起的压降和总压降,其计算结果见表3。可以看出,随着注入水的毛细管数增加和接触角的减小(油湿特征逐渐减弱),黏滞力压降对总压降的贡献程度逐渐增加,且这种现象在较小孔喉中表现得尤为明显。这表明随着注入水的毛细管数逐渐增加和岩石润湿性逐渐偏向于水湿,黏滞力对水驱油过程的控制作用增强,较小孔喉可能成为优势流动通道,该结果和 ZHAO 等通过实验观察得到的结果一致[35]。
-
因此,对于润湿性表现为油湿特征的陇东地区西 233 区块长 7 段页岩油藏,可以首先通过增加注入的毛细管数和改变储层岩石的润湿性,使其油湿特征逐渐减弱,以提高小孔喉的整体动用效果,然后利用低毛细管数开采中大孔喉空间中的原油的水驱开发策略,以提高各级孔喉的动用效果。
-
6 结论
-
润湿性是决定储层油水分布的重要特征,对油气开采具有重要意义。研究结果表明:①通过对比完全饱和水和束缚水状态下的 T1-T2二维图谱及其变化特征可以获取流体与孔喉表面相互作用信息,进而实现岩样的润湿性评价。②注入毛细管数和润湿性是影响页岩油储层水驱油效率的关键因素。因此,对于页岩油藏水驱油过程而言,增大注入毛细管数的同时降低储层岩石的油湿特征,可显著提高各级孔喉中原油的动用程度。
-
岩石润湿性及其对渗流特征的影响机制十分复杂且受多重因素影响。在后续研究工作中,将探索核磁共振 T1-T2二维图谱评价润湿性的理论基础及其定量表征方法,进而开展不同润湿性和注入压力下的水驱油实验,构建储层特征、润湿性和注入毛细管数的三角图版,以进一步验证和丰富已有研究成果。
-
符号解释
-
C——转换系数,μm/ms;
-
Df ——流体的扩散系数,μm2 /ms;
-
G——磁场梯度,G/cm;
-
I——相对润湿性指数;
-
L——孔喉长度,μm;
-
Δp——孔喉两端的压降,Pa;
-
pc——毛细管压力,Pa;
-
r——毛细管半径,μm;
-
r1——孔喉半径,μm;
-
S——岩石孔喉内表面积,μm2;
-
ΔSw1——饱和油和水自发渗吸结束状态下核磁共振 T2 谱之间的区域面积;
-
ΔSw2——水自发渗吸结束与水驱油状态下核磁共振 T2 谱之间的区域面积;
-
ΔSw3——水驱残余油和油自发渗吸结束状态下核磁共振T2谱之间的区域面积;
-
ΔSw4——油自发渗吸结束与油驱水状态下核磁共振 T2 谱之间的区域面积;
-
T1——纵向弛豫时间,ms;
-
T1B——流体的纵向体弛豫时间,ms;
-
T1S——流体的纵向表面弛豫时间,ms;
-
T2——横向弛豫时间,ms;
-
T2B——流体的横向体弛豫时间,ms;
-
T2D——流体的横向扩散弛豫时间,ms;
-
T2S——流体的横向表面弛豫时间,ms;
-
TE——回波间隔,ms;
-
v1——注入水的渗流速度,μm/s;
-
V——岩石孔喉体积,μm3;
-
Vo1——自吸水排油量,mL;
-
Vo2——水驱排油量,mL;
-
Vw1——自吸油排水量,mL;
-
Vw2——油驱排水量,mL;
-
Wo——油湿指数;
-
Ww——水湿指数;
-
ρ——表面弛豫率,μm/ms;
-
γ——氢原子核的磁旋比,MHz/T;
-
σ——油水界面张力,mN/m;
-
θ——接触角,(°)。
-
参考文献
-
[1] 谷志宇,刘恩涛,王香增,等.鄂尔多斯盆地东南部延长组七段页岩发育特征及勘探潜力[J].油气地质与采收率,2021,28(1):95-105.GU Zhiyu,LIU Entao,WANG Xiangzeng,et al.Development char⁃ acteristics and exploration potential of shale in Chang7 Member in southeast of Ordos Basin[J].Petroleum Geology and Recovery Efficiency,2021,28(1):95-105.
-
[2] 林会喜,王圣柱,杨艳艳,等.博格达地区中二叠统芦草沟组页岩油储集特征[J].断块油气田,2020,27(4):418-423.LIN Huixi,WANG Shengzhu,YANG Yanyan,et al.Shale oil res⁃ ervoir characteristics of Middle Permian Lucaogou Formation in Bogda area[J].Fault-Block Oil and Gas Field,2020,27(4):418-423.
-
[3] 庄严,熊汉桥,章敬,等.低温水侵环境致密砂岩气藏储层润湿性变化[J].油气地质与采收率,2017,24(4):78-82.ZHUANG Yan,XIONG Hanqiao,ZHANG Jing,et al.Wettability changes of tight sandstone gas reservoir under circumstances of water invasion with low temperature[J].Petroleum Geology and Recovery Efficiency,2017,24(4):78-82.
-
[4] 何更生,唐海.油层物理[M].北京:石油工业出版社,2011:240-242.HE Gengsheng,TANG Hai.Petrophysics[M].Beijing:Petroleum Industry Press,2011:240-242.
-
[5] ANDERSON W G.Wettability literature survey-part1:rock/oil/brine interactions and the effects of core handling on wettability [J].Journal of Petroleum Technology,1986,38(10):1 125-1 144.
-
[6] 郭建春,陶亮,陈迟,等.川南地区龙马溪组页岩混合润湿性评价新方法[J].石油学报,2020,41(2):216-225.GUO Jianchun,TAO Liang,CHEN Chi,et al.A new method for evaluating the mixed wettability of shale in Longmaxi Formation in the southern Sichuan[J].Acta Petrolei Sinica,2020,41(2):216-225.
-
[7] 黄兴,窦亮彬,左雄娣,等.致密油藏裂缝动态渗吸排驱规律 [J].石油学报,2021,42(7):924-935.HUANG Xing,DOU Liangbin,ZUO Xiongdi,et al.Dynamic imbi⁃ bition and drainage laws of fractures in tight reservoirs[J].Acta Petrolei Sinica,2021,42(7):924-935.
-
[8] 肖文联,杨玉斌,李闽,等.鄂尔多斯盆地不同类型储集层水驱油特征实验[J].石油勘探与开发,2021,48(4):807-816.XIAO Wenlian,YANG Yubin,LI Min,et al.Experimental study on the oil production characteristics during the waterflooding of different type reservoirs in Ordos Basin,NW China[J].Petroleum Exploration and Development,2021,48(4):807-816.
-
[9] 吴志宏,牟伯中,王修林,等.油藏润滑性及其测定方法[J].油田化学,2001,18(1):90-96.WU Zhihong,MU Bozhong,WANG Xiulin,et al.Reservoir wetta⁃ bility and its measurement[J].Oilfield Chemistry,2001,18(1):90-96.
-
[10] ANDERSON W G.Wettability literature survey-part2:wettability measurement[J].Journal of Petroleum Technology,1986,38(11):1 246-1 262.
-
[11] 鄢捷年.一种定量测定油藏岩石润湿性的新方法[J].石油勘探与开发,2001,28(2):83-86,113-123.YAN Jienian.A new method for determination of wettability of res⁃ ervoir rocks[J].Petroleum Exploration and Development,2001,28(2):83-86,113-123.
-
[12] DONALDSON E C,THOMAS R D,LORENZ P B.Wettability de⁃ termination and its effect on recovery efficiency[J].SPE Journal,1969,9(1):13-20.
-
[13] 梁灿,肖立志,周灿灿,等.岩石润湿性的核磁共振表征方法与初步实验结果[J].地球物理学报,2019,62(11):4 472-4 481.LIANG Can,XIAO Lizhi,ZHOU Cancan,et al.Nuclear magnetic resonance characterizes rock wettability:preliminary experimen⁃ tal results[J].Chinese Journal of Geophysics,2019,62(11):4 472-4 481.
-
[14] 钟红利,吴雨风,张凤奇,等.陕北斜坡东南部致密砂岩孔喉分布及其对含油性的影响[J].断块油气田,2021,28(1):21-27.ZHONG Hongli,WU Yufeng,ZHANG Fengqi,et al.Pore throat distribution of tight sandstone in the southeast of the Northern Shaanxi Slope and its influence on oil-bearing property[J].FaultBlock Oil and Gas Field,2021,28(1):21-27.
-
[15] 徐永强,何永宏,卜广平,等.基于微观孔喉结构及渗流特征建立致密储层分类评价标准:以鄂尔多斯盆地陇东地区长7储层为例[J].石油实验地质,2019,41(3):451-460.XU Yongqiang,HE Yonghong,BU Guangping,et al.Establish⁃ ment of classification and evaluation criteria for tight reservoirs based on characteristics of microscopic pore throat structure and percolation:A case study of Chang7 reservoir in Longdong area,Ordos Basin[J].Petroleum Geology & Experiment,2019,41(3):451-460.
-
[16] 孙健,包汉勇.页岩气储层综合表征技术研究进展:以涪陵页岩气田为例[J].石油实验地质,2018,40(1):1-12.SUN Jian,BAO Hanyong.Comprehensive characterization of shale gas reservoirs:A case study from Fuling shale gas field[J].Petroleum Geology & Experiment,2018,40(1):1-12.
-
[17] 惠威,薛宇泽,白晓路,等.致密砂岩储层微观孔隙结构对可动流体赋存特征的影响[J].特种油气藏,2020,27(2):87-92.HUI Wei,XUE Yuze,BAI Xiaolu,et al.Influence of micro-pore structure on the movable fluid occurrence in tight sandstone reser⁃ voir[J].Special Oil & Gas Reservoirs,2020,27(2):87-92.
-
[18] 董大鹏,李斌会,苑盛旺.等.基于核磁共振测试的低渗亲水岩心静态渗吸特征[J].大庆石油地质与开发,2021,40(2):60-65.DONG Dapeng,LI Binhui,YUAN Shengwang,et al.Spontaneous imbibition characteristics of the low-permeability water-wet core based on the NMR test[J].Petroleum Geology & Oilfield Develop⁃ ment in Daqing,2021,40(2):60-65.
-
[19] 闫伟林,张兆谦,陈龙川,等.基于核磁共振技术的古龙页岩含油饱和度评价新方法[J].大庆石油地质与开发,2021,40(5):78-86.YAN Weilin,ZHANG Zhaoqian,CHEN Longchuan,et al.New evaluating method of oil saturation in Gulong shale based on NMR technique[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(5):78-86.
-
[20] 陈猛.致密油储层水驱油实验及动态网络模拟研究[D].成都:西南石油大学,2017.CHEN Meng.Studies of water displacement experiments and dy⁃ namic network simulation in tight oil reservoirs[D].Chengdu:Southwest Petroleum University,2017.
-
[21] 汤天知,李庆峰,赵小青,等.基于电成像与核磁共振测井的古龙页岩油储层有效性评价[J].大庆石油地质与开发,2020,39(3):129-136.TANG Tianzhi,LI Qingfeng,ZHAO Xiaoqing,et al.The effective⁃ ness evaluation of Gulong shale oil reservoirs based on the electri⁃ cal imaging and NMR logging[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(3):129-136.
-
[22] 王龙,张金川,唐玄.鄂尔多斯盆地下寺湾—云岩地区长7段页岩气测井评价与分布规律研究[J].中国石油勘探,2019,24(1):129-136.WANG Long,ZHANG Jinchuan,TANG Xuan.Logging evaluation and distribution law of Chang7 shale gas in Xiasiwan-Yunyan ar⁃ ea,Ordos Basin[J].China Petroleum Exploration,2019,24(1):129-136.
-
[23] 赵丽莎,史永彬,金玮,等.基于梦想云的测井智能化解释应用研究[J].中国石油勘探,2020,25(5):97-103.ZHAO Lisha,SHI Yongbin,JIN Wei,et al.Application research on intelligent logging interpretation based on E & P Dream Cloud [J].China Petroleum Exploration,2020,25(5):97-103.
-
[24] HOWARD J J.Quantitative estimates of porous media wettability from proton NMR measurements[J].Magnetic Resonance Imag⁃ ing,1998,16(5/6):529-533.
-
[25] FLEURY M,DEFLANDRE F.Quantitative evaluation of porous media wettability using NMR relaxometry[J].Magnetic Resonance Imaging,2003,21(3/4):385-387.
-
[26] MINH C C,CRARY S,SINGER P M,et al.Determination of wetta⁃ bility from magnetic resonance relaxation and diffusion measure⁃ ments on fresh-state cores[C].Long Beach,California:SPW⁃ LA56th Annual Logging Symposium,Society of Petrophysicists & Well Log Analysts,2015.
-
[27] 李奋,刘丽,马炳杰,等.油藏岩石润湿性测定方法:SY/T 515 3—2007[S].北京:石油工业出版社,2007.LI Fen,LIU Li,MA Bingjie,et al.Test method of reservoir rock wettability:SY/T 5153-2007[S].Beijing:Petroleum Industry Press,2007.
-
[28] 张祖波,罗蔓莉,戴志坚,等.岩石中两相流体相对渗透率测定方法:GB/T 28912—2012[S].北京:石油工业出版社,2012.ZHANG Zubo,LUO Manli,DAI Zhijian,et al.Test method for two phase relative permeability in rock:GB/T 28912-2012[S].Bei⁃ jing:Petroleum Industry Press,2012.
-
[29] 孙军昌,杨正明,刘学伟,等.核磁共振技术在油气储层润湿性评价中的应用综述[J].科技导报,2012,30(27):65-71.SUN Junchang,YANG Zhengming,LIU Xuewei,et al.Reservoir wettability evaluation using nuclear magnetic resonance technolo⁃ gy[J].Science and Technology Review,2012,30(27):65-71.
-
[30] 杨正明,刘学伟,李海波,等.致密储集层渗吸影响因素分析与渗吸作用效果评价[J].石油勘探与开发,2019,46(4):739-745.YANG Zhengming,LIU Xuewei,LI Haibo,et al.Analysis on the influencing factors of imbibition and the effect evaluation of imbi⁃ bition in tight reservoirs[J].Petroleum Exploration and Develop⁃ ment,2019,46(4):739-745.
-
[31] 肖文联,杨玉斌,李闽,等.一种致密岩石润湿性确定的新方法:CN201811123066.4[P].2019-12-17.XIAO Wenlian,YANG Yubin,LI Min,et al.A new method for de⁃ termining wettability of tight rocks:CN201811123066.4[P].2019-12-17.
-
[32] YANG Ping,GUO Hekun,YANG Daoyong.Determination of resid⁃ ual oil distribution during waterflooding in tight oil formations with NMR relaxometry measurements[J].Energy & Fuels,2013,27(10):5 750-5 756.
-
[33] CHEN Meng,DAI Jiacai,LIU Xiangjun,et al.Effect of displace⁃ ment rates on fluid distributions and dynamics during water flood⁃ ing in tight oil sandstone cores from nuclear magnetic resonance(NMR)[J].Journal of Petroleum Science and Engineering,2020,184:106 588-1-106 588-12.
-
[34] WASHBURN E W.The dynamics of capillary flow[J].Physical Re⁃ view,1921,17(3),273-283.
-
[35] ZHAO Ting,LI Xingfu,LI Min,et al.Control of generalized capil⁃ lary number on immiscible displacement path:NMR online and network simulation of fluid displacement mechanism[J].Energy & Fuels,2021,35(12):9 903-9 916.
-
摘要
为了识别和评价页岩油储层岩石润湿性,深化其对储层原油动用程度的认识,以鄂尔多斯盆地西233地区页岩油储层岩样为研究对象,开展完全饱和水及束缚水状态下的核磁共振 T1-T2二维图谱测试和基于核磁共振技术的自吸法润湿性实验,建立基于核磁共振T1-T2二维图谱评价润湿性的基本方法,进而选择平行岩样开展基于核磁共振技术的岩心水驱油实验,分析评价润湿性对水驱油过程中原油动用特征的影响。研究结果表明,油驱水后(即束缚水状态),水相与孔喉壁面的作用力明显减小,其在孔喉空间中表现出自由流体状态下的体弛豫特征,因此岩样的润湿性表现为油湿,这与基于核磁共振技术的自吸法润湿性实验评价结果一致。由此可见,通过对比不同状态下的核磁共振 T1-T2二维图谱能够评价岩样的润湿性;岩样在水驱油过程中主要动用的是中-大孔喉中的原油,小孔喉中原油的动用效果较差。当增加注入水毛细管数的同时减弱储层岩石的油湿特性,小孔喉的动用效果可明显提升。因此注水开发过程中应综合考虑注入水毛细管数和储层岩石的润湿性,进而提高页岩储层的水驱油效率。
Abstract
In order to identify and evaluate the rock wettability of shale oil reservoirs and deepen the understanding of the crude oil producing in the reservoirs,this paper takes rock samples from the shale oil reservoirs in the West 233 area of Or- dos Basin as the research object and carries out two-dimensional nuclear magnetic resonance(NMR)T1-T2 map measure- ment as well as spontaneous imbibition wettability experiment based on NMR technology in the state of fully saturated wa- ter and irreducible water. In addition,the paper establishes the basic method for evaluating wettability based on the two-di- mensional NMR T1-T2 maps and selects parallel rock samples for core water flooding experiment based on NMR technolo- gy,so as to analyze and evaluate the influence of wettability on the crude oil production characteristics during the water flooding. The research results show that after the oil flooding water(i.e.,in the irreducible water state),the force between the water and the pore throat wall is significantly reduced,and the water exhibits the characteristics of bulk relaxation in the state of free fluid in the pore throat space. As a result,the wettability of the rock samples is oil-wet,which is consistent with the results of the spontaneous imbibition wettability experiment based on NMR technology. Therefore,it can be seen that the wettability of the rock samples can be evaluated by comparing the two-dimensional NMR T1-T2 maps in different states. During the water flooding,the crude oil is mainly produced in the medium and large pore throats of the rock samples but poorly produced in small pore throats. When the capillary number of injected water is increased,and the oil-wet charac- teristics of the rock in reservoirs are weakened,the crude oil producing in the small pore throats is significantly improved. Therefore,the capillary number of injected water and wettability of the rock should be comprehensively considered during water flooding development,so as to improve the water flooding efficiency of shale reservoirs.
关键词
页岩油 ; 润湿性 ; 自吸法 ; 核磁共振T1-T2二维图谱 ; 原油动用程度