-
稠油油藏黏度高、水油流度比高导致其水驱采收率仅为 5%~10%[1-2]。传统稠油热采取得较大成功,但仍存在能源消耗大、易窜、效果逐轮/逐年变差等问题[3]。化学复合驱兼具增大驱替相黏度、降低油水界面张力和乳化降低油相黏度等优势,逐渐成为稠油开发的重要接替技术[4-9]。尤其是近年来,稠油的乳化降黏开发备受关注,在驱油体系中加入降黏剂,形成 O/W 型乳状液,改善其流动性[10-13];发展了高效的乳化降黏体系(甚至是自乳化体系),主要包括表面活性剂类、两亲聚合物类和改性纳米颗粒等体系[14-17],稠油降黏率达 90% 以上,表现出显著的降黏效果。但是降黏剂加入的同时会带来潜在的产出液破乳困难、驱油剂成本显著升高等问题[18-19]。诸多试验阶段的乳化降黏剂价格高昂,甚至达到每吨十几到几十万元,远超传统表面活性剂。在稠油复合体系设计中是否应追求强乳化,取决于乳化对稠油驱替的影响和贡献。尤其是水油黏度比变化时,复合体系中聚合物组分流度控制能力差异,稠油高效驱替对乳化降黏的要求不同,乳化对稠油驱替的贡献会发生改变;诸多学者更多地关注高效降黏体系的研发[14-17],而乳化对驱油的影响或者贡献仍不清晰,有待深化研究。据此,分别收集了性能显著不同的传统超低界面张力、乳化、兼顾超低界面张力和乳化的双效 3 种稠油复合体系;开展了系列的界面张力、乳化性能和驱油等研究,对比不同体系驱油采收率增幅的差异,确定在不同水油黏度比条件下乳化对稠油复合驱的影响和贡献。
-
1 实验部分
-
1.1 材料与仪器
-
实验材料包括超低界面张力型表面活性剂 S1、乳化型表面活性剂 S2和双效型表面活性剂 S3,均为阴非复配型,其质量分数均为 0.3%,来自于胜利油田;部分水解聚丙烯酰胺 P(HPAM),相对分子质量为 2.5×107,来自于山东宝莫生物化工股份有限公司;模拟地层水,矿化度为 6 681 mg/L,离子组成 Na+ +K+,Mg2+ +Ca2+,Cl-,HCO3- 和 CO3 2- 的质量浓度分别为 2 299,184,3 435,725 和 38 mg/L;某区块脱气稠油黏度为731 mPa·s(70℃),密度为0.98 g/cm3。
-
实验仪器包括 TX-500C型界面张力仪(美国科诺工业有限公司);SZX7体式显微镜(日本奥林巴斯有限公司);均质填砂模型,内径为 2.5 cm,长度为 30 cm。
-
1.2 实验方法
-
界面张力 按照设定浓度分别配制超低界面张力、乳化和双效复合体系(表1),在70℃下利用界面张力仪,测试其与目标稠油的界面张力[20]。
-
乳化性能 将稠油和复合体系分别加热至 70℃,取等量5 mL的稠油和复合体系分别加入试管中,摇匀后采用瓶试法观测油水混合物不同时间下的析水状态,判断复合体系形成稠油乳状液的稳定性;同时,利用 SZX7体式显微镜观察不同体系形成乳状液的微观形态随时间的变化。
-
驱油能力 固定稠油黏度为 731 mPa·s,改变复合体系黏度,利用性能显著不同的3种复合体系,在水油黏度比分别为 0.010,0.045,0.100,0.200 和 0.460 条件下,首先开展了二元复合驱油实验,根据超低界面张力、乳化与双效复合体系采收率增幅的差异,按照体系性能依次增强的顺序,判断乳化对稠油复合体系的影响与贡献。此外,诸多学者研究发现,扩大波及是稠油复合体系提高采收率的前提[2,20],故进一步引入泡沫辅助复合体系扩大波及,在水油黏度比分别为 0.010,0.045,0.100,0.150 和 0.460 条件下,开展了 3 种泡沫复合体系驱油实验 (交替注入0.3 PV复合体系和0.3 PV空气,单个复合体系段塞或空气段塞尺寸为0.1 PV),考察泡沫辅助下复合体系乳化对稠油驱替的影响,并与单独二元复合驱进行对比。
-
2 实验结果与讨论
-
2.1 界面张力
-
在比较 3 种复合体系驱油特征之前,应确定其能否满足超低界面张力和良好乳化性能的基本设计要求。因此,首先针对选用的复合体系,测试其与稠油的界面张力(图1)。1#超低界面张力复合体系和 3#双效复合体系与稠油的界面张力均能达到超低水平,为 3.0×10-3 mN/m;而 2#乳化复合体系与稠油的界面张力为5.1×10-1 mN/m。3种复合体系与稠油的界面张力表现出显著的不同,符合进一步驱油对比的需要。此外,尽管超低界面张力有利于减小毛细管力和稠油在岩石壁面的黏附功,但是对于稠油复合驱,乳化降黏机理极为关键[21],需进一步对3种复合体系的乳化性能加以研究。
-
图1 3种复合体系与稠油的界面张力
-
Fig.1 Interfacial tension between three combination systems and heavy oil
-
2.2 稠油乳化特征
-
结合图2 和图3 可见,初始油水充分振荡混合后,3种复合体系均能较好地乳化和分散稠油,形成大量的乳化油滴。随着时间的延长,乳状液逐渐聚并,不同复合体系形成乳状液稳定性差异明显:① 析水率特征(图2)。1#超低界面张力复合体系 60 min 时最先开始析水,析水率上升更快,560 min 后析水率稳定在 96.4%;2#乳化复合体系析水最晚, 130 min时开始析水,析水率上升最慢,560 min后析水率稳定在 52.2%;3#双效复合体系在 80 min 时开始析水,析水率上升速度介于前两者之间,560 min 后析水率为 93.3%。②乳状液微观形态(图3)。乳状液制备后,高温 70℃时维护 90 min,1#超低界面张力复合体系形成的乳化油滴显著聚并成大油滴,甚至是连片分布,这也是其更容易析水的原因。2# 乳化复合体系仅有少量的大油滴出现,大部分油滴保持初始的分散状态,能够更好地稳定。3#双效复合体系中油滴也发生了明显的聚并,但是油滴尺寸较1#超低界面张力复合体系中的小,且油滴与油滴间即使相互接触、堆积,也仍有明显的界面膜存在,未聚并。综上所述,3 种复合体系稳定稠油乳状液的能力由弱到强依次为:1#超低界面张力复合体系、3#双效复合体系、2#乳化复合体系。体系性能符合研究设计要求,具备进一步驱油对比的基础。
-
图2 不同时间下3种复合体系所形成的稠油乳状液析水率
-
Fig.2 Water segregation rates of heavy oil emulsions formed by three combination systems separately at different times
-
图3 不同时间下3种复合体系所形成的稠油乳状液微观形态
-
Fig.3 Morphology of heavy oil emulsions formed by three combination systems separately at different times
-
此外,1#超低界面张力复合体系和3#双效复合体系形成稠油乳状液的稳定性较 2#乳化复合体系差,这也说明乳状液的稳定性与超低界面张力无正相关性,可能更多地取决于油水界面膜的强度[22-23]。超低界面张力甚至不利于乳状液的稳定,因为:① 油水界面能低,界面极易扩展,油水界面上局部表面活性剂浓度瞬时降低,水化膜厚度变薄,不利于乳状液的稳定[24]。②油水界面的扩展,增大了油滴碰撞的几率。③能形成超低界面张力的表面活性剂具有更好的亲水亲油平衡,更倾向于在水平的油水界面铺展,而不是像乳状液一样的弯曲界面。
-
2.3 不同性能体系复合驱对比
-
通过界面张力、乳化性能研究发现,3种复合体系性能存在显著差异:1#超低界面张力复合体系可将油水界面张力减小至超低水平,但稳定稠油乳状液的能力较差;2#乳化复合体系难以将油水界面张力降低至超低,但能够更好地稳定稠油乳状液;3# 双效复合体系油水界面张力能够达到超低,对稠油的乳化性能介于前两者之间。为了进一步确定性能差异(尤其是乳化)对复合体系驱替稠油的影响,首先在水油黏度比为 0.045 和 0.460 的条件下开展驱油研究(图4)。
-
图4 不同水油黏度比下3种复合体系的驱油采收率
-
Fig.4 Oil recoveries of three combination systems at different water-oil viscosity ratios
-
在水驱采收率基本不变,含水率达到 98% 时,分别转注 0.3 PV 不同性能的复合体系进一步提高采收率。当水油黏度比为0.045时,3种复合体系驱替稠油的采收率增幅分别为 21.2%,24.5% 和 27.9%。2#乳化复合体系驱油能力较1#超低界面张力复合体系略微增强,但3#双效复合体系具有最强的驱油能力,是最佳驱油体系。进一步增大水油黏度比至 0.460,3种复合体系驱替稠油的采收率增幅分别为33.6%,33.8%和34.5%,3种复合体系驱油效果相近,传统1#超低界面张力复合体系即能满足驱油要求,无需选用2#乳化复合体系或者3#双效复合体系。对比 2 个水油黏度比下的驱油结果认为,水油黏度比为 0.045时,复合体系流度控制能力不足,乳化性能的增强能够辅助稠油降黏,并通过乳化油滴的贾敏效应扩大波及,致使乳化性能相对较好的 2#乳化复合体系和 3#双效复合体系具有更好的驱油效果;而当水油黏度比增大至 0.460时,复合体系流度控制能力较强,高效驱油对体系乳化性能的要求减弱。据此,可以推断,当水油黏度比从 0.045增大到 0.460时,存在一个水油黏度比界限:小于该界限时,乳化能够显著增强复合体系的驱油效果;而大于该界限时乳化对驱油的影响显著减小,甚至可以忽略,无需过分强调乳化,传统超低界面张力复合体系即能满足驱油要求。为验证上述判断,同时确定上述界限值,补充了水油黏度比分别为 0.010, 0.100 和 0.200 条件下的驱油实验,模型参数及采收率结果汇总如表2和图5所示。
-
由表2 和图5 可见,随着水油黏度比增大,3 种复合体系驱油采收率增幅均先快速升高,后逐渐减缓。更为关键的是,3 种复合体系的采收率差异越来越小,存在一个水油黏度比界限为 0.200:①当水油黏度比小于该界限,为0.010,0.045和0.100时,1# 超低界面张力复合体系驱油采收率增幅分别为 15.9%,21.2% 和 26.0%;2#乳化复合体系采收率增幅分别为 17.1%,24.5% 和 27.3%,较 1# 高 1.2%, 3.3%和1.3%,乳化复合体系仅略优于传统超低界面张力复合体系;3#双效复合体系采收率增幅分别为 20.6%,27.9%和 29.6%,较 1#高 4.7%,6.7%和 3.6%。在超低界面张力基础上增强体系乳化性能,能够明显改善驱油效果。因此,在该水油黏度比下,乳化对稠油复合驱具有较明显的贡献。②当水油黏度比大于等于该界限,为0.200和0.460时,3种复合体系驱油采收率增幅分别为 29.7%,30.0%,31.7% 和 33.6%,33.8%,34.5%,3种复合体系驱油效果相差较小,乳化的贡献减小,甚至可以忽略,复合体系设计中无需过分强调乳化。
-
图5 不同水油黏度比下3种复合体系采收率增幅
-
Fig.5 Oil recovery increments of three combination systems at different water-oil viscosity ratios
-
2.4 不同性能体系泡沫复合驱油对比
-
不同水油黏度比下的复合体系驱油结果(图5) 同时证明,增大水油黏度比和扩大波及对稠油化学驱至关重要。因此,研究中考虑通过水气交替的方式引入泡沫(交替注入 0.3 PV 复合体系和 0.3 PV 空气,单个复合体系段塞或空气段塞尺寸为 0.1 PV),辅助复合体系扩大对稠油的波及。在水油黏度比分别为0.010,0.045,0.100,0.150和0.460时,开展了不同性能体系泡沫复合驱油实验,判断泡沫辅助下复合体系乳化对稠油驱替的影响,并与单独复合体系驱油对比。实验模型参数及采收率结果如表3和图6所示。
-
图6 不同水油黏度比下3种泡沫复合体系驱油采收率增幅
-
Fig.6 Oil recovery increments of three foam combination systems at different water-oil viscosity ratios
-
随着水油黏度比的增大,3 种泡沫复合体系采收率增幅的差异逐渐减小,水油黏度比界限为 0.150:①当水油黏度比小于该界限,分别为 0.010, 0.045 和 0.100 时,1#超低界面张力泡沫复合体系驱油采收率增幅分别为 25.6%,31.6% 和 37.8%;2#乳化泡沫复合体系驱油采收率增幅分别为 21.6%, 27.2% 和 32.6%,较 1#采收率增幅低,1#超低界面张力泡沫复合体系驱油效果强于 2#乳化泡沫复合体系,后者不能替代前者;3#双效泡沫复合体系驱油采收率增幅分别为 34.8%,40.0% 和 40.7%,较 1#高 9.2%,8.4%,2.9%;可见,在超低界面张力基础上增强体系乳化性能,能够明显改善驱油效果。因此,在该水油黏度比下,乳化对稠油泡沫复合驱具有较明显的贡献。②当水油黏度比大于等于该界限,分别为 0.150 和 0.460 时,1#,2#和 3#泡沫复合体系驱油采收率增幅分别为 38.3%,38.2%,40.7% 和 39.4%,39.2%,41.0%,3种泡沫复合体系驱油效果相差较小,乳化的贡献较小,泡沫复合体系设计中不应过分强调乳化性能。
-
此外,对比复合驱(表2,图5)和泡沫复合驱(表3,图6)可见:①泡沫的引入确实能够显著提高稠油采收率,以水油黏度比 0.010为例,1#,2#,3#复合体系驱油采收率增幅分别为 15.9%,17.1%,20.6%,而泡沫复合体系分别为 25.6%,21.6%,34.8%,显著高于前者,相差幅度为9.7%,4.5%,14.2%,这说明泡沫复合驱在稠油驱替方面极具潜力。②与单一复合体系相比,泡沫复合体系驱替稠油对体系乳化性能的要求降低,能够将乳化性能要求的界限从水油黏度比为0.200减小至0.150。
-
3 结论
-
乳化降黏对稠油复合驱的影响存在以水油黏度比 0.200 为界限的 2 个不同区域:小于该界限时,乳化复合体系和双效复合体系强于单一超低界面张力复合体系,乳化能够在一定程度上增强复合体系对稠油的驱替效果;大于等于该界限时,3种复合体系驱油效果相近,乳化对驱油的贡献显著减小,甚至可以忽略。泡沫复合驱较单独复合体系驱采收率增幅显著提高,是极具潜力的稠油驱替方式,并且其可将稠油驱替对复合体系乳化性能的要求界限即水油黏度比从0.200减小到0.150。在稠油复合驱中,应依据水油黏度比的差异,确定对复合体系性能的要求,而不是一味强调体系的乳化性能。
-
参考文献
-
[1] MILLER K.State of the art of western Canadian heavy oil water flood technology.Petroleum society’s 6th Canadian international petroleum conference[C].Calgary,Alberta,Canada,2005:251.
-
[2] 裴海华,张贵才,葛际江,等.化学驱提高普通稠油采收率的研究进展[J].油田化学,2010,27(3):350-356.PEI Haihua,ZHANG Guicai,GE Jijiang,et al.Advance in en⁃ hanced ordinary heavy oil recovery by chemical flooding[J].Oil⁃ field Chemistry,2010,27(3):350-356.
-
[3] 杨勇.胜利油田稠油开发技术新进展及发展方向[J].油气地质与采收率,2021,28(6):1-11.YANG Yong.New progress and next development directions of heavy oil development technologies in Shengli Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2021,28(6):1-11.
-
[4] 丁保东,张贵才,葛际江,等.普通稠油化学驱的研究进展[J].西安石油大学学报:自然科学版,2011,26(3):52-58.DING Baodong,ZHANG Guicai,GE Jijiang,et al.Research prog⁃ ress in the chemical flooding of conventional heavy oil[J].Journal of Xi’an Shiyou University:Natural Science Edition,2011,26(3):52-58.
-
[5] 陈挺.稠油聚/表复合驱波及系数和驱油效率影响因素及调控方法研究[D].青岛:中国石油大学(华东),2014.CHEN Ting.Research on influence factors and regulatory methods of sweep coefficient and displacement efficiency of SP combina⁃ tion flooding for heavy oil[D].Qingdao:China University of Petro⁃ leum(East China),2014.
-
[6] CHEN L F,ZHANG G C,GE J J,et al.Research of the heavy oil displacement mechanism by using alkaline/surfactant flooding sys⁃ tem[J].Colloids Surfaces A:Physicochem Eng Asp,2013,434:63-71.
-
[7] ZHANG H Y,CHEN G Y,DONG M Z,et al.Evaluation of differ⁃ ent factors on enhanced oil recovery of heavy oil using different al⁃ kali solutions[J].Energy Fuels,2016,30(5):3 860-3 869.
-
[8] ZHOU X D,DONG M Z,MAINI B.The dominant mechanism of enhanced heavy oil recovery by chemical flooding in a two-dimen⁃ sional physical model[J].Fuel,2013,108:261-268.
-
[9] 杨森,许关利,刘平,等.稠油化学降粘复合驱提高采收率实验研究[J].油气地质与采收率,2018,25(5):80-86,109.YANG Sen,XU Guanli,LIU Ping,et al.Experimental study on chemical viscosity-reducing compound flooding for EOR of heavy oil reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(5):80-86,109.
-
[10] WANG Y F,LI Z Y,DING M C,et al.Performance of a goodemulsification-oriented surfactant-polymer system in emulsifying and recovering heavy oil[J].Energy Science & Engineering,2020,8(2):353-365.
-
[11] 王刚霄,王彦玲,李永飞,等.稠油乳化降黏体系提高采收率 [J].油田化学,2018,35(4):682-685.WANG Gangxiao,WANG Yanling,LI Yongfei,et al.Enhanced oil recovery by heavy oil emulsified viscosity system[J].Oilfield Chemistry,2018,35(4):682-685.
-
[12] 蒲铭,尹志刚,李美蓉,等.SH 降黏剂对郑王稠油油水界面性质及乳状液稳定性的影响规律研究[J].油田化学,2014,31(1):104-106.PU Ming,YIN Zhigang,LI Meirong,et al.Effect of SH viscosity re⁃ ducer on interfacial property and emulsion stability of Zhengwang heavy Oil[J].Oilfield Chemistry,2014,31(1):104-106.
-
[13] DING M C,WANG Y F,YUAN F Q.et al.A comparative study of the mechanism and performance of surfactant-and alkali-poly⁃ mer flooding in heavy-oil recovery[J].Chemical Engineering Sci⁃ ence,2020,219:115603.
-
[14] 康万利,刘延莉,孟令伟,等.永平油田稠油自发乳化降粘剂的筛选及驱油效果评价[J].油气地质与采收率,2012,19(1):59-61.KANG Wanli,LIU Yanli,MENG Lingwei,et al.Screening of emulsified viscosity reducer on heavy crude oil and effect evalua⁃tion of oil displacement,Yongping Oilfield in Jilin[J].Petroleum Geology and Recovery Efficiency,2012,19(1):59-61.
-
[15] LI Z,XU D R,YUAN Y J,et al.Advances of spontaneous emulsifi⁃ cation and its important applications in enhanced oil recovery pro⁃ cess[J].Advances in Colloid and Interface Science,2020,277:102119.
-
[16] 王在华,张军,冯嘉颖,等.临盘稠油木质素基自乳化驱油剂的研制及现场应用[J].日用化学工业,2021,51(8):697-704.WANG Zaihua,ZHANG Jun,FENG Jiaying,et al.Development and application of lignin-based self-emulsification oil-displac⁃ ing agent for Linpan heavy oil[J].China Surfactant Detergent & Cosmetics,2021,51(8):697-704.
-
[17] 王晨辉,徐基鹏,张厚君,等.稠油降黏机理及降黏剂合成方法的研究进展[J].化学工业与工程,2022,39(3):1-17.WANG Chenhui,XU Jipeng,ZHANG Houjun,et al.Research progress on viscosity reduction mechanism of heavy oil and syn⁃ thetic method of viscosity reducer[J].Chemical Industry and En⁃ gineering,2022,39(3):1-17.
-
[18] 汪庐山,冯逸茹,徐闯,等.聚醚低温破乳剂的合成及性能评价 [J].油田化学,2020,37(3):490-494.WANG Lushan,FENG Yiru,XU Chuang,et al.Synthesis and property of low temperature polyether demulsifier[J].Oilfield Chemistry,2020,37(3):490-494.
-
[19] 王少华,孙永涛,马增华,等.海上热采添加剂对原油破乳脱水的影响[J].石油化工应用,2012,31(8):82-85.WANG Shaohua,SUN Yongtao,MA Zenghua,et al.Impact of ther⁃ mal chemical additives on crude demulsification and dehydration in offshore oilfield[J].Petrochemical Industry Application,2012,31(8):82-85.
-
[20] DING M C,WANG Y F,LI Z Y,et al.The role of IFT and emulsifi⁃ cation in recovering heavy oil during S/SP flooding[J].Journal of Industrial and Engineering Chemistry,2019,77:198-208.
-
[21] 王业飞,仲东,徐睿,等.二元复合体系乳化性能及其对普通稠油的驱替效果[J].油气地质与采收率,2019,26(5):79-85.WANG Yefei,ZHONG Dong,XU Rui,et al.Emulsification proper⁃ ties of binary composite system and their effect on displacement of conventional heavy oil[J].Petroleum Geology and Recovery Ef⁃ ficiency,2019,26(5):79-85.
-
[22] 孙玉海,王娟,马天态,等.胜利油田二元驱采出液中乳状液的稳定性研究[J].精细石油化工进展,2014,15(3):15-18.SUN Yuhai,WANG Juan,MA Tiantai,et al.Research on stability of emulsion in produced liquid from binary flooding system in Shengli Oilfield[J].Advances in Fine Petrochemicals,2014,15(3):15-18.
-
[23] 曹绪龙,崔晓红,李秀兰,等.扩张流变法研究表面活性剂在界面上的聚集行为[J].化学通报,2009,72(6):507-514.CAO Xulong,CUI Xiaohong,LI Xiulan,et al.Study on the aggre⁃ gation behavior of surfactant at interface by the dilatational rheo⁃ logical methods[J].Chemistry,2009,72(6):507-514.
-
[24] 刘宏生.三元复合驱油体系的界面扩张性质与乳化性能和界面张力的关系[J].石油学报:石油加工,2017,33(1):177-181.LIU Hongsheng.The correlation of interfacial dilational properties with emulsion and interfacial tension properties of ASP flooding system[J].Acta Petrolei Sinica:Petroleum Processing Section,2017,33(1):177-181.
-
摘要
化学复合驱是稠油提高采收率的关键技术之一,当前复合体系研发中越发强调乳化降黏机理,形成了高效乳化体系,但是强乳化产生的驱油增量尚不清楚,难以判断乳化对驱油的实际贡献。利用性能显著不同的1#(超低界面张力复合体系)、2#(乳化复合体系)、3#(兼顾超低界面张力和乳化的双效复合体系)体系,开展了系列的界面张力、乳化性能和不同水油黏度比下的驱油对比研究。结果表明,2#乳化复合体系和3#双效复合体系较1#超低界面张力复合体系更能稳定稠油乳状液。乳化对稠油复合驱的贡献因水油黏度比的不同而存在差异:水油黏度比小于 0.200时,3#双效复合体系较1#超低界面张力复合体系采收率增幅高3.6%~6.7%,乳化能够增强体系驱油能力;当水油黏度比大于等于0.200时,3种复合体系驱油效果相近,乳化的影响显著减小,甚至可以忽略。泡沫复合驱较二元复合驱采收率增幅显著提高,且其可将稠油驱替对复合体系乳化性能要求的水油黏度比界限从 0.200 减小到 0.150。对于稠油复合驱,应依据水油黏度比的差异,确定对复合体系性能的要求。
Abstract
The chemical combination flooding is one of the key techniques for enhanced heavy oil recovery. More impor- tance is attached to the emulsification and viscosity reduction mechanism during the development of such combination sys- tems,and some efficient emulsification systems are formed. The“oil recovery increment”caused by strong emulsification, however,is still unclear,which results in difficulties in determining the actual contributions of emulsification to oil dis- placement.In this study,three combination systems with significantly different properties were collected,namely,the ultralow interfacial tension system(#1),the strong emulsification system(#2),and the system with both ultra-low interfacial tension and strong emulsification(also called dual-effect system)(#3). The comparative studies of interfacial tension, emulsification performance,and oil displacement at different water-oil viscosity ratios were carried out. The results reveal that the second and third systems(#2 and #3)are more capable of stabilizing heavy oil emulsions than the ultra-low interfa- cial tension system(#1),and the contributions of emulsification to the combination flooding in heavy oil reservoirs varies with the water-oil viscosity ratios. When the water-oil viscosity ratio is less than 0.200,the oil recovery of the dual-effect system(#3)is 3.6%-6.7% higher than that of the ultra-low interfacial tension system(#1),which indicates that emulsifica-tion can enhance the oil displacement capacity of the system. When the ratio is equal to or greater than 0.200,however,the oil displacement effect of the three systems is similar,and the impact of emulsification is significantly reduced or can even be ignored. The foam combination flooding could significantly raise the oil recovery increment in comparison with the bina- ry combination flooding,and more importantly,it can reduce the water-oil viscosity ratio limits required by combination system emulsification performance for heavy oil displacement from 0.200 to 0.150. It can be seen that the performance of combination systems of combination flooding in heavy oil reservoirs should be determined according to the difference in wa- ter-oil viscosity ratios.