en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

向勇(1983—),男,四川彭山人,副教授,博士,从事CCUS、油气腐蚀与防护方面的研究工作。E-mail:xiangy@cup.edu.cn。

中图分类号:TE357.45

文献标识码:A

文章编号:1009-9603(2023)02-0001-17

DOI:10.13673/j.cnki.cn37-1359/te.202112048

参考文献 1
潘佳佳,李廉水.中国工业二氧化碳排放的影响因素分析[J] 环境科学与技术,2011,34(4):86-92.PAN Jiajia,LI Lianshui.Analysis of factors affecting industrial carbon dioxide emission in China[J].Environmental Science & Technology,2011,34(4):86-92.
参考文献 2
FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al.Glob‐ al carbon budget 2020[J].Earth System Science Data,2020,12(4):3 269-3 340.
参考文献 3
WILBERFORCE T,OLABI A G,SAYED E T,et al.Progress in carbon capture technologies[J].Science of the Total Environment,2021,761:143203.
参考文献 4
IEA.Global energy review 2020[R].Paris:IEA,2020.
参考文献 5
蔡博峰,李琦,张贤,等.中国二氧化碳捕集与利用封存(CCUS)年度报告(2021)——中国CCUS路径研究[R].生态环境部环境规划院,2021:8.CAI Bofeng,LI Qi,ZHANG Xian,et al.China’s 2021 annual re‐ port of Carbon Dioxide Capture and Utilization Storage(CCUS)-CCUS pathway study in China[R].Chinese Academy of Environ‐ mental Planning,2021:8.
参考文献 6
郝艳军,杨顶辉.二氧化碳地质封存问题和地震监测研究进展 [J].地球物理学进展,2012,27(6):2 369-2 383.HAO Yanjun,YANG Dinghui.Research progress of carbon diox‐ ide capture and geological sequestration problem and seismic monitoring research[J].Progress in Geophysics,2012,27(6):2 369-2 383.
参考文献 7
王高峰,秦积舜,孙伟善.碳捕集、利用与封存案例分析及产业发展建议[M].北京:化学工业出版社,2020:16-18.WANG Gaofeng,QIN Jishun,SUN Weishan.CCUS cases analysis and industrial development suggestions[M].Beijing:Chemical In‐ dustry Press,2020:16-18.
参考文献 8
DAVISON J.Performance and costs of power plants with capture and storage of CO2[J].Energy,2007,32(7):1 163-1 176.
参考文献 9
LEUNG D Y C,CARAMANNA G,MAROTO-VALER M M.An overview of current status of carbon dioxide capture and storage technologies[J].Renewable and Sustainable Energy Reviews,2014,39(4):426-443.
参考文献 10
BAE J S,SU S.Macadamia nut shell-derived carbon composites for post combustion CO2 capture[J].International Journal of Greenhouse Gas Control,2013,19:174-182.
参考文献 11
FREDRIKSEN S B,JENS K J.Oxidative degradation of aqueous amine solutions of MEA,AMP,MDEA,Pz:A review[J].Energy Procedia,2013,37:1 770-1 777.
参考文献 12
XIANG Y,XIE W M,NI S Y,et al.Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO2 capture process:Effect of NO3 [J].Corrosion Science,2020,167:108521.
参考文献 13
XIANG Y,LONG Z W,LI C,et al.Neutralization and adsorption effects of various alkanolamines on the corrosion behavior of N80 steel in supercritical CO2 with impurities[J].Corrosion,2019,75(8):999-1 011.
参考文献 14
江文敏.化学吸收法捕集二氧化碳工艺的模拟及实验研究 [D].杭州:浙江大学,2015:26-28.JIANG Wenmin.Simulation and experimental research of CO2 chemical absorption system[D].Hangzhou:Zhejiang University,2015:26-28.
参考文献 15
杨珍珍.功能化离子液体在二氧化碳捕集、活化及化学转化中的应用[D].天津:南开大学,2013:8.YANG Zhenzhen.Carbon dioxide capture with activation and chemical transformation by task-specific ionic liquids[D].Tian‐ jin:Nankai University,2013:8.
参考文献 16
张卫风,周武,王秋华.相变吸收捕集烟气中CO2技术的发展现状[J].化工进展,2021,41(4):2 090-2 101.ZHANG Weifeng,ZHOU Wu,WANG Qiuhua.Recent develop‐ ments of phase-change absorption technology for CO2 capture from flue gas[J].Chemical Industry and Engineering Progress,2021,41(4):2 090-2 101.
参考文献 17
SANCHEZ-FERNANDEZ E,HEFFERNAN K,VAN DER HAM L,et al.Analysis of process configurations for CO2 capture by pre‐ cipitating amino acid solvents[J].Industrial & Engineering Chem‐ istry Research,2014,53(6):2 348-2 361.
参考文献 18
WAHBY A,SILVESTRE-ALBERO J,SEPULVEDA-ESCRIBA‐ NO A,et al.CO2 adsorption on carbon molecular sieves[J].Micro‐ porous and Mesoporous Materials,2012,164:280-287.
参考文献 19
WIHEEB A D,HELWANI Z,KIM J,et al.Pressure swing adsorp‐ tion technologies for carbon dioxide capture[J].Separation & Puri‐ fication Reviews,2016,45(2):108-121.
参考文献 20
KHALILPOUR R,MUMFORD K,ZHAI H B,et al.Membranebased carbon capture from flue gas:a review[J].Journal of Clean‐ er Production,2015,103:286-300.
参考文献 21
晏水平,方梦祥,张卫风,等.基于膜吸收技术的烟气 CO2分离工艺设计与经济性分析[J].动力工程,2007,27(3):415-421.YAN Shuiping,FANG Mengxiang,ZHANG Weifeng,et al.Engi‐ neering design and economic analysis of CO2 sequestration from flue gas by using membrane absorption techniques[J].Journal of Chinese Society of Power Engineering,2007,27(3):415-421.
参考文献 22
DAVIDSON O,METZ B.Special report on carbon dioxide capture and storage[J].International Panel on Climate Change,Geneva,Switzerland,2005,7(13):1-100.
参考文献 23
DAI Z D,NOBLE R D,GIN D L,et al.Combination of ionic liq‐ uids with membrane technology:A new approach for CO2 separa‐ tion[J].Journal of Membrane Science,2016,497:1-20.
参考文献 24
GIN D L,NOBLE R D.Designing the next generation of chemical separation membranes[J].Science,2011,332(6030):674-676.
参考文献 25
陈新明,史绍平,闫姝,等.燃烧前CO2捕集技术在IGCC发电中的应用[J].化工学报,2014,65(8):3 193-3 201.CHEN Xinming,SHI Shaoping,YAN Shu,et al.Application of CO2 capture technology before burning in IGCC power generation system[J].CIESC Journal,2014,65(8):3 193-3 201.
参考文献 26
BURT S S,BAXTER A,BENCE C,et al.Cryogenic CO2 capture for improved efficiency at reduced cost[C].Salt Lake City:Pro‐ ceedings of the AICHE,2010.
参考文献 27
WANG X L,CHEN G J,YANG L Y,et al.Study on the recovery of hydrogen from refinery(hydrogen+methane)gas mixtures using hy‐ drate technology[J].Science in China Series B:Chemistry,2008,51(2):171-178.
参考文献 28
FAN S,WANG Y,LANG X.CO2 capture in form of clathrate hy‐ drate-problem and practice[C].Edinburgh:Proceedings of the 7th International Conference on Gas Hydrate,2011.
参考文献 29
BABU P,KUMAR R,LINGA P.Progress on the hydrate based gas separation(HBGS)process for carbon dioxide capture[C].San Francisco:Proceedings of the AICHE Annual Meeting,2013.
参考文献 30
SUN D,ENGLEZOS P.Storage of CO2 in a partially water saturat‐ ed porous medium at gas hydrate formation conditions[J].Interna‐ tional Journal of Greenhouse Gas Control,2014,25:1-8.
参考文献 31
NAZIR S M,CLOETE J H,CLOETE S,et al.Efficient hydrogen production with CO2 capture using gas switching reforming[J].En‐ ergy,2019,185:372-385.
参考文献 32
柳康,许世森,李广宇,等.基于整体煤气化联合循环的燃烧前 CO2捕集工艺及系统分析[J].化工进展,2018,37(12):4 897-4 907.LIU Kang,XU Shisen,LI Guangyu,et al.Technological process and system analysis of pre-combustion CO2 capture based on IGCC[J].Chemical Industry and Engineering Progress,2018,37(12):4 897-4 907.
参考文献 33
BUHRE B J P,ELLIOTT L K,SHENG C D,et al.Oxy-fuel com‐ bustion technology for coal-fired power generation[J].Progress in Energy and Combustion Science,2005,31(4):283-307.
参考文献 34
ABRAHAM B M,ASBURY J G,LYNCH E P,et al.Coal-oxygen process provides CO2 for enhanced recovery[J].Oil & Gas Jour‐ nal,1982,80(11):173-184.
参考文献 35
王俊,李延兵,廖海燕,等.浅谈国外煤粉富氧燃烧技术发展 [J].华北电力技术,2014,8(2):56-61.WANG Jun,LI Yanbing,LIAO Haiyan,et al.Brief discussion on technical development of pulverized coal oxyfuel combustion abroad[J].North China Electric Power,2014,8(2):56-61.
参考文献 36
孔红兵,柳朝晖,陈胜,等.600 MW 富氧燃烧系统过程建模及优化[J].中国电机工程学报,2012,32(2):53-60.KONG Hongbing,LIU Zhaohui,CHEN Sheng,et al.Process simu‐ lation and optimization of a 600 MW O2/CO2 power plant[J].Pro‐ ceedings of the CSEE,2012,32(2):53-60.
参考文献 37
ADANEZ J,ABAD A,GARCIA-LABIANO F,et al.Progress in chemical-looping combustion and reforming technologies[J].Progress in Energy and Combustion Science,2012,38(2):215-282.
参考文献 38
LI F X,LUO S W,SUN Z C,et al.Role of metal oxide support in redox reactions of iron oxide for chemical looping applications:ex‐ periments and density functional theory calculations[J].Energy & Environmental Science,2011,4(9):3 661-3 667.
参考文献 39
王金星,孙宇航.化学链燃烧技术的研究进展综述[J].华北电力大学学报:自然科学版,2019,46(5):101-110.WANG Jinxing,SUN Yuhang.Review of chemical-looping com‐ bustion technology research[J].Journal of North China Electric Power University:Natural Science Edition,2019,46(5):101-110.
参考文献 40
RUBEL A,LIU K L,NEATHERY J,et al.Oxygen carriers for chemical looping combustion of solid fuels[J].Fuel,2009,88(5):876-884.
参考文献 41
XIAO R,SONG Q L.Characterization and kinetics of reduction of CaSO4 with carbon monoxide for chemical-looping combustion [J].Combustion and Flame,2011,158(12):2 524-2 539.
参考文献 42
LEION H,LYNGFELT A,JOHANSSON M,et al.The use of il‐ menite as an oxygen carrier in chemical-looping combustion[J].Chemical Engineering Research and Design,2008,86(9):1 017-1 026.
参考文献 43
郭磊,赵海波,马琎晨,等.批量制备Fe2O3/Al2O3氧载体及褐煤化学链燃烧实验研究[J].中国电机工程学报,2013,33(17):57-63.GUO Lei,ZHAO Haibo,MA Jinchen,et al.Batch preparation of Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of lignite[J].Proceedings of the CSEE,2013,33(17):57-63.
参考文献 44
SHEN L H,WU J H,GAO Z P,et al.Characterization of chemical looping combustion of coal in a 1 kWth reactor with a nickelbased oxygen carrier[J].Combustion and Flame,2010,157(5):934-942.
参考文献 45
郝建刚,吴家桦,王雷,等.基于Fe基载氧体的生物质化学链燃烧试验研究[J].锅炉技术,2010,41(2):65-70.HAO Jiangang,WU Jiahua,WANG Lei,et al.Experiments on chemical looping combustion of biomass with a Fe2O3 based oxy‐ gen carrier[J].Boiler Technology,2010,41(2):65-70.
参考文献 46
BISCHI A,LANGØRGENØ,MORIN J X,et al.Hydrodynamic via‐ bility of chemical looping processes by means of cold flow model investigation[J].Applied Energy,2012,97:201-216.
参考文献 47
徐婷,杨震,周体尧,等.中美二氧化碳捕集和驱油发展状况分析[J].国际石油经济,2016,24(4):12-16,28.XU Ting,YANG Zhen,ZHOU Tiyao,et al.Carbon capture and storage(CCS)and CO2 flooding technology development in the United States and China[J].International Petroleum Economics,2016,24(4):12-16,28.
参考文献 48
林海周,杨晖,罗海中,等.烟气二氧化碳捕集胺类吸收剂研究进展[J].南方能源建设,2019,6(1):16-21.LIN Haizhou,YANG Hui,LUO Haizhong,et al.Research prog‐ ress on amine absorbent for CO2 capture from flue gas[J].South‐ ern Energy Construction,2019,6(1):16-21.
参考文献 49
刘洋.燃煤电厂碳捕获与封存技术现状及其应用前景展望[J].能源环境保护,2017,31(3):1-5.LIU Yang.Current status of carbon capture and storage technology in coal-fired power plants and its application prospects[J].Ener‐ gy Environmental Protection,2017,31(3):1-5.
参考文献 50
ZHAO Y J,DUAN Y Y,LIU Q,et al.Life cycle energy-economyenvironmental evaluation of coal-based CLC power plant vs.IGCC,USC and oxy-combustion power plants with/without CO2 capture[J].Journal of Environmental Chemical Engineering,2021,9(5):106121.
参考文献 51
HOFFMANN S,BARTLETT M,FINKENRATH M,et al.Perfor‐ mance and cost analysis of advanced gas turbine cycles with pre‐ combustion CO2 capture[J].Journal of Engineering for Gas Tur‐ bines and Power,2009,131(2):61-67.
参考文献 52
陆诗建.碳捕集、利用与封存技术[M].北京:中国石化出版社,2020:13-16.LU Shijian.Carbon capture,utilization and storage[M].Beijing:Chemical Industry Press,2020:13-16.
参考文献 53
骆仲泱,方梦祥,李明远.二氧化碳捕集封存和利用技术[M].北京:石油工业出版社,2012:28.LUO Zhongyang,FANG Mengxiang,LI Mingyuan.Carbon cap‐ ture,utilization and storage[M].Beijing:Petroleum Industry Press,2012:28.
参考文献 54
蔡博峰,李琦,林千果,等.中国二氧化碳捕集、利用与封存(CCUS)报告(2019)[R].生态环境部环境规划院气候变化与环境政策研究中心,2020:18.CAI Bofeng,LI Qi,LIN Qianguo,et al.China’s 2019 annual re‐ port of Carbon Dioxide Capture and Utilization Storage(CCUS)[R].Research Center of Climate Change and Environmental Poli‐ cy,Chinese Academy of Environmental Planning,2020:18.
参考文献 55
BENSON S M,ORR F M.Carbon dioxide capture and storage[J].MRS Bulletin,2008,33(4):303-305.
参考文献 56
WHITE C M,SMITH D H,JONES K L,et al.Sequestration of car‐ bon dioxide in coal with enhanced coalbed methane recovery-a re‐ view[J].Energy & Fuels,2005,19(3):659-724.
参考文献 57
HOWARD Herzog K S,PRADEEP Dadhich,JAMES Dooley,et al.IPCC special report on carbon dioxide capture and storage[R].IPCC,2005:340-362.
参考文献 58
GHG I.CO2 pipeline infrastructure:An analysis of global challeng‐ es and opportunities[J].Final Report for International Energy Agency Greenhouse Gas Programme,2010,16(5):59-74.
参考文献 59
亓冠玲.齐鲁二化厂至正理庄油田高89地区 CO2输送管道及液化分离工程方案研究[D].青岛:中国石油大学(华东),2014:36.QI Guanling.Research on CO2 pipeline and liquid separation proj‐ ect of Qilu Petrochemical to Zhenglizhuang oilfield[D].Qingdao:China University of Petroleum(East China),2014:36.
参考文献 60
中国首个百万吨级碳捕集利用与封存项目启动[J].中国氯碱,2021,(7):28.China’s first million-ton carbon capture,utilization and storage project launched[J].China Chlor-Alkali,2021,(7):28.
参考文献 61
蒋秀,屈定荣,刘小辉.超临界CO2管道输送与安全[J].油气储运,2013,32(8):809-813.JIANG Xiu,QU Dingrong,LIU Xiaohui.Supercritical CO2 pipe‐ line transportation and safety[J].Oil & Gas Storage and Transpor‐ tation,2013,32(8):809-813.
参考文献 62
颜开,向勇,陈晓玲.CO2海洋封存系统管道腐蚀特性研究进展 [J].腐蚀科学与防护技术,2019,31(6):672-680.YAN Kai,XIANG Yong,CHEN Xiaoling.Investigation on corro‐ sion characteristics of pipeline in CO2 ocean storage system[J].Corrosion Science and Protection Technology,2019,31(6):672-680.
参考文献 63
SEEVAM P N,RACE J M,DOWNIE M J,et al.Transporting the next generation of CO2 for carbon,capture and storage:the impact of impurities on supercritical CO2 pipelines[C].Calgary:Proceed‐ ings of the International Pipeline Conference,2008.
参考文献 64
SVANDAL A,KUZNETSOVA T,KVAMME B.Thermodynamic properties and phase transitions in the H2O/CO2/CH4 system[J].Fluid Phase Equilibria,2006,246(1/2):177-184.
参考文献 65
MAHGEREFTEH H,ATTI O.Modeling low‐temperature-induced failure of pressurized pipelines[J].AIChE Journal,2006,52(3):1 248-1 256.
参考文献 66
HUH C,CHO M I,HONG S,et al.Effect of impurities on depres‐ surization of CO2 pipeline transport[J].Energy Procedia,2014,63:2 583-2 588.
参考文献 67
CHO M I,HUH C,KANG S G,et al.Evaluation of the two phase pressure drop during the CO2-N2 mixture pipeline transport[J].Energy Procedia,2014,63:2 710-2 714.
参考文献 68
XIANG Y,XU M H,CHOI Y S.State-of-the-art overview of pipe‐ line steel corrosion in impure dense CO2 for CCS transportation:mechanisms and models[J].Corrosion Engineering,Science and Technology,2017,52(7):485-509.
参考文献 69
COLLIER J,PAPAVINASAM S,LI J,et al.Effect of impurities on the corrosion performance of steels in supercritical carbon diox‐ ide:optimization of experimental procedure[C].Orlando:Proceed‐ ings of the CORROSION,2013.
参考文献 70
GUO S Q,XU L N,ZHANG L,et al.Corrosion of alloy steels con‐ taining 2% chromium in CO2 environments[J].Corrosion Science,2012,63:246-258.
参考文献 71
CHOI Y S,NESIC S,YOUNG D.Effect of impurities on the corro‐ sion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments[J].Environmental Science & Technolo‐ gy,2010,44(23):9 233-9 238.
参考文献 72
SIM S,BIRBILIS N,COLE I S,et al.Internal corrosion of CO2 pipelines for carbon capture and storage[C].Orlando:Proceedings of the CORROSION,2013.
参考文献 73
AYELLO F,EVANS K J,SRIDHAR N,et al.Effect of liquid impu‐ rities on corrosion of carbon steel in supercritical CO2 [C].Cal‐ gary:Proceedings of the International Pipeline Conference,2010.
参考文献 74
HUA Y,BARKER R,NEVILLE A.Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J].International Journal of Greenhouse Gas Control,2014,31:48-60.
参考文献 75
RUHL A S,KRANZMANN A.Corrosion in supercritical CO2 by diffusion of flue gas acids and water[J].The Journal of Supercriti‐ cal Fluids,2012,68:81-86.
参考文献 76
ZHENG Y G,BROWN B,NEŠIĆS.Electrochemical study and modeling of H2S corrosion of mild steel[J].Corrosion,2014,70(4):351-365.
参考文献 77
KERMANI M B,MORSHED A.Carbon dioxide corrosion in oil and gas production-A compendium[J].Corrosion,2003,59(8):659-683.
参考文献 78
LI K Y,ZENG Y M,LUO J L.Influence of H2S on the general cor‐ rosion and sulfide stress cracking of pipelines steels for supercriti‐ cal CO2 transportation[J].Corrosion Science,2021,190:109639.
参考文献 79
HUA Y,BARKER R,NEVILLE A.The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercrit‐ ical CO2 environments[J].Applied Surface Science,2015,356:499-511.
参考文献 80
ZENG Y M,PANG X,SHI C,et al.Influence of impurities on cor‐ rosion performance of pipeline steels in supercritical carbon diox‐ ide[C].Dalas:Proceedings of the CORROSION,2015.
参考文献 81
LI C,XIANG Y,LI W G.Initial corrosion mechanism for API5L X80 steel in CO2/SO2-saturated aqueous solution within a CCUS system:Inhibition effect of SO2 impurity[J].Electrochimica Acta,2019,321:134663.
参考文献 82
ONYEBUCHI V E,KOLIOS A,HANAK D P,et al.A systematic review of key challenges of CO2 transport via pipelines[J].Renew‐ able and Sustainable Energy Reviews,2018,81:2 563-2 583.
参考文献 83
HUA Y,BARKER R,NEVILLE A.The influence of SO2 on the tol‐ erable water content to avoid pipeline corrosion during the trans‐ portation of supercritical CO2 [J].International Journal of Green‐ house Gas Control,2015,37:412-423.
参考文献 84
DUGSTAD A,HALSEID M,MORLAND B.Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines[J].Energy Procedia,2013,37:2 877-2 887.
参考文献 85
SIM S,BOCHER F,COLE I S,et al.Investigating the effect of wa‐ ter content in supercritical CO2 as relevant to the corrosion of car‐ bon capture and storage pipelines[J].Corrosion,2014,70(2):185-195.
参考文献 86
XIANG Y,WANG Z,YANG X X,et al.The upper limit of mois‐ ture content for supercritical CO2 pipeline transport[J].The Jour‐ nal of Supercritical Fluids,2012,67:14-21.
参考文献 87
SUN J B,SUN C,ZHANG G A,et al.Effect of O2 and H2S impuri‐ ties on the corrosion behavior of X65 steel in water-saturated su‐ percritical CO2 system[J].Corrosion Science,2016,107:31-40.
参考文献 88
WEI L,PANG X L,GAO K W.Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J].Corrosion Science,2016,103:132-144.
参考文献 89
LI C,XIANG Y,SONG C C,et al.Assessing the corrosion product scale formation characteristics of X80 steel in supercritical CO2-H2O binary systems with flue gas and NaCl impurities relevant to CCUS technology[J].The Journal of Supercritical Fluids,2019,146:107-119.
参考文献 90
OOSTERKAMP A,RAMSEN J.State-of-the-Art overview of CO2 pipeline transport with relevance to offshore pipelines[R].Nor‐ way:Research Council of Norway,Gassco and Shell Technology Norway,2008.
参考文献 91
MOHITPOUR M,SEEVAM P,BOTROS K K,et al.Pipeline trans‐ portation of carbon dioxide containing impurities[M].New York:ASME Press,2012.
参考文献 92
CARTER L D.Capture and storage of CO2 with other air pollutants [M].London:IEA Clean Coal Centre,2010:63.
参考文献 93
LIN T,LI Y X,ZHANG D T,et al.The evolution and size distribu‐ tion of solid CO2 Particles in Supercritical CO2 Releases[J].Indus‐ trial & Engineering Chemistry Research,2018,57(22):7 655-7 663.
参考文献 94
VITALI M,ZULIANI C,CORVARO F,et al.Risks and safety of CO2 transport via pipeline:A review of risk analysis and modeling approaches for accidental releases[J].Energies,2021,14(15):1-17.
参考文献 95
ELSHAHOMI A,LU C,MICHAL G,et al.Decompression wave speed in CO2 mixtures:CFD modelling with the GERG-2008 equation of state[J].Applied Energy,2015,140:20-32.
参考文献 96
MAHGEREFTEH H,ZHANG P,BROWN S.Modelling brittle fracture propagation in gas and dense-phase CO2 transportation pipelines[J].International Journal of Greenhouse Gas Control,2016,46:39-47.
参考文献 97
WITLOX H W M,HARPER M,OKE A.Modelling of discharge and atmospheric dispersion for carbon dioxide releases[J].Journal of Loss Prevention in the Process Industries,2009,22(6):795-802.
参考文献 98
刘锋.超临界压力 CO2管道泄漏特征与扩散规律研究[D].北京:清华大学,2016:36-39.LIU Feng.Study on the leakage and diffusion behavior of super‐ critical pressure CO2 from pipelines[D].Beijing:Tsinghua Uni‐ versity,2016:36-39.
参考文献 99
任科.超临界二氧化碳管道断裂理论和控制方法研究[D].西安:西安石油大学,2018:17-20.REN Ke.Study on theory and control method of supercritical car‐ bon dioxide pipe fracture[D].Xi’an:Xi’an Shiyou University,2018:17-20.
参考文献 100
GAURINA-MEĐIMUREC N,NOVAK-MAVAR K,MAJIĆM.Carbon capture and storage(CCS):Technology,projects and moni‐ toring review[J].Rudarsko-Geolosko-Naftni Zbornik,2018,33(2):1-15.
参考文献 101
MAVAR K N,GAURINA-MEĐIMUREC N,HRNČEVIĆL.Signif‐ icance of enhanced oil recovery in carbon dioxide emission reduc‐ tion[J].Sustainability,2021,13(4):1 800.
参考文献 102
袁士义,王强,李军诗,等.注气提高采收率技术进展及前景展望[J].石油学报,2020,41(12):1 623-1 632.YUAN Shiyi,WANG Qiang,LI Junshi,et al.Technology progress and prospects of enhanced oil recovery by gas injection[J].Acta Petrolei Sinica,2020,41(12):1 623-1 632.
参考文献 103
胡永乐,郝明强,陈国利.注二氧化碳提高石油采收率技术 [M].北京:石油工业出版社,2018:165-166.HU Yongle,HAO Mingqiang,CHEN Guoli,et al.Carbon dioxide injection for enhanced oil recovery technology[M].Beijing:Petro‐ leum Industry Press,2018:165-166.
参考文献 104
HOLT T,JENSEN J I,LINDEBERG E.Underground storage of CO2 in aquifers and oil reservoirs[J].Energy Conversion and Man‐ agement,1995,36(6/9):535-538.
参考文献 105
WANG Z,XU L J.Development status and prospects of CCSEOR technology in China[J].China Oil & Gas,2018,25(2):24-29.
参考文献 106
张冰,梁凯强,王维波,等.鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J].非常规油气,2019,6(3):15-20.ZHANG Bing,LIANG Kaiqiang,WANG Weibo,et al.Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J].Unconventional Oil & Gas,2019,6(3):15-20.
参考文献 107
王晓桥,马登龙,夏锋社,等.封储二氧化碳泄漏监测技术的研究进展[J].安全与环境工程,2020,27(2):23-34.WANG Xiaoqiao,MA Denglong,XIA Fengshe,et al.Research progress on leakage monitoring technology for CO2 storage[J].Safety and Environmental Engineering,2020,27(2):23-34.
参考文献 108
KLING G W,CLARK M A,WAGNER G N,et al.The 1986 Lake Nyos gas disaster in Cameroon,West Africa[J].Science,1987,236(4798):169-175.
参考文献 109
KOORNNEEF J,SPRUIJT M,MOLAG M,et al.Quantitative risk assessment of CO2 transport by pipelines-a review of uncertain‐ ties and their impacts[J].Journal of Hazardous Materials,2010,177:12-27.
参考文献 110
EVANS W C,KLING G W,TUTTLE M L,et al.Gas buildup in Lake Nyos,Cameroon:the recharge process and its consequences [J].Applied Geochemistry,1993,8(3):207-221.
参考文献 111
郭晓璐,喻健良,闫兴清,等.超临界CO2管道泄漏特性研究进展[J].化工学报,2020,71(12):5 430-5 442.GUO Xiaolu,YU Jianliang,YAN Xingqing,et al.Research prog‐ ress on leakage characteristics of supercritical CO2 pipeline[J].CIESC Journal,2020,71(12):5 430-5 442.
参考文献 112
TYNE R L,BARRY P H,LAWSON M,et al.Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs[J].Nature,2021,600:670-674.
参考文献 113
ZHANG T,ZHANG W C,YANG R Z,et al.CO2 capture and stor‐ age monitoring based on remote sensing techniques:A review[J].Journal of Cleaner Production,2021,281:124409.
参考文献 114
梁艾琳.星载遥感二氧化碳的验证、反演及应用[D].武汉:武汉大学,2018:26.LIANG Ailin.Research of space-borne remote sensing for carbon dioxide on validation,inversion and application[D].Wuhan:Wu‐ han University,2018:26.
参考文献 115
ZHANG L,REN B,HUANG H D,et al.CO2 EOR and storage in Jilin oilfield China:Monitoring program and preliminary results [J].Journal of Petroleum Science and Engineering,2015,125:1-12.
目录contents

    摘要

    碳捕集、利用与封存技术(CCUS)是减少碳排放的有效手段之一,是实现中国双碳目标的重要技术保障。CO2 驱油(CCUS-EOR)是其中最主要的CO2利用方式。梳理了CCUS-EOR整个流程,系统阐述了捕集技术、输送方式和驱油封存过程的发展现状及发展前景。针对捕集过程,着重分析了不同 CO2捕集技术的优缺点、成本及其发展趋势,指出了中国在大规模碳捕集成本和捕集工艺方面存在的问题;针对输送过程,着重分析了超临界管道输送面临的挑战如管道建设、管输工艺和管输设备等方面;针对CO2驱油过程,着重分析了中国在CCUS-EOR技术上的技术水平、应用规模及生产效果方面存在的问题;针对CO2封存过程,侧重对埋存的安全性进行分析,列举了可能的CO2 泄漏监测方法。中国的双碳政策指引、主要产油盆地周边源汇匹配、储量丰富的低渗透油藏都为CCUS-EOR的发展奠定了良好的基础,但在大规模低浓度捕集技术、长距离超临界管道输送技术、规模化驱油埋存、智能化监测技术等方面与国外较为成熟的工业化CCUS相比还存在一定差距。针对这些差距,从政策引导、技术攻关和配套基础设施建设上提出了相关建议,对于中国大规模CCUS技术的发展具有一定参考意义。

    Abstract

    The carbon capture,utilization and storage(CCUS)technology is an effective means of reducing carbon emis‐ sions and an important supporting technology for achieving China’s carbon peaking and carbon neutrality goals. The carbon dioxide(CO2 )flooding,namely the application of CCUS for enhanced oil recovery(CCUS-EOR),is one of the main CO2 uti‐ lization methods in this regard. This paper summarizes the whole process of CCUS-EOR and systematically describes the development status and prospects of capture technologies,transport methods,and flooding and storage processes. For the capture process,emphasis is laid on analyzing the advantages and disadvantages,costs,and development trends of different CO2 capture technologies,and China’s problems in large-scale carbon capture costs and capture processes are exposed. In terms of the transport process,the challenges,such as pipeline construction,pipeline transport processes,and pipeline transport equipment,faced by supercritical pipeline transport are highlighted. As for the CO2 flooding process,the deficien‐ cies in the technical level,application scale,and production effect of the CCUS-EOR technologies in China are examined. As far as the CO2 storage process is concerned,storage safety is analyzed,and the methods of monitoring possible CO2 leak‐ age are listed. The guidance of the carbon peaking and carbon neutrality policy,the source-sink matching around major oil-producing basins,and the low-permeability reservoirs with abundant reserves have laid a solid foundation for the develop‐ ment of CCUS-EOR technologies in China. Nevertheless,China’s large-scale low-concentration capture technology,longdistance supercritical pipeline transport technology,large-scale flooding and storage technology,and intelligent monitoring technology still lag behind the more well-established industrial CCUS technologies abroad. In response,this paper puts for‐ ward suggestions from the perspectives of policy guidance,technological breakthrough,and supporting infrastructure con‐ struction,and they can provide a reference for the development of large-scale CCUS technologies in China.

  • 全球气候变化问题已引起了国际社会的普遍关注,减少温室气体 CO2的排放以此来应对气候挑战已经逐渐成为国际共识。研究表明,CO2排放是造成全球气候变暖的主要原因[1]。从 1750 年到 2020 年,全球大气中的 CO2体积分数已经从 0.027 7% 增至 0.041 6%[2]。BP 世界能源统计年鉴 2020 显示, 2019年中国CO2排放量为98.99×108 t,约占全球CO2 排放总量的 31%。2020年 9月,习近平在第 75届联合国大会上承诺中国 CO2排放力争于 2030 年达到峰值,努力争取2060年实现碳中和。为实现这个目标,中国需要采取一系列措施来减少碳排放,例如大力发展低碳能源,发展节能技术,同时使用碳捕集、利用与封存技术(CCUS)。CCUS 技术被认为是减缓全球气候变化的有效手段之一[3]

  • 当今世界,煤炭、石油、天然气约占全球一次能源需求的 70%,而这些化石燃料的燃烧贡献了全球约三分之二的温室气体排放,另外三分之一的排放量由农业、林业与土地利用以及工业过程产生[2]。 2020 年,全球化石燃料燃烧产生的 CO2排放量超过 340×108 t [4]。2019年中国能源消费中煤炭、石油、天然气所占比例分别为 57.7%,18.9% 和 8.1%。中国要实现碳中和的目标,到 21 世纪中叶,化石能源占中国能源消费比例约降至10%~15%,而CCUS将是实现该部分化石能源近零排放的唯一技术选择。根据国际能源署的估算,CCUS对实现CO2净零排放的贡献率能达到 15%~20%[4]。中国石油经济技术研究院的预测结果显示,到2050年85%以上的煤电和气电将配备 CCUS。蔡博峰等通过测算发现,在现有技术发展条件下,要实现碳中和的目标,到 2050年和2060年需要通过CCUS技术实现的CO2减排量分别为6×108~14×108 t和10×108~18×108 t,而中国源汇匹配的情况和CCUS技术潜力基本可以满足这一目标[5]。由于油气和 CO2聚集所需要的条件非常接近,CO2捕集、提高采收率(CO2-EOR)及埋存作为一项既能提高石油采收率又能达到CO2减排的技术,具有非常广阔的前景,能同时获得社会和经济效益。

  • 1990 年,国际上提出了 CCUS-EOR 相关概念。挪威的Sleipner天然气田、加拿大的Weyburn油田以及阿尔及利亚的 In Salah天然气田是世界上具有代表性的三个工业规模的CO2封存项目[6]。截至2020 年,美国运行中的 CCUS 项目共计 38 个[5]。同国外相比,中国于2005年前后开始形成CCUS相关概念,累计开展30多个CO2驱油与封存项目[7]。截至2020 年,吉林油田建成了中国第一个CCUS全流程项目; 大庆油田建立了中国产油规模最大的 CCUS 系统; 胜利油田建成了中国首个燃煤电厂烟气捕集CO2用于驱油封存的系统;中原油田建成了中国首个水驱废弃油藏利用石油化工尾气 CO2驱油与封存系统。 2021年 7月,中国首个百万吨级 CCUS项目(齐鲁石化-胜利油田CCUS项目)正式启动建设。2021年10 月,中国石油重大科技专项“二氧化碳规模化捕集、驱油与埋存全产业链关键技术研究及示范”进入开题论证阶段。

  • 在公开发表的文献中,已有许多关于中国 CCUS的综述,但是关于CCUS-EOR的综述较少,尤其是同时涉及捕集、运输、提高采收率和封存过程相关技术的前景展望、成本估算和安全问题分析的综述文献更少。笔者将对以上方面进行整体梳理和分析,并对中国CCUS-EOR技术的前景和面临的挑战展开分析和讨论。

  • 1 CO2捕集技术

  • CO2捕集技术按照在发电体系中的工艺顺序分为燃烧后捕集、燃烧前捕集和富氧燃烧捕集技术[8],此外还有化学链燃烧捕集技术。不同的CO2捕集技术有各自的技术路线(图1)[9]

  • 1.1 燃烧后捕集技术

  • 燃烧后捕集技术是将化石燃料燃烧后烟气中的 CO2进行捕集分离的技术,是目前最成熟的捕集技术,可以从锅炉、水泥窑和工业炉等大规模化石燃料燃烧产生的烟气中分离 CO2 [3],可用于火电厂的脱碳改造。但是烟气中CO2含量较低、杂质较多,另外工作中的泵、鼓风机、压缩机和再沸器加热过程需要大量能量,这会造成效率损失,对电厂效益造成一定的负面影响[10]。国华锦界电厂开展的15× 104 t/a 的碳捕集与封存示范项目正在建设当中,是目前中国规模最大的燃煤电厂燃烧后碳捕集与封存全流程示范项目[5]。将 CO2从烟气或者燃料气中分离出来的方法有吸收分离法、吸附分离法、膜分离法、低温蒸馏法和水合物分离法。

  • 图1 不同CO2捕集技术的技术路线

  • Fig.1 Technological roadmap of different CO2 capture technologies

  • 1.1.1 吸收分离法

  • 按照不同的吸收原理吸收分离法可分为化学吸收法和物理吸收法。化学吸收法是利用CO2与吸收剂发生化学反应从而将 CO2从烟气里分离出来。该项技术比较成熟,气体回收率和纯度较高,但也存在吸收剂再生能耗大、溶剂损失、设备腐蚀等问题[11-13]。工业上主要采用醇胺法和热碳酸钾法两种化学吸收法。醇胺类吸收剂主要有一乙醇胺 (MEA)、二乙醇胺(DEA)、N-甲基二乙醇胺(MDEA) 以及位阻胺(AMP),其中 MEA 溶液对 CO2的吸收率最高,超过 90%。其他的新型化学吸收剂还包括氨水、离子液体和固态胺。氨水对 CO2的捕集性能优于传统的醇胺溶液,但是氨水具有高挥发性,运行过程中会大量挥发,易造成环境污染且溶剂损耗较大[14]。离子液体具有良好的催化性能、蒸气压较低、热稳定性较好且可引入功能官能团,但是价格昂贵,要实现工业化应用还有很长一段距离[15]。二氧化硅固态胺化学吸附剂拥有良好的再生性能、弱腐蚀性、低能耗等特点,具有较好的发展前景。中空纤维固态胺可实现节能、高效、低成本吸附,有望应用于燃煤电厂CO2捕集。另外针对传统的胺液解吸过程能耗过大和设备腐蚀问题,提出了相变吸收剂,与胺液相比,能够实现富相和贫相的分相,仅在富相中就能实现溶剂再生循环,以此降低解吸能耗[16],如氨基酸盐溶液与质量分数为 30% 的 MEA 溶液相比,总能耗降低15%[17],发展前景良好。

  • 物理吸收法是通过交替改变CO2和吸收剂的操作压力或者操作温度来实现CO2吸收和分离,CO2和吸收剂之间不发生化学反应。物理吸收CO2的溶解过程符合亨利定律,故只适用于CO2分压较高、纯度要求不是很高的场景。目前常用的物理吸收法包括:N-甲基吡咯烷酮法(NMP)、聚乙二醇二甲醚法 (NHD)、碳酸丙烯脂法(PC)、塞勒克索尔法 (Selexol)和低温甲醇洗等。低温甲醇洗工艺能一起脱除原料气中的硫化物和水分,回收可用物质。同时由于甲醇沸点低,使得热再生温度低,系统冷量消耗少,是一种比较有发展前景的方法。

  • 1.1.2 吸附分离法

  • 吸附分离法是通过气体或液体与固体吸附剂表面活性点之间的分子引力来实现的。流动的气体或者液体中一个或者多个组分被吸附剂固体表面吸附,随后通过降低压力或者升高温度来解吸被吸附的CO2,通常被称为变压吸附(PSA)或者变温吸附(TSA)[3]

  • 变压吸附是通过不同分压下吸附剂对混合气体的选择吸附性达到分离CO2的目的。目前变压吸附主要有两种:一种是高压下吸附,减压脱附;另一种是高压或常压吸附,真空脱附。常用的物理吸附剂包括活性炭、沸石石子筛、二氧化硅膜和金属有机骨架材料(MOF);化学吸附剂包括金属氧化物如氧化钙、金属锂以及固体胺[18]。变压吸附的优点是工艺过程简单、能耗低、经济性好,但是存在吸附容量有限、吸附解吸操作频繁、对自动化要求高等缺点。变温吸附是通过改变吸附剂的温度达到吸附和解吸,在较低温度下吸附,较高温度下解吸。变温吸附的吸附剂再生时间比变压吸附长,且能耗较大。当 CO2分压较高时,选择变压吸附;当 CO2浓度较低时,选择变温吸附。

  • 现阶段变压吸附的研究重点集中在新型吸附剂的开发上,比如超级活性炭、锂盐吸附剂、介孔材料和金属有机骨架类(MOF)[19] 等。快速变温吸附/ 解吸技术(RTSA)由于循环稳定性优异、能省去管道气进入 CO2捕集装置中的预冷却和预干燥步骤、能耗低等特点,也是一种具有较大潜力的技术。

  • 1.1.3 膜分离法

  • 膜分离法遵循克努森扩散原理和菲克分子扩散原理[20],依据混合气体中不同成分通过膜的速率不同,以此达到分离的目的,常见的膜材料有无机膜、有机膜和金属膜等。膜分离法具有高接触面积、模块性好、操作灵活等优点[21],但同时膜系统性能受废气中 CO2浓度和压力影响较大,膜材料价格较高,高温下膜的稳定性、选择性和渗透性还有待提高。膜分离法多用于从天然气和沼气中分离 CO2,或者用于强化采油(EOR)所用的 CO2回收[22]。现阶段以离子液体和聚离子液体为材料制备的气体分离膜具有较为广阔的前景,DAI 等提出了将膜分离法与离子液体相结合来捕集 CO2的方法,在解决膜分离耐热性问题的同时又提高了CO2的吸收能力[23];GIN 等认为聚离子液体是 CO2分离领域极具前景的下一代膜材料[24]

  • 1.1.4 低温蒸馏法

  • 低温蒸馏法是利用各组分相对挥发度的不同,通过气体透平膨胀制冷,在低温下将各组分冷凝下来,然后利用精馏的方法将其中各类物质依靠蒸发温度的不同逐步加以分离,技术流程如图2所示[25]。含 CO2 的烟气被冷却到-135~-100℃,然后固化 CO2以达到和其他轻质气体分离的目的,经过多次压缩和冷却,CO2 体积分数能达到 90%~95%[26]。低温蒸馏法对于高浓度(体积分数为 60%)CO2的捕集经济性较高,多用于油田现场。然而,其需要消耗较多的能量来压缩和冷凝CO2,设备投资较大。

  • 1.1.5 水合物分离法

  • 水合物分离法是利用不同气体组分的水合物生成条件不同,使混合气体中某一组分形成水合物,另一组分仍以气态形式存在,从而实现混合气体分离[27]。这种分离原理是基于CO2与其他气体的相平衡差异,CO2和 N2比其他气体更容易形成水合物[28]。水合物分离法具有原料简单、分离效率高、可循环利用等优势,同时能耗低,通过水合物捕获 CO2的单位能耗可低至0.57 kW·h/kg,美国能源部认为该技术是目前确定的最有前途的长期CO2分离技术,可用于天然气脱碳、低浓度瓦斯高效利用等,具有广阔的前景[29-30]

  • 图2 CO2低温蒸馏技术流程[25]

  • Fig.2 Flowchart of CO2 low-temperature distillation technology[25]

  • 1.2 燃烧前捕集技术

  • 燃烧前捕集技术是化石燃料、氧气、水蒸气等一起在气化炉反应生成合成气(主要成分是 H2和 CO),然后经过水煤气转换,将CO转化为CO2和H2,在燃料掺混空气进行彻底燃烧之前将 CO2分离出来[31]。燃烧前捕集技术多用于整体煤气化联合循环发电系统(IGCC),将煤气化技术和联合循环结合,进行燃气-蒸汽联合循环发电,能够实现发电的高效率和污染物的低排放。

  • 1984年美国在加州成功试运行第一座 IGCC电站,2011年中国连云港清洁煤能源动力系统研究设施投运,CO2捕集量为3×104 t/a。2012年中国华能天津 IGCC 项目投产,CO2捕集量为 10×104 t/a,是全世界连续运行时间最长的IGCC机组,其捕集CO2工艺流程如图3 所示[32]。燃烧前捕集技术多用于 IGCC 项目,现阶段捕集成本和能耗均较高,以华能天津 IGCC项目为例,其捕集 CO2的单位能耗为 0.53 kW· h/kg[32],而这会造成 7%~8% 的电厂效率损失[9]。另外,中外建成的 IGCC 项目较少,运行经验不多,系统可靠性不足。

  • 1.3 富氧燃烧捕集技术

  • 富氧燃烧捕集技术是利用高纯度的 O2代替空气,与化石燃料以及燃烧后返回的部分高浓度 CO2 一起进入燃烧室燃烧,生成以水蒸气,CO2,SO2,NOx 和颗粒物为主的烟气,颗粒物和 SO2可分别通过传统的静电除尘器和烟气脱硫方法去除,剩余烟气中的 CO2浓度很高,体积分数一般为 80%~98%,易于捕集[33]。富氧燃烧捕集技术具有相对成本低、易于现有机组改造、烟气中没有氮氧化合物等优势,被认为是最有可能大规模推广和商业应用的CO2捕集技术之一。然而,使用空气分离设备制备O2的时候会消耗大量能量,造成成本上升,并且烟气中的 SO2 会加剧系统腐蚀问题[31]。1982年,ABRAHAM 等首次提出利用富氧燃烧技术生成纯度较高的CO2来提高石油采收率[34],1988 年,王俊等首次对富氧燃烧技术进行了实验研究[35]。中国的华中科技大学、神华国华电力研究院也相继开展了富氧燃烧烟气压缩净化工艺探索[36]。华中科技大学自 1995 年开始在实验室进行微型实验,2014 年在湖北应城建成 10×104 t/a 的捕集装置,2016 年完成了 100×104 t/a CO2捕集的可行性研究。

  • 1.4 化学链燃烧捕集技术

  • 化学链燃烧捕集技术通过固体金属燃料的氧化还原过程,以金属氧化物作为载氧体,在还原反应器中,金属氧化物被还原成金属,而燃料被氧化成 CO2和 H2O。金属在另一个阶段被氧化,并在该过程中循环使用[37]。常用的载氧体包括铜基载氧体、镍基载氧体、铁基载氧体、钴基载氧体、锰基载氧体和非金属载氧体[38],常用的化学链燃烧反应器包括热重分析仪(TGA)、固定床、批次流化床、小型流化床和接近工程示范流化床[39]。RUBEL 等通过热重分析仪得到了铜基载氧体、镍基载氧体、铁基载氧体和钴基载氧体等的氧化还原性能[40];XIAO 等通过固定床反应器测试了非金属载氧体的还原反应动力学[41];LEION 等利用批次流化床测试了铁基载氧体的反应性[42];郭磊等用铁基载氧体在小型流化床进行化学链燃烧实验,比较了不同制备载氧体方法对其性能的影响[43]。化学链燃烧接近工程示范的必由之路是流化床反应器的逐渐放大, SHEN 等通过铝基和镍基载氧体在 1 kWth级的双流化床上进行了化学链燃烧试验,研究了温度对 CO2 捕集效率的影响[44]。郝建刚等通过铁基载氧体在 10 kWth级的串行流化床上进行了化学链燃烧试验,发现水蒸气的增加有利于 CO2的捕集[45]。BISCHI 等在 150 kWth级的双流化床上进行了模型试验,得到了流化床内部的固体浓度和气体压力分布规律[46]。化学链燃烧捕集技术作为一种新的能源利用形式,具有燃料高效转化、CO2内分离和产物低氮氧化合物的特点。经历了载氧剂选择、测试、开发、化学链燃烧的小型固定床和流化床实验,现阶段处于化学链燃烧反应器系统中等试验规模验证及系统分析阶段。

  • 图3 华能天津IGCC捕集CO2工艺流程[32]

  • Fig.3 CO2 capture process of Huaneng Tianjin’s IGCC[32]

  • 1.5 不同捕集技术的应用场景和成本

  • 在整个 CCUS-EOR 流程中,捕集过程是能耗和成本最高的环节,约占整个流程的 70%,一般高浓度的 CO2排放源捕集成本要低于低浓度的 CO2排放源。高浓度的CO2排放源包括煤化工、炼化、天然气净化;低浓度的 CO2排放源包括燃煤电厂、钢铁厂、水泥厂等,预计到 2030 年和 2060 年,CO2捕集成本分别为90~390和20~130元/t[5]。美国用于CCUS-EOR的CO2来源于纯CO2气藏、含CO2的天然气藏分离、人工捕集的工业 CO2排放,其比例分别为 80%, 15%和5%[47]。而中国的天然CO2气源少,主要来源于工业排放。不同的 CO2捕集技术具有不同的特点,其适用场景及捕集成本等也不尽相同(表1)[5748-54]

  • 1.6 中国CO2捕集面临的挑战

  • 与国外相比,现阶段中国 CO2捕集面临的主要问题是捕集成本居高不下,尤其是低浓度 CO2的规模化捕集还面临着许多挑战,主要体现在溶剂性能、关键的吸收/解吸设备、大型综合工艺优化经验、关键配套技术保障四个方面。低浓度化学胺捕集 CO2技术在国外已经实现百万吨级商业化 5 a以上,中国尚处于示范运行阶段,且蒸汽消耗较国外多 40% 以上。在关键设备方面(如吸收塔和再生塔),国内单系列规模与国外相比差距在10倍左右,国外已经具备百万吨级水泥吸收塔设计和建造能力,中国尚处在十万吨级传统钢结构压力塔器设计和建造阶段。在大型综合工艺优化方面,国外已经实现百万吨级碳捕集商业化工艺包,中国尚无商业化标准工艺包可以提供;国外已具备集成热回收的复合胺液净化技术,中国只具备局部工艺技术集成;国外拥有较为完善的装置改造适应性优化与解决方案,中国尚处在研究起步阶段。在配套技术保障方面,国外烟气痕量污染物分析与预处理技术较为成熟,吸收剂回收净化处于商业化应用阶段,中国在这些方面还有一定差距。在应用层面,国外大型的 CO2捕集项目如 2016 年开始运行的加拿大 Bound‐ ary Dam项目,实现了低浓度烟气CO2捕集百万吨级商业化应用,捕集成本为 280~320 元/t。而中国正处于 10×104 t 级试验阶段,中国最大的捕集项目为神华锦界项目,捕集规模为 15×104 t/a,捕集成本为 450~500元/t,尚未实现稳定运行。中国与国外捕集规模相差一个数量级,捕集成本相差170元/t左右。

  • 表1 不同CO2捕集技术比较

  • Table1 Comparison among different CO2 capture technologies

  • 2 CO2运输技术

  • 2.1 CO2运输方式

  • CO2的运输主要有公路运输、铁路运输、船舶运输以及管道输送 4 种方式,在大多数情况下管道输送是最经济性的运输方式;船舶运输是由运输液化天然气(LNG)衍生出的技术,在运输距离超过 1 000 km 或者运输过程需要经过大片水域时,船舶运输是较为经济和理想的选择;公路和铁路运输一般适用于小规模的 CO2运输[55]。为了选择可靠、安全、经济的运输方式,需要对 CO2的运输数量、运输距离、运输过程的地形等进行综合考量。

  • 在 CO2管道输送过程中,CO2主要以气态、液态和超临界状态存在。气相输送时,一般管道所占空间较大;液相输送时,相态易发生变化,且黏度较大;超临界状态输送时(压力>7.38 MPa,温度> 31.1℃),CO2密度大、黏度小、压缩系数小且比热小,有利于在输送过程中保持单一相态,故长距离 CO2输送多采用超临界状态输送[56]。国外的 CO2注入点多以超临界状态注入,且大规模 CO2输送绝大多数都采用超临界输送,因此在长距离管道输送中超临界状态输送具有光明的前景。

  • 根据研究,当CO2管道长度为250 km,年输送量为500×104 t/a时,管道的运输成本约为2.1美元/t;年输送量为 2 000×104 t/a时,管道的运输成本约为 1.0 美元/t[57]。对船舶运输而言,当 CO2 年输送量为 600×104 t/a,运输距离为 500 km 时,运输成本为 10 美元/t;运输量不变,运输距离为 1 250 km 时,运输成本为 15美元/t。中国 CO2罐车运输每公里成本约为0.9~1.4元/t,管输每公里成本约为0.35~0.40元/ t [54]。因此从成本的角度出发,超临界管道输送是后续中国 CCUS-EOR 项目中较为合理的长距离输送方式。

  • 2.2 中国超临界CO2管道输送面临的挑战

  • 中国的超临界 CO2管道输送与国外相比,主要在管道建设、输送标准、输送工艺、管输设备、管道材料、输送安全保障等方面存在一定的差距,技术储备较为薄弱、关键设备不能自主生产、缺乏工程经验、没有建成相应的超临界CO2管输技术体系。

  • 2.2.1 超临界CO2管道建设和输送标准

  • 在超临界 CO2管道建设方面,全球 CO2输送管道近 10 000 km,年总输送量达到 150×106 t/a,设计压力为10~20 MPa,多采用超临界输送工艺(表2),如Canyon Reef Carriers公司1972年建成世界上第一条运输 CO2的管道,全长 272 km;1983 年开始运行的 Cortez 是现存世界上最长的 CO2输送管道,长度为 803 km,年输送量达到 1 930×104 t/a[58],这些管道均为超临界 CO2输送管道。而中国建成的 CO2管道均为气相管道,无超临界输送管道(表3)。2021年7月,齐鲁石化-胜利油田 CCUS 项目正式开工建设,设计 CO2年输送量为 100×104 t/a,管道长度约为 80 km[59-60]

  • 表2 国外部分典型的超临界CO2输送管道

  • Table2 Some typical supercritical CO2 transport pipelines abroad

  • 表3 中国现有的CO2输送管道

  • Table3 Existing CO2 transport pipelines in China

  • 在 CO2管道输送标准方面,国外制定了相关的规范和标准,如挪威船级社(DNV)专门编制了针对 CO2运输的设计运行指南《CO2的管道设计与操作》,以及针对海底超临界 CO2运输的标准《海底管道系统》;国际标准化组织(ISO)发布了针对 CO2运输的标准《CO2捕获、运输和地质储存-管道运输系统》; 其他国家发布的相关管道规范中也包含了部分CO2 管道输送的标准(表4)。中国仅有一部于2018年施行的《二氧化碳输送管道工程设计标准》SH/T3202。

  • 表4 国外部分涉及CO2管道输送的标准

  • Table4 Some foreign standards involving CO2 pipelines transport

  • 2.2.2 含杂质超临界CO2管道输送工艺

  • 不同的 CO2气源和捕集技术会导致 CO2中含有不同的杂质气体(表5)[61],而这些杂质气体很难彻底净化,在超临界CO2管道输送过程中可能会对CO2 性质和相态产生影响,同时杂质气体的存在也会增加CO2体系的腐蚀性,甚至引起管道失效[62],对超临界 CO2管道输送工艺造成很大的挑战,中外针对杂质对管道输送工艺的影响开展了大量研究。

  • 表5 不同CO2气源和捕集技术中所含杂质最大含量[61]

  • Table5 Maximum content of impurities in different CO2 gas sources and capture technologies[61]

  • 杂质对 CO2 物理性质和管道输送特性的影响 CO2在超临界状态时,密度和其液态相近,黏度和其气态相近,因此有利于输送。杂质的存在会影响CO2的临界参数、黏度和密度等物理性质,也会影响超临界输送过程的温降和压降等性质。杂质气体会改变CO2的临界压力和临界温度,SO2,NO2,H2S会使CO2混合物临界压力和温度增大,但H2,N2,O2, CO,Ar,CH4会使得 CO2混合物临界压力增加,临界温度降低。H2,N2,NO2 会使 CO2 混合物相图与纯 CO2相图相比,两相区域增加,从而增加超临界管道输送过程中出现两相流的风险,为了维持超临界状态输送,需要增加运行压力[63-65]。除 SO2外,多数杂质气体会使超临界CO2运输压降增加,尤其是H2,而对输送过程温降影响不大[66-67]。国外对含杂质超临界CO2的相态和管道输送特性在实验和数值模拟方面都进行了大量研究,而中国主要以数值模拟为主。

  • 含杂质的超临界 CO2输送管道的内腐蚀 在 CO2管道输送过程中,通常使用管线钢(X52,X65, X70)作为管道材料,而这些管线钢可能会因为运输过程中杂质的存在而产生腐蚀,从而严重影响 CO2 管道输送的完整性和安全性[68]。中外已经对杂质及其在超临界CO2运输过程的内腐蚀问题进行了大量的研究(表6)。许多研究表明水是造成超临界 CO2管道内腐蚀的重要杂质,水的存在会导致碳酸的形成,使 pH 值达到 3~4,具有较强腐蚀性[69-70]。在超临界状态下,水在纯 CO2 中的溶解度极限为 0.002 6 kg/m3,如果管道中含水量少于饱和溶解度的 60%(0.001 5 kg / m3),碳钢不会发生严重腐蚀[71-72]。但当含水量高于溶解度极限,多余的水分子将聚集在一起形成自由水相,杂质中的 NOx,SOx, H2S 等被吸收,就会提供电化学反应所需要的水环境[73]。SOx通过与 H2O反应,并进一步与 O2反应,在水相中形成 H2SO4,从而降低 pH 值,并且提供了更多的H+ 来增强析氢阴极反应[7174]。NOx在自由水相中容易形成 HNO3,比 HCl 和 H2SO4更容易在超临界 CO2管道内表面引起严重的腐蚀[75]。H2S 溶解在水中通过影响阴极和阳极过程来促进腐蚀[76],少量的 H2S通过反应生成FeS形成保护膜,附着在管壁内表面可以在一定程度上降低腐蚀速率[77],但 H2S 的存在可能会导致硫化物应力开裂问题(SSC)[78]。通常认为 O2会增加腐蚀速率,但有研究表明,O2体积分数从 0 增加到 0.1% 的过程中,X65 和 5Cr 钢在水饱和的超临界 CO2环境中局部腐蚀会加剧,但均匀腐蚀速率会逐渐降低[79]。也有研究表明,O2对管道腐蚀的影响与管道内 CO2的压力和含水量有关,当压力超过 10 MPa时,O2在水饱和的超临界 CO2环境中会对管线钢造成明显的腐蚀[80]。一定条件下,杂质还可能形成水合物,引起管道堵塞和设备损坏。

  • 杂质含量 从燃烧后、燃烧前、富氧燃烧等过程中捕集的 CO2不可避免的会含有杂质,杂质的种类和含量受到捕集技术和捕集过程的影响。这些杂质会对压缩机、管道、储罐等设备产生影响,但是现阶段还没有对运输过程中杂质的含量达成共识,国外各超临界CO2管道项目都有各自的组分含量规定(表7)[90]。以 H2S 为例,从安全的角度应该限制 H2S 的含量,但是 H2S 能够提高 CO2和油气的互溶,在进行CO2-EOR的过程中有效降低最小混相压力,有利于提高采收率,因此 Weyburn 项目中 H2S 含量达0.9%[82]。同样对于输送过程中的自由水含量(不能溶解于CO2的水)也有很多不同的看法,现有的文献中关于 CO2管道输送中含水量最严格的是 Wey‐ burn 项目的 0.002%(0.000 015 kg/m3[91],挪威船级社(DNV)在其CO2管道相关规范中没有对含水量的限值做出规定,但Kinder Morgan公司规定自由水含量不超过 0.06%[92]。因此对于输送过程的杂质含量,应该从安全、成本、最终用途等角度充分考虑。

  • 2.2.3 超临界CO2管道输送设备和管道材料

  • 在超临界CO2管道输送关键设备方面如超临界 CO2压缩机,国外相关工艺成熟,单台规模达 100× 104 t/a,压力达35 MPa。中国的超临界CO2压缩机应用较少,规模较小,没有百万吨级大功率超临界CO2 压缩机相关技术工艺。2021 年 4 月,中科院工程热物理研究所兆瓦级超临界 CO2压缩机测试成功,设计压力为8 MPa。

  • 表6 部分杂质在超临界CO2环境中对管道材料腐蚀速率影响的研究[6881-82]

  • Table6 Studies of effects of some impurities on corrosion rates of pipeline materials in supercritical CO2 environment[6881-82]

  • 表7 国外部分典型CO2管道项目不同组分体积分数[90]

  • Table7 Volume fractions of different components of some typical CO2 pipelines abroad[90]

  • 在管道材料方面,美国的 Kinder Morgan公司已承建近 8 000 km 的 CO2运输管道,其常用输送管为埋弧焊钢管和高频电阻焊钢管,钢级为 X65,X70; 对于小口径管道,推荐使用韧性更高、成本相对较低的高频电阻焊钢管。

  • 2.2.4 超临界CO2管道输送安全性

  • 由于CO2具有较高焦耳-汤姆逊系数,在超临界 CO2泄漏降压过程中导致温度大幅下降,流体的温度甚至会急速下降至-80℃[93],造成管线韧性下降,易产生低温脆断的风险。超临界CO2状态下的管道一旦产生裂纹,在压差的作用下裂纹会迅速向周围扩展,针对该问题,天然气相关行业进行了全尺寸爆破试验、减压试验等。针对超临界 CO2输送过程中可能出现的裂纹扩展问题,国外进行了10多次全尺寸爆破试验来研究超临界 CO2管道止裂问题,止裂方式包括管材自身止裂、厚壁管及止裂器止裂。而国内相关研究刚刚起步,且未开展 CO2全尺寸爆破试验。国外对超临界CO2管道泄放及扩散模拟进行了比较多的研究[94],并建立了相应的模型。 ELSHAHOMI 等研究发现 CO2在泄压过程中的压力变化和减压波速度、初始温度和减压波速度的关系[95]。MAHGEREFTEH 等研究了超临界 CO2减压泄压行为,并建立了相关模型来预测断裂扩展[96]。 WITLOX 等建立了相关模型来预测 CO2持续泄漏的浓度分布情况[97]。中国对CO2泄放特性和扩散规律研究与国外相比还有一定差距,仅进行了小型的泄放实验和模型研究。刘锋通过实验室装置模拟了超临界 CO2泄放过程,认为其是等焓过程[98]。任科建立了一维减压模型来研究超临界CO2泄漏过程的减压波传播特性[99]

  • 因此,中国超临界CO2管道输送要实现大规模、安全运行,需要在含杂质超临界CO2管道输送工艺、管道断裂及腐蚀控制、关键设备制造、安全保障技术等方面进行更具体、更深入的研究。

  • 3 提高石油采收率及封存技术

  • 捕集来的 CO2有多种利用途径,主要包括能源生产、资源开发和化工利用三个方面。在能源生产方面,CO2可用于提高石油采收率、驱替煤层气、开采地热等;在资源开发方面CO2可用于溶浸采铀、强化采水等;在化工利用方面,CO2可以用来合成化工品如聚碳酸脂、甲烷甲醇等[52]。其中提高石油采收率技术(CCUS-EOR)作为 CCUS 应用的一个方面,不仅能实现CO2的封存,还可以提高石油采收率,具有较好的环境效益和经济效益。过去40多年,全球约有 10×108 t CO2 通过 CCUS-EOR 被注入到地层中[7],因此CCUS-EOR技术拥有非常广阔的前景,将在减排温室气体方面扮演重要的角色。

  • 3.1 CO2提高采收率技术

  • 美国于 20世纪 50年代开始研究 CCUS-EOR 技术,20世纪 90年代 CCUS-EOR 相关技术成熟,1994 年 CO2 驱产油量突破 1 000×104 t,到 2018 年达到 1 550×104 t [47]。目前北美CCUS-EOR项目约占全球总量的 40%[100]。根据 KAPSARC 的数据,截至 2018 年,全球燃煤电厂CO2捕集量为80×104 t/a,其他形式 CO2捕集量为 40×104 t/a以上的,除中国以外的处于不同实施阶段的CCUS-EOR项目共有18个[101]

  • 中国从 20 世纪 60 年代开始注 CO2提高采收率实验研究,截至 2019 年末,中国累积注入 500×104 t CO2用于驱油,提高采收率幅度为 3.0%~15%,平均约为7.4%[102]。其中中国石油在吉林黑79北特低渗透砂岩油藏实现CO2混相驱,提高采收率25%以上,埋存 CO2达 37×104 t;在大庆树 101特低渗透油藏实现 CO2非混相驱,提高采收率 10%以上,埋存 CO2达 20×104 t。现在中国的 CCUS-EOR 技术正处于工业化试验和提升应用效益阶段,属于商业应用的初级阶段(表8)[5]

  • 现阶段中国与北美 CCUS-EOR 在技术水平、应用规模及生产效果方面都存在较大的差距(表9),北美相关技术及配套工艺体系成熟,而中国正处于从CO2驱油先导试验到CCUS-EOR全产业链规模化应用的时期,面临着陆相复杂地质体 CO2驱油储层评价难度大、扩大波及体积技术不成熟、分层注气工艺不完善、防腐技术成本较高等问题。因此需要在 CO2驱多孔介质中多相渗流机理、强非均质油藏气驱优势通道表征技术、合理井网和开发规律、扩大波及体积等方面进行更加深入的研究。

  • 3.2 CO2驱油封存技术

  • 油藏可以作为 CO2封存的较为理想的场所,在油田开发过程中注入 CO2,一部分气体溶解或者扩散到原油和地层水当中,还有一部分与岩石反应沉积在油藏中。胡永乐等研究认为CO2在油藏中的埋存机理主要有构造埋存、溶解埋存、游离埋存和矿物埋存4种[103]。CO2注入储层后的运移过程包括对流、溶解和扩散。开始注入时,CO2气体在液相密度差及浮力的作用下发生对流,使得 CO2向储层上方运移,直到被盖层阻止。该过程中 CO2与地下水接触,发生部分溶解。刚开始溶解时,接触面会首先形成饱和 CO2的盐水层,在不同盐水层密度差的作用下,CO2将从高浓度向低浓度方向做重力扩散,该扩散以横向铺展为主,其动力以分子的自发扩散为主。在分子扩散主导的运移过程中,注入 CO2将进一步在盐水中溶解,其余的则继续横向迁移。对流、扩散、溶解和运移依次发生、相互促进。注入 CO2驱油的过程中,约 3/5 的气体留在油藏中,另外 2/5 随原油一起被开采出来[104],经过分离后再次注入油藏循环利用,并最终被封存在油藏中。

  • 表8 中国CCUS-EOR项目[5]

  • Table8 CCUS-EOR Projects in China[5]

  • 表9 美国与中国CO2驱油相关情况对比

  • Table9 Comparison of CO2 flooding-related situations between the United States and China

  • 据测算,中国共有 130 × 108 t 石油可以采用 CCUS-EOR 技术来提高采收率,同时埋存 50×108~60×108 t CO2在油藏中[105]。渤海湾盆地、松辽盆地、鄂尔多斯盆地和准噶尔盆地具有较大的 CCUS-EOR潜力,油田周边CO2年排放量约为2.45×108 t/a,可捕集量为4 000×104 t/a,适宜CO2驱地质储量约为 66.6×108 t,有效埋存量为29.1×108 t [7]。位于松辽盆地的吉林油田自2009—2019年共建成4个CO2驱油与埋存示范区,目前累积注气量为 184×104 t,产油能力为 10×104 t/a,埋存 CO2能力为 35×104 t/a,具备工业化推广条件。鄂尔多斯盆地是中国陆上实施 CO2地质封存最有利和最安全的地区之一[106],其中盆地内中国石油、中国石化、延长石油CO2驱油技术潜力约为37×108 t,油藏封存CO2量有望达到10×108 t规模。

  • 3.3 CO2监测技术

  • CCUS-EOR 能减少温室气体的排放,提高石油采收率,实现对 CO2的封存。但是 CO2具有较强的渗透性和流动性,在进行CO2注入、驱油、采出、回收和回注等过程中,CO2可能会随着井壁、地质缺陷等泄漏到环境当中,具有潜在的泄漏风险(图4)[107]。相关模型显示,若每年有千分之一及以上的 CO2泄漏,由 CCUS 技术贡献的温室气体控制策略将失效[108]。同时泄漏的 CO2会污染地下水,影响土壤生物系统和植物的根系,改变生态系统平衡;大量CO2 被注入地层可能会诱发地震,同时也会对生命安全产生极大威胁。1984 年,喀麦隆的莫瑙恩湖发生 CO2喷发灾难,造成 37 人遇难。1986 年,喀麦隆尼奥斯湖发生 CO2 喷发灾难,造成 1 700 多人死亡[109-110]。2019年,中国“金海翔”号货轮发生CO2泄漏,造成10人死亡,19人受伤[111]。另外根据牛津大学 TYNE等于 2021年发表在《Nature》杂志上的最新文献显示[112],微生物在合适的温度条件下会将 CCUS-EOR 过程残留在地下的 CO2转变为可溶性和压缩性更差、温室效应更强的 CH4,其比例高达 13%~19%。因此为了保证人身财产安全和环境,在进行 CO2驱油埋存的过程中,有必要对 CO2实施监测。

  • CO2的监测包括注入前监测、注入中监测、注入后监测,以此来保证其完整性和安全性。根据王晓桥等的研究,针对地表以下 CO2泄漏监测技术主要有:对封存蓄积层压力和渗透层压力进行监测、电阻断层扫描(ERT)、分布式热式传感器监测(DTS)、 CO2 剩余饱和度监测(RST)、偶极声纳成像系统 (DSI)、自然电位(SP)、pH 测量传感器、生态系统-生物学监测、地球化学监测、监测烃类和有机物[107]。地表以上的 CO2泄漏监测技术有:红外气体分析仪检测(IRGA)、长程开放路径红外探测和调制激光检测(LOIR)、涡量相关监测(EC)、集聚气室检测 (AC)、测井微震监测(MSW)、激光雷达检测(LI‐ DAR)、示踪剂追踪监测、碳稳定同位素监测、超光谱成像检测、无线传感器监测(WSN)、O2/CO2比率监测。另外还有地表上空的卫星遥感监测和无人机监测[113-114]

  • 世界上正在运行的工业规模的CO2地质封存项目有挪威的 Sleipner 项目、加拿大的 Weyburn 项目、阿尔及利亚的 In Salah项目。这些工业化规模项目运行时间较长,对 CO2封存的相关监测具有丰富的经验。其中加拿大的 Weyburn油田是当前注 CO2驱油项目中规模最大的,其用到的监测技术包括3D地震、4D 地震、垂直地震剖面、井间电磁、压力和温度监测、示踪剂、大气和微生物监测等。中国在吉林油田 CCUS-EOR 项目、神华 CCS咸水层封存等也采取了许多 CO2监测技术来跟踪 CO2在储层中的迁移,以确保长期储存安全。其中吉林油田采用的监测技术包括:井筒完整性检测、生产流体取样、CO2 气体示踪剂、自发电位测量、微地震、井间地震及环境监测计划等[115]

  • 4 展望与挑战

  • 中国 CCUS-EOR 潜力巨大,将 CO2驱油和埋存结合起来是未来的发展趋势。首先,全球 CO2排放量逐年增加,温室气体减排形势严峻。而碳达峰、碳中和是中国提出的重要战略决策,客观上也为 CCUS 技术在中国的发展起到了良好的政策指引。其次,全球碳排放市场持续火热,2020 年交易额达到了 2 000多亿欧元,而随着各国政策的推动,全球碳价将持续升高,这也将改变企业经营模式,推动国内大型石油企业向 CCUS 靠拢。然后,中国低渗透油藏储量较大,传统的水驱效果不佳,CCUS-EOR技术是其提质增效的现实需要。最后,中国主要的产油区如鄂尔多斯盆地等,周围的煤化工和石油炼化CO2排放量巨大,源汇匹配度高,且地质条件适宜 CO2的封存,为 CCUS-EOR 的发展奠定了坚实的基础。因此,作为世界上主要的 CO2排放国之一,集 CO2捕集、驱油和埋存于一体的 CCUS-EOR 技术在中国具有广阔的前景。

  • 图4 CO2地质封存潜在泄漏风险(据文献[107]修改)

  • Fig.4 Potential leakage risks of CO2 geological storage(Modification according to reference[107])

  • 要实现中国 CCUS-EOR 的大规模工业化应用,还面临着诸多挑战。首先,CO2的捕集成本居高不下,尤其是低浓度的碳源,与国外工业化规模捕集相比,在捕集规模、成本、技术、关键吸收/解吸设备方面都有一定差距。其次,CO2管道输送技术方面,中国均为气相输送,超临界 CO2管道输送技术储备较为薄弱,工程经验空白,关键设备如超临界CO2压缩机同国外也有一定差距,超临界输送工艺仍有许多问题亟待解决,例如相变、腐蚀、管材断裂等问题。再者,中国的 CO2驱油正处于先导性实验向全产业链规模化转变过程中,面临防腐技术成本较高、扩大波及体积技术不成熟、混相驱机理和渗流规律还有待深入研究等问题。最后,针对埋存过程,还涉及 CO2埋存机理协同机制和失效机制不明确,以及全套监测技术不完善等问题。

  • 因此,要实现 CCUS-EOR 在中国的工业化应用,提出以下建议:首先,从国家层面推动 CCUS-EOR 相关产业发展战略,提供相应的政策支持,如提供低利率贷款和碳减排补贴、完善和规范碳税和碳市场、建立CCUS全产业链标准体系等。其次,加快相应的技术攻关,解决大规模碳捕集、运输、驱油埋存过程的技术问题;加大示范项目的建设力度,最终实现由示范项目向规模化产业集群的转变;建立上下游全产业链体系,形成相应的全流程技术和经济评价指标,并加大CCUS基础设施建设力度,如管网设施等。最后,加强国际交流合作,以此扩大范围解决可能存在的区域源汇不匹配问题,同时学习国外先进的技术经验并不断自主创新。

  • 参考文献

    • [1] 潘佳佳,李廉水.中国工业二氧化碳排放的影响因素分析[J] 环境科学与技术,2011,34(4):86-92.PAN Jiajia,LI Lianshui.Analysis of factors affecting industrial carbon dioxide emission in China[J].Environmental Science & Technology,2011,34(4):86-92.

    • [2] FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al.Glob‐ al carbon budget 2020[J].Earth System Science Data,2020,12(4):3 269-3 340.

    • [3] WILBERFORCE T,OLABI A G,SAYED E T,et al.Progress in carbon capture technologies[J].Science of the Total Environment,2021,761:143203.

    • [4] IEA.Global energy review 2020[R].Paris:IEA,2020.

    • [5] 蔡博峰,李琦,张贤,等.中国二氧化碳捕集与利用封存(CCUS)年度报告(2021)——中国CCUS路径研究[R].生态环境部环境规划院,2021:8.CAI Bofeng,LI Qi,ZHANG Xian,et al.China’s 2021 annual re‐ port of Carbon Dioxide Capture and Utilization Storage(CCUS)-CCUS pathway study in China[R].Chinese Academy of Environ‐ mental Planning,2021:8.

    • [6] 郝艳军,杨顶辉.二氧化碳地质封存问题和地震监测研究进展 [J].地球物理学进展,2012,27(6):2 369-2 383.HAO Yanjun,YANG Dinghui.Research progress of carbon diox‐ ide capture and geological sequestration problem and seismic monitoring research[J].Progress in Geophysics,2012,27(6):2 369-2 383.

    • [7] 王高峰,秦积舜,孙伟善.碳捕集、利用与封存案例分析及产业发展建议[M].北京:化学工业出版社,2020:16-18.WANG Gaofeng,QIN Jishun,SUN Weishan.CCUS cases analysis and industrial development suggestions[M].Beijing:Chemical In‐ dustry Press,2020:16-18.

    • [8] DAVISON J.Performance and costs of power plants with capture and storage of CO2[J].Energy,2007,32(7):1 163-1 176.

    • [9] LEUNG D Y C,CARAMANNA G,MAROTO-VALER M M.An overview of current status of carbon dioxide capture and storage technologies[J].Renewable and Sustainable Energy Reviews,2014,39(4):426-443.

    • [10] BAE J S,SU S.Macadamia nut shell-derived carbon composites for post combustion CO2 capture[J].International Journal of Greenhouse Gas Control,2013,19:174-182.

    • [11] FREDRIKSEN S B,JENS K J.Oxidative degradation of aqueous amine solutions of MEA,AMP,MDEA,Pz:A review[J].Energy Procedia,2013,37:1 770-1 777.

    • [12] XIANG Y,XIE W M,NI S Y,et al.Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO2 capture process:Effect of NO3 [J].Corrosion Science,2020,167:108521.

    • [13] XIANG Y,LONG Z W,LI C,et al.Neutralization and adsorption effects of various alkanolamines on the corrosion behavior of N80 steel in supercritical CO2 with impurities[J].Corrosion,2019,75(8):999-1 011.

    • [14] 江文敏.化学吸收法捕集二氧化碳工艺的模拟及实验研究 [D].杭州:浙江大学,2015:26-28.JIANG Wenmin.Simulation and experimental research of CO2 chemical absorption system[D].Hangzhou:Zhejiang University,2015:26-28.

    • [15] 杨珍珍.功能化离子液体在二氧化碳捕集、活化及化学转化中的应用[D].天津:南开大学,2013:8.YANG Zhenzhen.Carbon dioxide capture with activation and chemical transformation by task-specific ionic liquids[D].Tian‐ jin:Nankai University,2013:8.

    • [16] 张卫风,周武,王秋华.相变吸收捕集烟气中CO2技术的发展现状[J].化工进展,2021,41(4):2 090-2 101.ZHANG Weifeng,ZHOU Wu,WANG Qiuhua.Recent develop‐ ments of phase-change absorption technology for CO2 capture from flue gas[J].Chemical Industry and Engineering Progress,2021,41(4):2 090-2 101.

    • [17] SANCHEZ-FERNANDEZ E,HEFFERNAN K,VAN DER HAM L,et al.Analysis of process configurations for CO2 capture by pre‐ cipitating amino acid solvents[J].Industrial & Engineering Chem‐ istry Research,2014,53(6):2 348-2 361.

    • [18] WAHBY A,SILVESTRE-ALBERO J,SEPULVEDA-ESCRIBA‐ NO A,et al.CO2 adsorption on carbon molecular sieves[J].Micro‐ porous and Mesoporous Materials,2012,164:280-287.

    • [19] WIHEEB A D,HELWANI Z,KIM J,et al.Pressure swing adsorp‐ tion technologies for carbon dioxide capture[J].Separation & Puri‐ fication Reviews,2016,45(2):108-121.

    • [20] KHALILPOUR R,MUMFORD K,ZHAI H B,et al.Membranebased carbon capture from flue gas:a review[J].Journal of Clean‐ er Production,2015,103:286-300.

    • [21] 晏水平,方梦祥,张卫风,等.基于膜吸收技术的烟气 CO2分离工艺设计与经济性分析[J].动力工程,2007,27(3):415-421.YAN Shuiping,FANG Mengxiang,ZHANG Weifeng,et al.Engi‐ neering design and economic analysis of CO2 sequestration from flue gas by using membrane absorption techniques[J].Journal of Chinese Society of Power Engineering,2007,27(3):415-421.

    • [22] DAVIDSON O,METZ B.Special report on carbon dioxide capture and storage[J].International Panel on Climate Change,Geneva,Switzerland,2005,7(13):1-100.

    • [23] DAI Z D,NOBLE R D,GIN D L,et al.Combination of ionic liq‐ uids with membrane technology:A new approach for CO2 separa‐ tion[J].Journal of Membrane Science,2016,497:1-20.

    • [24] GIN D L,NOBLE R D.Designing the next generation of chemical separation membranes[J].Science,2011,332(6030):674-676.

    • [25] 陈新明,史绍平,闫姝,等.燃烧前CO2捕集技术在IGCC发电中的应用[J].化工学报,2014,65(8):3 193-3 201.CHEN Xinming,SHI Shaoping,YAN Shu,et al.Application of CO2 capture technology before burning in IGCC power generation system[J].CIESC Journal,2014,65(8):3 193-3 201.

    • [26] BURT S S,BAXTER A,BENCE C,et al.Cryogenic CO2 capture for improved efficiency at reduced cost[C].Salt Lake City:Pro‐ ceedings of the AICHE,2010.

    • [27] WANG X L,CHEN G J,YANG L Y,et al.Study on the recovery of hydrogen from refinery(hydrogen+methane)gas mixtures using hy‐ drate technology[J].Science in China Series B:Chemistry,2008,51(2):171-178.

    • [28] FAN S,WANG Y,LANG X.CO2 capture in form of clathrate hy‐ drate-problem and practice[C].Edinburgh:Proceedings of the 7th International Conference on Gas Hydrate,2011.

    • [29] BABU P,KUMAR R,LINGA P.Progress on the hydrate based gas separation(HBGS)process for carbon dioxide capture[C].San Francisco:Proceedings of the AICHE Annual Meeting,2013.

    • [30] SUN D,ENGLEZOS P.Storage of CO2 in a partially water saturat‐ ed porous medium at gas hydrate formation conditions[J].Interna‐ tional Journal of Greenhouse Gas Control,2014,25:1-8.

    • [31] NAZIR S M,CLOETE J H,CLOETE S,et al.Efficient hydrogen production with CO2 capture using gas switching reforming[J].En‐ ergy,2019,185:372-385.

    • [32] 柳康,许世森,李广宇,等.基于整体煤气化联合循环的燃烧前 CO2捕集工艺及系统分析[J].化工进展,2018,37(12):4 897-4 907.LIU Kang,XU Shisen,LI Guangyu,et al.Technological process and system analysis of pre-combustion CO2 capture based on IGCC[J].Chemical Industry and Engineering Progress,2018,37(12):4 897-4 907.

    • [33] BUHRE B J P,ELLIOTT L K,SHENG C D,et al.Oxy-fuel com‐ bustion technology for coal-fired power generation[J].Progress in Energy and Combustion Science,2005,31(4):283-307.

    • [34] ABRAHAM B M,ASBURY J G,LYNCH E P,et al.Coal-oxygen process provides CO2 for enhanced recovery[J].Oil & Gas Jour‐ nal,1982,80(11):173-184.

    • [35] 王俊,李延兵,廖海燕,等.浅谈国外煤粉富氧燃烧技术发展 [J].华北电力技术,2014,8(2):56-61.WANG Jun,LI Yanbing,LIAO Haiyan,et al.Brief discussion on technical development of pulverized coal oxyfuel combustion abroad[J].North China Electric Power,2014,8(2):56-61.

    • [36] 孔红兵,柳朝晖,陈胜,等.600 MW 富氧燃烧系统过程建模及优化[J].中国电机工程学报,2012,32(2):53-60.KONG Hongbing,LIU Zhaohui,CHEN Sheng,et al.Process simu‐ lation and optimization of a 600 MW O2/CO2 power plant[J].Pro‐ ceedings of the CSEE,2012,32(2):53-60.

    • [37] ADANEZ J,ABAD A,GARCIA-LABIANO F,et al.Progress in chemical-looping combustion and reforming technologies[J].Progress in Energy and Combustion Science,2012,38(2):215-282.

    • [38] LI F X,LUO S W,SUN Z C,et al.Role of metal oxide support in redox reactions of iron oxide for chemical looping applications:ex‐ periments and density functional theory calculations[J].Energy & Environmental Science,2011,4(9):3 661-3 667.

    • [39] 王金星,孙宇航.化学链燃烧技术的研究进展综述[J].华北电力大学学报:自然科学版,2019,46(5):101-110.WANG Jinxing,SUN Yuhang.Review of chemical-looping com‐ bustion technology research[J].Journal of North China Electric Power University:Natural Science Edition,2019,46(5):101-110.

    • [40] RUBEL A,LIU K L,NEATHERY J,et al.Oxygen carriers for chemical looping combustion of solid fuels[J].Fuel,2009,88(5):876-884.

    • [41] XIAO R,SONG Q L.Characterization and kinetics of reduction of CaSO4 with carbon monoxide for chemical-looping combustion [J].Combustion and Flame,2011,158(12):2 524-2 539.

    • [42] LEION H,LYNGFELT A,JOHANSSON M,et al.The use of il‐ menite as an oxygen carrier in chemical-looping combustion[J].Chemical Engineering Research and Design,2008,86(9):1 017-1 026.

    • [43] 郭磊,赵海波,马琎晨,等.批量制备Fe2O3/Al2O3氧载体及褐煤化学链燃烧实验研究[J].中国电机工程学报,2013,33(17):57-63.GUO Lei,ZHAO Haibo,MA Jinchen,et al.Batch preparation of Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of lignite[J].Proceedings of the CSEE,2013,33(17):57-63.

    • [44] SHEN L H,WU J H,GAO Z P,et al.Characterization of chemical looping combustion of coal in a 1 kWth reactor with a nickelbased oxygen carrier[J].Combustion and Flame,2010,157(5):934-942.

    • [45] 郝建刚,吴家桦,王雷,等.基于Fe基载氧体的生物质化学链燃烧试验研究[J].锅炉技术,2010,41(2):65-70.HAO Jiangang,WU Jiahua,WANG Lei,et al.Experiments on chemical looping combustion of biomass with a Fe2O3 based oxy‐ gen carrier[J].Boiler Technology,2010,41(2):65-70.

    • [46] BISCHI A,LANGØRGENØ,MORIN J X,et al.Hydrodynamic via‐ bility of chemical looping processes by means of cold flow model investigation[J].Applied Energy,2012,97:201-216.

    • [47] 徐婷,杨震,周体尧,等.中美二氧化碳捕集和驱油发展状况分析[J].国际石油经济,2016,24(4):12-16,28.XU Ting,YANG Zhen,ZHOU Tiyao,et al.Carbon capture and storage(CCS)and CO2 flooding technology development in the United States and China[J].International Petroleum Economics,2016,24(4):12-16,28.

    • [48] 林海周,杨晖,罗海中,等.烟气二氧化碳捕集胺类吸收剂研究进展[J].南方能源建设,2019,6(1):16-21.LIN Haizhou,YANG Hui,LUO Haizhong,et al.Research prog‐ ress on amine absorbent for CO2 capture from flue gas[J].South‐ ern Energy Construction,2019,6(1):16-21.

    • [49] 刘洋.燃煤电厂碳捕获与封存技术现状及其应用前景展望[J].能源环境保护,2017,31(3):1-5.LIU Yang.Current status of carbon capture and storage technology in coal-fired power plants and its application prospects[J].Ener‐ gy Environmental Protection,2017,31(3):1-5.

    • [50] ZHAO Y J,DUAN Y Y,LIU Q,et al.Life cycle energy-economyenvironmental evaluation of coal-based CLC power plant vs.IGCC,USC and oxy-combustion power plants with/without CO2 capture[J].Journal of Environmental Chemical Engineering,2021,9(5):106121.

    • [51] HOFFMANN S,BARTLETT M,FINKENRATH M,et al.Perfor‐ mance and cost analysis of advanced gas turbine cycles with pre‐ combustion CO2 capture[J].Journal of Engineering for Gas Tur‐ bines and Power,2009,131(2):61-67.

    • [52] 陆诗建.碳捕集、利用与封存技术[M].北京:中国石化出版社,2020:13-16.LU Shijian.Carbon capture,utilization and storage[M].Beijing:Chemical Industry Press,2020:13-16.

    • [53] 骆仲泱,方梦祥,李明远.二氧化碳捕集封存和利用技术[M].北京:石油工业出版社,2012:28.LUO Zhongyang,FANG Mengxiang,LI Mingyuan.Carbon cap‐ ture,utilization and storage[M].Beijing:Petroleum Industry Press,2012:28.

    • [54] 蔡博峰,李琦,林千果,等.中国二氧化碳捕集、利用与封存(CCUS)报告(2019)[R].生态环境部环境规划院气候变化与环境政策研究中心,2020:18.CAI Bofeng,LI Qi,LIN Qianguo,et al.China’s 2019 annual re‐ port of Carbon Dioxide Capture and Utilization Storage(CCUS)[R].Research Center of Climate Change and Environmental Poli‐ cy,Chinese Academy of Environmental Planning,2020:18.

    • [55] BENSON S M,ORR F M.Carbon dioxide capture and storage[J].MRS Bulletin,2008,33(4):303-305.

    • [56] WHITE C M,SMITH D H,JONES K L,et al.Sequestration of car‐ bon dioxide in coal with enhanced coalbed methane recovery-a re‐ view[J].Energy & Fuels,2005,19(3):659-724.

    • [57] HOWARD Herzog K S,PRADEEP Dadhich,JAMES Dooley,et al.IPCC special report on carbon dioxide capture and storage[R].IPCC,2005:340-362.

    • [58] GHG I.CO2 pipeline infrastructure:An analysis of global challeng‐ es and opportunities[J].Final Report for International Energy Agency Greenhouse Gas Programme,2010,16(5):59-74.

    • [59] 亓冠玲.齐鲁二化厂至正理庄油田高89地区 CO2输送管道及液化分离工程方案研究[D].青岛:中国石油大学(华东),2014:36.QI Guanling.Research on CO2 pipeline and liquid separation proj‐ ect of Qilu Petrochemical to Zhenglizhuang oilfield[D].Qingdao:China University of Petroleum(East China),2014:36.

    • [60] 中国首个百万吨级碳捕集利用与封存项目启动[J].中国氯碱,2021,(7):28.China’s first million-ton carbon capture,utilization and storage project launched[J].China Chlor-Alkali,2021,(7):28.

    • [61] 蒋秀,屈定荣,刘小辉.超临界CO2管道输送与安全[J].油气储运,2013,32(8):809-813.JIANG Xiu,QU Dingrong,LIU Xiaohui.Supercritical CO2 pipe‐ line transportation and safety[J].Oil & Gas Storage and Transpor‐ tation,2013,32(8):809-813.

    • [62] 颜开,向勇,陈晓玲.CO2海洋封存系统管道腐蚀特性研究进展 [J].腐蚀科学与防护技术,2019,31(6):672-680.YAN Kai,XIANG Yong,CHEN Xiaoling.Investigation on corro‐ sion characteristics of pipeline in CO2 ocean storage system[J].Corrosion Science and Protection Technology,2019,31(6):672-680.

    • [63] SEEVAM P N,RACE J M,DOWNIE M J,et al.Transporting the next generation of CO2 for carbon,capture and storage:the impact of impurities on supercritical CO2 pipelines[C].Calgary:Proceed‐ ings of the International Pipeline Conference,2008.

    • [64] SVANDAL A,KUZNETSOVA T,KVAMME B.Thermodynamic properties and phase transitions in the H2O/CO2/CH4 system[J].Fluid Phase Equilibria,2006,246(1/2):177-184.

    • [65] MAHGEREFTEH H,ATTI O.Modeling low‐temperature-induced failure of pressurized pipelines[J].AIChE Journal,2006,52(3):1 248-1 256.

    • [66] HUH C,CHO M I,HONG S,et al.Effect of impurities on depres‐ surization of CO2 pipeline transport[J].Energy Procedia,2014,63:2 583-2 588.

    • [67] CHO M I,HUH C,KANG S G,et al.Evaluation of the two phase pressure drop during the CO2-N2 mixture pipeline transport[J].Energy Procedia,2014,63:2 710-2 714.

    • [68] XIANG Y,XU M H,CHOI Y S.State-of-the-art overview of pipe‐ line steel corrosion in impure dense CO2 for CCS transportation:mechanisms and models[J].Corrosion Engineering,Science and Technology,2017,52(7):485-509.

    • [69] COLLIER J,PAPAVINASAM S,LI J,et al.Effect of impurities on the corrosion performance of steels in supercritical carbon diox‐ ide:optimization of experimental procedure[C].Orlando:Proceed‐ ings of the CORROSION,2013.

    • [70] GUO S Q,XU L N,ZHANG L,et al.Corrosion of alloy steels con‐ taining 2% chromium in CO2 environments[J].Corrosion Science,2012,63:246-258.

    • [71] CHOI Y S,NESIC S,YOUNG D.Effect of impurities on the corro‐ sion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments[J].Environmental Science & Technolo‐ gy,2010,44(23):9 233-9 238.

    • [72] SIM S,BIRBILIS N,COLE I S,et al.Internal corrosion of CO2 pipelines for carbon capture and storage[C].Orlando:Proceedings of the CORROSION,2013.

    • [73] AYELLO F,EVANS K J,SRIDHAR N,et al.Effect of liquid impu‐ rities on corrosion of carbon steel in supercritical CO2 [C].Cal‐ gary:Proceedings of the International Pipeline Conference,2010.

    • [74] HUA Y,BARKER R,NEVILLE A.Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J].International Journal of Greenhouse Gas Control,2014,31:48-60.

    • [75] RUHL A S,KRANZMANN A.Corrosion in supercritical CO2 by diffusion of flue gas acids and water[J].The Journal of Supercriti‐ cal Fluids,2012,68:81-86.

    • [76] ZHENG Y G,BROWN B,NEŠIĆS.Electrochemical study and modeling of H2S corrosion of mild steel[J].Corrosion,2014,70(4):351-365.

    • [77] KERMANI M B,MORSHED A.Carbon dioxide corrosion in oil and gas production-A compendium[J].Corrosion,2003,59(8):659-683.

    • [78] LI K Y,ZENG Y M,LUO J L.Influence of H2S on the general cor‐ rosion and sulfide stress cracking of pipelines steels for supercriti‐ cal CO2 transportation[J].Corrosion Science,2021,190:109639.

    • [79] HUA Y,BARKER R,NEVILLE A.The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercrit‐ ical CO2 environments[J].Applied Surface Science,2015,356:499-511.

    • [80] ZENG Y M,PANG X,SHI C,et al.Influence of impurities on cor‐ rosion performance of pipeline steels in supercritical carbon diox‐ ide[C].Dalas:Proceedings of the CORROSION,2015.

    • [81] LI C,XIANG Y,LI W G.Initial corrosion mechanism for API5L X80 steel in CO2/SO2-saturated aqueous solution within a CCUS system:Inhibition effect of SO2 impurity[J].Electrochimica Acta,2019,321:134663.

    • [82] ONYEBUCHI V E,KOLIOS A,HANAK D P,et al.A systematic review of key challenges of CO2 transport via pipelines[J].Renew‐ able and Sustainable Energy Reviews,2018,81:2 563-2 583.

    • [83] HUA Y,BARKER R,NEVILLE A.The influence of SO2 on the tol‐ erable water content to avoid pipeline corrosion during the trans‐ portation of supercritical CO2 [J].International Journal of Green‐ house Gas Control,2015,37:412-423.

    • [84] DUGSTAD A,HALSEID M,MORLAND B.Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines[J].Energy Procedia,2013,37:2 877-2 887.

    • [85] SIM S,BOCHER F,COLE I S,et al.Investigating the effect of wa‐ ter content in supercritical CO2 as relevant to the corrosion of car‐ bon capture and storage pipelines[J].Corrosion,2014,70(2):185-195.

    • [86] XIANG Y,WANG Z,YANG X X,et al.The upper limit of mois‐ ture content for supercritical CO2 pipeline transport[J].The Jour‐ nal of Supercritical Fluids,2012,67:14-21.

    • [87] SUN J B,SUN C,ZHANG G A,et al.Effect of O2 and H2S impuri‐ ties on the corrosion behavior of X65 steel in water-saturated su‐ percritical CO2 system[J].Corrosion Science,2016,107:31-40.

    • [88] WEI L,PANG X L,GAO K W.Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J].Corrosion Science,2016,103:132-144.

    • [89] LI C,XIANG Y,SONG C C,et al.Assessing the corrosion product scale formation characteristics of X80 steel in supercritical CO2-H2O binary systems with flue gas and NaCl impurities relevant to CCUS technology[J].The Journal of Supercritical Fluids,2019,146:107-119.

    • [90] OOSTERKAMP A,RAMSEN J.State-of-the-Art overview of CO2 pipeline transport with relevance to offshore pipelines[R].Nor‐ way:Research Council of Norway,Gassco and Shell Technology Norway,2008.

    • [91] MOHITPOUR M,SEEVAM P,BOTROS K K,et al.Pipeline trans‐ portation of carbon dioxide containing impurities[M].New York:ASME Press,2012.

    • [92] CARTER L D.Capture and storage of CO2 with other air pollutants [M].London:IEA Clean Coal Centre,2010:63.

    • [93] LIN T,LI Y X,ZHANG D T,et al.The evolution and size distribu‐ tion of solid CO2 Particles in Supercritical CO2 Releases[J].Indus‐ trial & Engineering Chemistry Research,2018,57(22):7 655-7 663.

    • [94] VITALI M,ZULIANI C,CORVARO F,et al.Risks and safety of CO2 transport via pipeline:A review of risk analysis and modeling approaches for accidental releases[J].Energies,2021,14(15):1-17.

    • [95] ELSHAHOMI A,LU C,MICHAL G,et al.Decompression wave speed in CO2 mixtures:CFD modelling with the GERG-2008 equation of state[J].Applied Energy,2015,140:20-32.

    • [96] MAHGEREFTEH H,ZHANG P,BROWN S.Modelling brittle fracture propagation in gas and dense-phase CO2 transportation pipelines[J].International Journal of Greenhouse Gas Control,2016,46:39-47.

    • [97] WITLOX H W M,HARPER M,OKE A.Modelling of discharge and atmospheric dispersion for carbon dioxide releases[J].Journal of Loss Prevention in the Process Industries,2009,22(6):795-802.

    • [98] 刘锋.超临界压力 CO2管道泄漏特征与扩散规律研究[D].北京:清华大学,2016:36-39.LIU Feng.Study on the leakage and diffusion behavior of super‐ critical pressure CO2 from pipelines[D].Beijing:Tsinghua Uni‐ versity,2016:36-39.

    • [99] 任科.超临界二氧化碳管道断裂理论和控制方法研究[D].西安:西安石油大学,2018:17-20.REN Ke.Study on theory and control method of supercritical car‐ bon dioxide pipe fracture[D].Xi’an:Xi’an Shiyou University,2018:17-20.

    • [100] GAURINA-MEĐIMUREC N,NOVAK-MAVAR K,MAJIĆM.Carbon capture and storage(CCS):Technology,projects and moni‐ toring review[J].Rudarsko-Geolosko-Naftni Zbornik,2018,33(2):1-15.

    • [101] MAVAR K N,GAURINA-MEĐIMUREC N,HRNČEVIĆL.Signif‐ icance of enhanced oil recovery in carbon dioxide emission reduc‐ tion[J].Sustainability,2021,13(4):1 800.

    • [102] 袁士义,王强,李军诗,等.注气提高采收率技术进展及前景展望[J].石油学报,2020,41(12):1 623-1 632.YUAN Shiyi,WANG Qiang,LI Junshi,et al.Technology progress and prospects of enhanced oil recovery by gas injection[J].Acta Petrolei Sinica,2020,41(12):1 623-1 632.

    • [103] 胡永乐,郝明强,陈国利.注二氧化碳提高石油采收率技术 [M].北京:石油工业出版社,2018:165-166.HU Yongle,HAO Mingqiang,CHEN Guoli,et al.Carbon dioxide injection for enhanced oil recovery technology[M].Beijing:Petro‐ leum Industry Press,2018:165-166.

    • [104] HOLT T,JENSEN J I,LINDEBERG E.Underground storage of CO2 in aquifers and oil reservoirs[J].Energy Conversion and Man‐ agement,1995,36(6/9):535-538.

    • [105] WANG Z,XU L J.Development status and prospects of CCSEOR technology in China[J].China Oil & Gas,2018,25(2):24-29.

    • [106] 张冰,梁凯强,王维波,等.鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J].非常规油气,2019,6(3):15-20.ZHANG Bing,LIANG Kaiqiang,WANG Weibo,et al.Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J].Unconventional Oil & Gas,2019,6(3):15-20.

    • [107] 王晓桥,马登龙,夏锋社,等.封储二氧化碳泄漏监测技术的研究进展[J].安全与环境工程,2020,27(2):23-34.WANG Xiaoqiao,MA Denglong,XIA Fengshe,et al.Research progress on leakage monitoring technology for CO2 storage[J].Safety and Environmental Engineering,2020,27(2):23-34.

    • [108] KLING G W,CLARK M A,WAGNER G N,et al.The 1986 Lake Nyos gas disaster in Cameroon,West Africa[J].Science,1987,236(4798):169-175.

    • [109] KOORNNEEF J,SPRUIJT M,MOLAG M,et al.Quantitative risk assessment of CO2 transport by pipelines-a review of uncertain‐ ties and their impacts[J].Journal of Hazardous Materials,2010,177:12-27.

    • [110] EVANS W C,KLING G W,TUTTLE M L,et al.Gas buildup in Lake Nyos,Cameroon:the recharge process and its consequences [J].Applied Geochemistry,1993,8(3):207-221.

    • [111] 郭晓璐,喻健良,闫兴清,等.超临界CO2管道泄漏特性研究进展[J].化工学报,2020,71(12):5 430-5 442.GUO Xiaolu,YU Jianliang,YAN Xingqing,et al.Research prog‐ ress on leakage characteristics of supercritical CO2 pipeline[J].CIESC Journal,2020,71(12):5 430-5 442.

    • [112] TYNE R L,BARRY P H,LAWSON M,et al.Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs[J].Nature,2021,600:670-674.

    • [113] ZHANG T,ZHANG W C,YANG R Z,et al.CO2 capture and stor‐ age monitoring based on remote sensing techniques:A review[J].Journal of Cleaner Production,2021,281:124409.

    • [114] 梁艾琳.星载遥感二氧化碳的验证、反演及应用[D].武汉:武汉大学,2018:26.LIANG Ailin.Research of space-borne remote sensing for carbon dioxide on validation,inversion and application[D].Wuhan:Wu‐ han University,2018:26.

    • [115] ZHANG L,REN B,HUANG H D,et al.CO2 EOR and storage in Jilin oilfield China:Monitoring program and preliminary results [J].Journal of Petroleum Science and Engineering,2015,125:1-12.

  • 参考文献

    • [1] 潘佳佳,李廉水.中国工业二氧化碳排放的影响因素分析[J] 环境科学与技术,2011,34(4):86-92.PAN Jiajia,LI Lianshui.Analysis of factors affecting industrial carbon dioxide emission in China[J].Environmental Science & Technology,2011,34(4):86-92.

    • [2] FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al.Glob‐ al carbon budget 2020[J].Earth System Science Data,2020,12(4):3 269-3 340.

    • [3] WILBERFORCE T,OLABI A G,SAYED E T,et al.Progress in carbon capture technologies[J].Science of the Total Environment,2021,761:143203.

    • [4] IEA.Global energy review 2020[R].Paris:IEA,2020.

    • [5] 蔡博峰,李琦,张贤,等.中国二氧化碳捕集与利用封存(CCUS)年度报告(2021)——中国CCUS路径研究[R].生态环境部环境规划院,2021:8.CAI Bofeng,LI Qi,ZHANG Xian,et al.China’s 2021 annual re‐ port of Carbon Dioxide Capture and Utilization Storage(CCUS)-CCUS pathway study in China[R].Chinese Academy of Environ‐ mental Planning,2021:8.

    • [6] 郝艳军,杨顶辉.二氧化碳地质封存问题和地震监测研究进展 [J].地球物理学进展,2012,27(6):2 369-2 383.HAO Yanjun,YANG Dinghui.Research progress of carbon diox‐ ide capture and geological sequestration problem and seismic monitoring research[J].Progress in Geophysics,2012,27(6):2 369-2 383.

    • [7] 王高峰,秦积舜,孙伟善.碳捕集、利用与封存案例分析及产业发展建议[M].北京:化学工业出版社,2020:16-18.WANG Gaofeng,QIN Jishun,SUN Weishan.CCUS cases analysis and industrial development suggestions[M].Beijing:Chemical In‐ dustry Press,2020:16-18.

    • [8] DAVISON J.Performance and costs of power plants with capture and storage of CO2[J].Energy,2007,32(7):1 163-1 176.

    • [9] LEUNG D Y C,CARAMANNA G,MAROTO-VALER M M.An overview of current status of carbon dioxide capture and storage technologies[J].Renewable and Sustainable Energy Reviews,2014,39(4):426-443.

    • [10] BAE J S,SU S.Macadamia nut shell-derived carbon composites for post combustion CO2 capture[J].International Journal of Greenhouse Gas Control,2013,19:174-182.

    • [11] FREDRIKSEN S B,JENS K J.Oxidative degradation of aqueous amine solutions of MEA,AMP,MDEA,Pz:A review[J].Energy Procedia,2013,37:1 770-1 777.

    • [12] XIANG Y,XIE W M,NI S Y,et al.Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO2 capture process:Effect of NO3 [J].Corrosion Science,2020,167:108521.

    • [13] XIANG Y,LONG Z W,LI C,et al.Neutralization and adsorption effects of various alkanolamines on the corrosion behavior of N80 steel in supercritical CO2 with impurities[J].Corrosion,2019,75(8):999-1 011.

    • [14] 江文敏.化学吸收法捕集二氧化碳工艺的模拟及实验研究 [D].杭州:浙江大学,2015:26-28.JIANG Wenmin.Simulation and experimental research of CO2 chemical absorption system[D].Hangzhou:Zhejiang University,2015:26-28.

    • [15] 杨珍珍.功能化离子液体在二氧化碳捕集、活化及化学转化中的应用[D].天津:南开大学,2013:8.YANG Zhenzhen.Carbon dioxide capture with activation and chemical transformation by task-specific ionic liquids[D].Tian‐ jin:Nankai University,2013:8.

    • [16] 张卫风,周武,王秋华.相变吸收捕集烟气中CO2技术的发展现状[J].化工进展,2021,41(4):2 090-2 101.ZHANG Weifeng,ZHOU Wu,WANG Qiuhua.Recent develop‐ ments of phase-change absorption technology for CO2 capture from flue gas[J].Chemical Industry and Engineering Progress,2021,41(4):2 090-2 101.

    • [17] SANCHEZ-FERNANDEZ E,HEFFERNAN K,VAN DER HAM L,et al.Analysis of process configurations for CO2 capture by pre‐ cipitating amino acid solvents[J].Industrial & Engineering Chem‐ istry Research,2014,53(6):2 348-2 361.

    • [18] WAHBY A,SILVESTRE-ALBERO J,SEPULVEDA-ESCRIBA‐ NO A,et al.CO2 adsorption on carbon molecular sieves[J].Micro‐ porous and Mesoporous Materials,2012,164:280-287.

    • [19] WIHEEB A D,HELWANI Z,KIM J,et al.Pressure swing adsorp‐ tion technologies for carbon dioxide capture[J].Separation & Puri‐ fication Reviews,2016,45(2):108-121.

    • [20] KHALILPOUR R,MUMFORD K,ZHAI H B,et al.Membranebased carbon capture from flue gas:a review[J].Journal of Clean‐ er Production,2015,103:286-300.

    • [21] 晏水平,方梦祥,张卫风,等.基于膜吸收技术的烟气 CO2分离工艺设计与经济性分析[J].动力工程,2007,27(3):415-421.YAN Shuiping,FANG Mengxiang,ZHANG Weifeng,et al.Engi‐ neering design and economic analysis of CO2 sequestration from flue gas by using membrane absorption techniques[J].Journal of Chinese Society of Power Engineering,2007,27(3):415-421.

    • [22] DAVIDSON O,METZ B.Special report on carbon dioxide capture and storage[J].International Panel on Climate Change,Geneva,Switzerland,2005,7(13):1-100.

    • [23] DAI Z D,NOBLE R D,GIN D L,et al.Combination of ionic liq‐ uids with membrane technology:A new approach for CO2 separa‐ tion[J].Journal of Membrane Science,2016,497:1-20.

    • [24] GIN D L,NOBLE R D.Designing the next generation of chemical separation membranes[J].Science,2011,332(6030):674-676.

    • [25] 陈新明,史绍平,闫姝,等.燃烧前CO2捕集技术在IGCC发电中的应用[J].化工学报,2014,65(8):3 193-3 201.CHEN Xinming,SHI Shaoping,YAN Shu,et al.Application of CO2 capture technology before burning in IGCC power generation system[J].CIESC Journal,2014,65(8):3 193-3 201.

    • [26] BURT S S,BAXTER A,BENCE C,et al.Cryogenic CO2 capture for improved efficiency at reduced cost[C].Salt Lake City:Pro‐ ceedings of the AICHE,2010.

    • [27] WANG X L,CHEN G J,YANG L Y,et al.Study on the recovery of hydrogen from refinery(hydrogen+methane)gas mixtures using hy‐ drate technology[J].Science in China Series B:Chemistry,2008,51(2):171-178.

    • [28] FAN S,WANG Y,LANG X.CO2 capture in form of clathrate hy‐ drate-problem and practice[C].Edinburgh:Proceedings of the 7th International Conference on Gas Hydrate,2011.

    • [29] BABU P,KUMAR R,LINGA P.Progress on the hydrate based gas separation(HBGS)process for carbon dioxide capture[C].San Francisco:Proceedings of the AICHE Annual Meeting,2013.

    • [30] SUN D,ENGLEZOS P.Storage of CO2 in a partially water saturat‐ ed porous medium at gas hydrate formation conditions[J].Interna‐ tional Journal of Greenhouse Gas Control,2014,25:1-8.

    • [31] NAZIR S M,CLOETE J H,CLOETE S,et al.Efficient hydrogen production with CO2 capture using gas switching reforming[J].En‐ ergy,2019,185:372-385.

    • [32] 柳康,许世森,李广宇,等.基于整体煤气化联合循环的燃烧前 CO2捕集工艺及系统分析[J].化工进展,2018,37(12):4 897-4 907.LIU Kang,XU Shisen,LI Guangyu,et al.Technological process and system analysis of pre-combustion CO2 capture based on IGCC[J].Chemical Industry and Engineering Progress,2018,37(12):4 897-4 907.

    • [33] BUHRE B J P,ELLIOTT L K,SHENG C D,et al.Oxy-fuel com‐ bustion technology for coal-fired power generation[J].Progress in Energy and Combustion Science,2005,31(4):283-307.

    • [34] ABRAHAM B M,ASBURY J G,LYNCH E P,et al.Coal-oxygen process provides CO2 for enhanced recovery[J].Oil & Gas Jour‐ nal,1982,80(11):173-184.

    • [35] 王俊,李延兵,廖海燕,等.浅谈国外煤粉富氧燃烧技术发展 [J].华北电力技术,2014,8(2):56-61.WANG Jun,LI Yanbing,LIAO Haiyan,et al.Brief discussion on technical development of pulverized coal oxyfuel combustion abroad[J].North China Electric Power,2014,8(2):56-61.

    • [36] 孔红兵,柳朝晖,陈胜,等.600 MW 富氧燃烧系统过程建模及优化[J].中国电机工程学报,2012,32(2):53-60.KONG Hongbing,LIU Zhaohui,CHEN Sheng,et al.Process simu‐ lation and optimization of a 600 MW O2/CO2 power plant[J].Pro‐ ceedings of the CSEE,2012,32(2):53-60.

    • [37] ADANEZ J,ABAD A,GARCIA-LABIANO F,et al.Progress in chemical-looping combustion and reforming technologies[J].Progress in Energy and Combustion Science,2012,38(2):215-282.

    • [38] LI F X,LUO S W,SUN Z C,et al.Role of metal oxide support in redox reactions of iron oxide for chemical looping applications:ex‐ periments and density functional theory calculations[J].Energy & Environmental Science,2011,4(9):3 661-3 667.

    • [39] 王金星,孙宇航.化学链燃烧技术的研究进展综述[J].华北电力大学学报:自然科学版,2019,46(5):101-110.WANG Jinxing,SUN Yuhang.Review of chemical-looping com‐ bustion technology research[J].Journal of North China Electric Power University:Natural Science Edition,2019,46(5):101-110.

    • [40] RUBEL A,LIU K L,NEATHERY J,et al.Oxygen carriers for chemical looping combustion of solid fuels[J].Fuel,2009,88(5):876-884.

    • [41] XIAO R,SONG Q L.Characterization and kinetics of reduction of CaSO4 with carbon monoxide for chemical-looping combustion [J].Combustion and Flame,2011,158(12):2 524-2 539.

    • [42] LEION H,LYNGFELT A,JOHANSSON M,et al.The use of il‐ menite as an oxygen carrier in chemical-looping combustion[J].Chemical Engineering Research and Design,2008,86(9):1 017-1 026.

    • [43] 郭磊,赵海波,马琎晨,等.批量制备Fe2O3/Al2O3氧载体及褐煤化学链燃烧实验研究[J].中国电机工程学报,2013,33(17):57-63.GUO Lei,ZHAO Haibo,MA Jinchen,et al.Batch preparation of Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of lignite[J].Proceedings of the CSEE,2013,33(17):57-63.

    • [44] SHEN L H,WU J H,GAO Z P,et al.Characterization of chemical looping combustion of coal in a 1 kWth reactor with a nickelbased oxygen carrier[J].Combustion and Flame,2010,157(5):934-942.

    • [45] 郝建刚,吴家桦,王雷,等.基于Fe基载氧体的生物质化学链燃烧试验研究[J].锅炉技术,2010,41(2):65-70.HAO Jiangang,WU Jiahua,WANG Lei,et al.Experiments on chemical looping combustion of biomass with a Fe2O3 based oxy‐ gen carrier[J].Boiler Technology,2010,41(2):65-70.

    • [46] BISCHI A,LANGØRGENØ,MORIN J X,et al.Hydrodynamic via‐ bility of chemical looping processes by means of cold flow model investigation[J].Applied Energy,2012,97:201-216.

    • [47] 徐婷,杨震,周体尧,等.中美二氧化碳捕集和驱油发展状况分析[J].国际石油经济,2016,24(4):12-16,28.XU Ting,YANG Zhen,ZHOU Tiyao,et al.Carbon capture and storage(CCS)and CO2 flooding technology development in the United States and China[J].International Petroleum Economics,2016,24(4):12-16,28.

    • [48] 林海周,杨晖,罗海中,等.烟气二氧化碳捕集胺类吸收剂研究进展[J].南方能源建设,2019,6(1):16-21.LIN Haizhou,YANG Hui,LUO Haizhong,et al.Research prog‐ ress on amine absorbent for CO2 capture from flue gas[J].South‐ ern Energy Construction,2019,6(1):16-21.

    • [49] 刘洋.燃煤电厂碳捕获与封存技术现状及其应用前景展望[J].能源环境保护,2017,31(3):1-5.LIU Yang.Current status of carbon capture and storage technology in coal-fired power plants and its application prospects[J].Ener‐ gy Environmental Protection,2017,31(3):1-5.

    • [50] ZHAO Y J,DUAN Y Y,LIU Q,et al.Life cycle energy-economyenvironmental evaluation of coal-based CLC power plant vs.IGCC,USC and oxy-combustion power plants with/without CO2 capture[J].Journal of Environmental Chemical Engineering,2021,9(5):106121.

    • [51] HOFFMANN S,BARTLETT M,FINKENRATH M,et al.Perfor‐ mance and cost analysis of advanced gas turbine cycles with pre‐ combustion CO2 capture[J].Journal of Engineering for Gas Tur‐ bines and Power,2009,131(2):61-67.

    • [52] 陆诗建.碳捕集、利用与封存技术[M].北京:中国石化出版社,2020:13-16.LU Shijian.Carbon capture,utilization and storage[M].Beijing:Chemical Industry Press,2020:13-16.

    • [53] 骆仲泱,方梦祥,李明远.二氧化碳捕集封存和利用技术[M].北京:石油工业出版社,2012:28.LUO Zhongyang,FANG Mengxiang,LI Mingyuan.Carbon cap‐ ture,utilization and storage[M].Beijing:Petroleum Industry Press,2012:28.

    • [54] 蔡博峰,李琦,林千果,等.中国二氧化碳捕集、利用与封存(CCUS)报告(2019)[R].生态环境部环境规划院气候变化与环境政策研究中心,2020:18.CAI Bofeng,LI Qi,LIN Qianguo,et al.China’s 2019 annual re‐ port of Carbon Dioxide Capture and Utilization Storage(CCUS)[R].Research Center of Climate Change and Environmental Poli‐ cy,Chinese Academy of Environmental Planning,2020:18.

    • [55] BENSON S M,ORR F M.Carbon dioxide capture and storage[J].MRS Bulletin,2008,33(4):303-305.

    • [56] WHITE C M,SMITH D H,JONES K L,et al.Sequestration of car‐ bon dioxide in coal with enhanced coalbed methane recovery-a re‐ view[J].Energy & Fuels,2005,19(3):659-724.

    • [57] HOWARD Herzog K S,PRADEEP Dadhich,JAMES Dooley,et al.IPCC special report on carbon dioxide capture and storage[R].IPCC,2005:340-362.

    • [58] GHG I.CO2 pipeline infrastructure:An analysis of global challeng‐ es and opportunities[J].Final Report for International Energy Agency Greenhouse Gas Programme,2010,16(5):59-74.

    • [59] 亓冠玲.齐鲁二化厂至正理庄油田高89地区 CO2输送管道及液化分离工程方案研究[D].青岛:中国石油大学(华东),2014:36.QI Guanling.Research on CO2 pipeline and liquid separation proj‐ ect of Qilu Petrochemical to Zhenglizhuang oilfield[D].Qingdao:China University of Petroleum(East China),2014:36.

    • [60] 中国首个百万吨级碳捕集利用与封存项目启动[J].中国氯碱,2021,(7):28.China’s first million-ton carbon capture,utilization and storage project launched[J].China Chlor-Alkali,2021,(7):28.

    • [61] 蒋秀,屈定荣,刘小辉.超临界CO2管道输送与安全[J].油气储运,2013,32(8):809-813.JIANG Xiu,QU Dingrong,LIU Xiaohui.Supercritical CO2 pipe‐ line transportation and safety[J].Oil & Gas Storage and Transpor‐ tation,2013,32(8):809-813.

    • [62] 颜开,向勇,陈晓玲.CO2海洋封存系统管道腐蚀特性研究进展 [J].腐蚀科学与防护技术,2019,31(6):672-680.YAN Kai,XIANG Yong,CHEN Xiaoling.Investigation on corro‐ sion characteristics of pipeline in CO2 ocean storage system[J].Corrosion Science and Protection Technology,2019,31(6):672-680.

    • [63] SEEVAM P N,RACE J M,DOWNIE M J,et al.Transporting the next generation of CO2 for carbon,capture and storage:the impact of impurities on supercritical CO2 pipelines[C].Calgary:Proceed‐ ings of the International Pipeline Conference,2008.

    • [64] SVANDAL A,KUZNETSOVA T,KVAMME B.Thermodynamic properties and phase transitions in the H2O/CO2/CH4 system[J].Fluid Phase Equilibria,2006,246(1/2):177-184.

    • [65] MAHGEREFTEH H,ATTI O.Modeling low‐temperature-induced failure of pressurized pipelines[J].AIChE Journal,2006,52(3):1 248-1 256.

    • [66] HUH C,CHO M I,HONG S,et al.Effect of impurities on depres‐ surization of CO2 pipeline transport[J].Energy Procedia,2014,63:2 583-2 588.

    • [67] CHO M I,HUH C,KANG S G,et al.Evaluation of the two phase pressure drop during the CO2-N2 mixture pipeline transport[J].Energy Procedia,2014,63:2 710-2 714.

    • [68] XIANG Y,XU M H,CHOI Y S.State-of-the-art overview of pipe‐ line steel corrosion in impure dense CO2 for CCS transportation:mechanisms and models[J].Corrosion Engineering,Science and Technology,2017,52(7):485-509.

    • [69] COLLIER J,PAPAVINASAM S,LI J,et al.Effect of impurities on the corrosion performance of steels in supercritical carbon diox‐ ide:optimization of experimental procedure[C].Orlando:Proceed‐ ings of the CORROSION,2013.

    • [70] GUO S Q,XU L N,ZHANG L,et al.Corrosion of alloy steels con‐ taining 2% chromium in CO2 environments[J].Corrosion Science,2012,63:246-258.

    • [71] CHOI Y S,NESIC S,YOUNG D.Effect of impurities on the corro‐ sion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments[J].Environmental Science & Technolo‐ gy,2010,44(23):9 233-9 238.

    • [72] SIM S,BIRBILIS N,COLE I S,et al.Internal corrosion of CO2 pipelines for carbon capture and storage[C].Orlando:Proceedings of the CORROSION,2013.

    • [73] AYELLO F,EVANS K J,SRIDHAR N,et al.Effect of liquid impu‐ rities on corrosion of carbon steel in supercritical CO2 [C].Cal‐ gary:Proceedings of the International Pipeline Conference,2010.

    • [74] HUA Y,BARKER R,NEVILLE A.Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J].International Journal of Greenhouse Gas Control,2014,31:48-60.

    • [75] RUHL A S,KRANZMANN A.Corrosion in supercritical CO2 by diffusion of flue gas acids and water[J].The Journal of Supercriti‐ cal Fluids,2012,68:81-86.

    • [76] ZHENG Y G,BROWN B,NEŠIĆS.Electrochemical study and modeling of H2S corrosion of mild steel[J].Corrosion,2014,70(4):351-365.

    • [77] KERMANI M B,MORSHED A.Carbon dioxide corrosion in oil and gas production-A compendium[J].Corrosion,2003,59(8):659-683.

    • [78] LI K Y,ZENG Y M,LUO J L.Influence of H2S on the general cor‐ rosion and sulfide stress cracking of pipelines steels for supercriti‐ cal CO2 transportation[J].Corrosion Science,2021,190:109639.

    • [79] HUA Y,BARKER R,NEVILLE A.The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercrit‐ ical CO2 environments[J].Applied Surface Science,2015,356:499-511.

    • [80] ZENG Y M,PANG X,SHI C,et al.Influence of impurities on cor‐ rosion performance of pipeline steels in supercritical carbon diox‐ ide[C].Dalas:Proceedings of the CORROSION,2015.

    • [81] LI C,XIANG Y,LI W G.Initial corrosion mechanism for API5L X80 steel in CO2/SO2-saturated aqueous solution within a CCUS system:Inhibition effect of SO2 impurity[J].Electrochimica Acta,2019,321:134663.

    • [82] ONYEBUCHI V E,KOLIOS A,HANAK D P,et al.A systematic review of key challenges of CO2 transport via pipelines[J].Renew‐ able and Sustainable Energy Reviews,2018,81:2 563-2 583.

    • [83] HUA Y,BARKER R,NEVILLE A.The influence of SO2 on the tol‐ erable water content to avoid pipeline corrosion during the trans‐ portation of supercritical CO2 [J].International Journal of Green‐ house Gas Control,2015,37:412-423.

    • [84] DUGSTAD A,HALSEID M,MORLAND B.Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines[J].Energy Procedia,2013,37:2 877-2 887.

    • [85] SIM S,BOCHER F,COLE I S,et al.Investigating the effect of wa‐ ter content in supercritical CO2 as relevant to the corrosion of car‐ bon capture and storage pipelines[J].Corrosion,2014,70(2):185-195.

    • [86] XIANG Y,WANG Z,YANG X X,et al.The upper limit of mois‐ ture content for supercritical CO2 pipeline transport[J].The Jour‐ nal of Supercritical Fluids,2012,67:14-21.

    • [87] SUN J B,SUN C,ZHANG G A,et al.Effect of O2 and H2S impuri‐ ties on the corrosion behavior of X65 steel in water-saturated su‐ percritical CO2 system[J].Corrosion Science,2016,107:31-40.

    • [88] WEI L,PANG X L,GAO K W.Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J].Corrosion Science,2016,103:132-144.

    • [89] LI C,XIANG Y,SONG C C,et al.Assessing the corrosion product scale formation characteristics of X80 steel in supercritical CO2-H2O binary systems with flue gas and NaCl impurities relevant to CCUS technology[J].The Journal of Supercritical Fluids,2019,146:107-119.

    • [90] OOSTERKAMP A,RAMSEN J.State-of-the-Art overview of CO2 pipeline transport with relevance to offshore pipelines[R].Nor‐ way:Research Council of Norway,Gassco and Shell Technology Norway,2008.

    • [91] MOHITPOUR M,SEEVAM P,BOTROS K K,et al.Pipeline trans‐ portation of carbon dioxide containing impurities[M].New York:ASME Press,2012.

    • [92] CARTER L D.Capture and storage of CO2 with other air pollutants [M].London:IEA Clean Coal Centre,2010:63.

    • [93] LIN T,LI Y X,ZHANG D T,et al.The evolution and size distribu‐ tion of solid CO2 Particles in Supercritical CO2 Releases[J].Indus‐ trial & Engineering Chemistry Research,2018,57(22):7 655-7 663.

    • [94] VITALI M,ZULIANI C,CORVARO F,et al.Risks and safety of CO2 transport via pipeline:A review of risk analysis and modeling approaches for accidental releases[J].Energies,2021,14(15):1-17.

    • [95] ELSHAHOMI A,LU C,MICHAL G,et al.Decompression wave speed in CO2 mixtures:CFD modelling with the GERG-2008 equation of state[J].Applied Energy,2015,140:20-32.

    • [96] MAHGEREFTEH H,ZHANG P,BROWN S.Modelling brittle fracture propagation in gas and dense-phase CO2 transportation pipelines[J].International Journal of Greenhouse Gas Control,2016,46:39-47.

    • [97] WITLOX H W M,HARPER M,OKE A.Modelling of discharge and atmospheric dispersion for carbon dioxide releases[J].Journal of Loss Prevention in the Process Industries,2009,22(6):795-802.

    • [98] 刘锋.超临界压力 CO2管道泄漏特征与扩散规律研究[D].北京:清华大学,2016:36-39.LIU Feng.Study on the leakage and diffusion behavior of super‐ critical pressure CO2 from pipelines[D].Beijing:Tsinghua Uni‐ versity,2016:36-39.

    • [99] 任科.超临界二氧化碳管道断裂理论和控制方法研究[D].西安:西安石油大学,2018:17-20.REN Ke.Study on theory and control method of supercritical car‐ bon dioxide pipe fracture[D].Xi’an:Xi’an Shiyou University,2018:17-20.

    • [100] GAURINA-MEĐIMUREC N,NOVAK-MAVAR K,MAJIĆM.Carbon capture and storage(CCS):Technology,projects and moni‐ toring review[J].Rudarsko-Geolosko-Naftni Zbornik,2018,33(2):1-15.

    • [101] MAVAR K N,GAURINA-MEĐIMUREC N,HRNČEVIĆL.Signif‐ icance of enhanced oil recovery in carbon dioxide emission reduc‐ tion[J].Sustainability,2021,13(4):1 800.

    • [102] 袁士义,王强,李军诗,等.注气提高采收率技术进展及前景展望[J].石油学报,2020,41(12):1 623-1 632.YUAN Shiyi,WANG Qiang,LI Junshi,et al.Technology progress and prospects of enhanced oil recovery by gas injection[J].Acta Petrolei Sinica,2020,41(12):1 623-1 632.

    • [103] 胡永乐,郝明强,陈国利.注二氧化碳提高石油采收率技术 [M].北京:石油工业出版社,2018:165-166.HU Yongle,HAO Mingqiang,CHEN Guoli,et al.Carbon dioxide injection for enhanced oil recovery technology[M].Beijing:Petro‐ leum Industry Press,2018:165-166.

    • [104] HOLT T,JENSEN J I,LINDEBERG E.Underground storage of CO2 in aquifers and oil reservoirs[J].Energy Conversion and Man‐ agement,1995,36(6/9):535-538.

    • [105] WANG Z,XU L J.Development status and prospects of CCSEOR technology in China[J].China Oil & Gas,2018,25(2):24-29.

    • [106] 张冰,梁凯强,王维波,等.鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J].非常规油气,2019,6(3):15-20.ZHANG Bing,LIANG Kaiqiang,WANG Weibo,et al.Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J].Unconventional Oil & Gas,2019,6(3):15-20.

    • [107] 王晓桥,马登龙,夏锋社,等.封储二氧化碳泄漏监测技术的研究进展[J].安全与环境工程,2020,27(2):23-34.WANG Xiaoqiao,MA Denglong,XIA Fengshe,et al.Research progress on leakage monitoring technology for CO2 storage[J].Safety and Environmental Engineering,2020,27(2):23-34.

    • [108] KLING G W,CLARK M A,WAGNER G N,et al.The 1986 Lake Nyos gas disaster in Cameroon,West Africa[J].Science,1987,236(4798):169-175.

    • [109] KOORNNEEF J,SPRUIJT M,MOLAG M,et al.Quantitative risk assessment of CO2 transport by pipelines-a review of uncertain‐ ties and their impacts[J].Journal of Hazardous Materials,2010,177:12-27.

    • [110] EVANS W C,KLING G W,TUTTLE M L,et al.Gas buildup in Lake Nyos,Cameroon:the recharge process and its consequences [J].Applied Geochemistry,1993,8(3):207-221.

    • [111] 郭晓璐,喻健良,闫兴清,等.超临界CO2管道泄漏特性研究进展[J].化工学报,2020,71(12):5 430-5 442.GUO Xiaolu,YU Jianliang,YAN Xingqing,et al.Research prog‐ ress on leakage characteristics of supercritical CO2 pipeline[J].CIESC Journal,2020,71(12):5 430-5 442.

    • [112] TYNE R L,BARRY P H,LAWSON M,et al.Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs[J].Nature,2021,600:670-674.

    • [113] ZHANG T,ZHANG W C,YANG R Z,et al.CO2 capture and stor‐ age monitoring based on remote sensing techniques:A review[J].Journal of Cleaner Production,2021,281:124409.

    • [114] 梁艾琳.星载遥感二氧化碳的验证、反演及应用[D].武汉:武汉大学,2018:26.LIANG Ailin.Research of space-borne remote sensing for carbon dioxide on validation,inversion and application[D].Wuhan:Wu‐ han University,2018:26.

    • [115] ZHANG L,REN B,HUANG H D,et al.CO2 EOR and storage in Jilin oilfield China:Monitoring program and preliminary results [J].Journal of Petroleum Science and Engineering,2015,125:1-12.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告