en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨勇(1971—),男,河南遂平人,正高级工程师,博士,从事油气田开发研究及管理工作。E-mail:yangyong.slyt@sinopec.com。

中图分类号:TE357.7

文献标识码:A

文章编号:1009-9603(2023)02-036-08

DOI:10.13673/j.cnki.cn37-1359/te.202209043

参考文献 1
刘小波.CO2混相驱技术在特低渗透滩坝砂油藏的开发实践及效果评价[J].油气地质与采收率,2020,27(3):113-119.LIU Xiaobo.Application and evaluation of CO2 miscible flooding in extra-low permeability beach-bar sand reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(3):113-119.
参考文献 2
李金志.胜利油田低渗透油藏 CO2混相驱合理注采井距研究 [J].油气地质与采收率,2020,27(3):64-69.LI Jinzhi.Reasonable well spacing for CO2 miscible flooding in low-permeability reservoirs of Shengli Oilfield[J].Petroleum Ge⁃ ology and Recovery Efficiency,2020,27(3):64-69.
参考文献 3
束青林,郭迎春,孙志刚,等.特低渗透油藏渗流机理研究及应用[J].油气地质与采收率,2016,23(5):58-64.SHU Qinglin,GUO Yingchun,SUN Zhigang,et al.Research and application of percolation mechanism in extro-low permeability oil reservoir[J].Petroleum Geology and Recovery Efficiency,2016,23(5):58-64.
参考文献 4
阳晓燕.非均质油藏水驱开发效果研究[J].特种油气藏,2019,26(2):152-156.YANG Xiaoyan.Waterflood development effect study of heteroge⁃ neous reservoir[J].Special Oil & Gas Reservoirs,2019,26(2):152-156.
参考文献 5
AZZOLINA N A,NAKLES D V,GORECKI C D,et al.CO2 storage associated with CO2 enhanced oil recovery:A statistical analysis of historical operations[J].International Journal of Greenhouse Gas Control,2015,37(3):384-397.
参考文献 6
龙冕,齐桂雪,冯超林.二氧化碳混相与非混相驱油技术研究进展[J].中外能源,2018,23(2):18-26.LONG Mian,QI Guixue,FENG Chaolin.Research progress of mis⁃ cible and immiscible carbon dioxide flooding[J].Sino-Global En⁃ ergy,2018,23(2):18-26.
参考文献 7
杨勇.胜利油田特低渗透油藏CO2驱技术研究与实践[J].油气地质与采收率,2020,27(1):11-19.YANG Yong.Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(1):11-19.
参考文献 8
李玉丹,董平川,张荷,等.低渗透油藏渗透率及启动压力梯度应力敏感性分析[J].油气地质与采收率,2016,23(6):57-63.LI Yudan,DONG Pingchuan,ZHANG He,et al.Stress sensitivity analysis of permeability and threshold pressure gradient in lowpermeability reservoir[J].Petroleum Geology and Recovery Effi⁃ ciency,2016,23(6):57-63.
参考文献 9
熊伟,雷群,刘先贵,等.低渗透油藏拟启动压力梯度[J].石油勘探与开发,2009,36(2):232-236. XIONG Wei,LEI Qun,LIU Xiangui,et al.Pseudo threshold pres⁃ sure gradient to flow for low permeability reservoirs[J].Petroleum Exploration and Development,2009,36(2):232-236.
参考文献 10
曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.Migration law of CO2-crude oil miscible zone and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.
参考文献 11
张东,刘显太,刘彦东,等.CO2驱合理注入量计算方法[J].油气地质与采收率,2020,27(1):107-112.ZHANG Dong,LIU Xiantai,LIU Yandong,et al.Calculation meth⁃ od of reasonable injection amount of CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(1):107-112.
参考文献 12
史云清,贾英,潘伟义,等.致密低渗透气藏注 CO2提高采收率潜力评价[J].天然气工业,2017,37(3):62-69.SHI Yunqing,JIA Ying,PAN Weiyi,et al.Potential evaluation on CO2-EGR in tight and low-permeability reservoirs[J].Natural Gas Industry,2017,37(3):62-69.
参考文献 13
BIKKINA P,WAN Jiamin,KIM Y,et al.Influence of wettability and permeability heterogeneity on miscible CO2 flooding efficiency [J].Fuel,2016,166:219-226.
参考文献 14
FIROUZ A Q,TORABI F.Utilization of carbon dioxide and meth⁃ ane in huff-and-puff injection scheme to improve heavy oil recov⁃ ery[J].Fuel,2014,117:966-973.
参考文献 15
PU Wanfen,WEI Bing,JIN Fayang,et al.Experimental investiga⁃ tion of CO2 huff-and-puff process for enhancing oil recovery in tight reservoirs[J].Chemical Engineering Research and Design,2016,111:269-276.
参考文献 16
于友,魏建光,张宝忠,等.低渗透油藏常规水驱与二氧化碳驱井距界限研究[J].特种油气藏,2021,28(2):120-125.YU You,WEI Jianguang,ZHANG Baozhong,et al.Study on well spacing limit for conventional water flooding and carbon dioxide flooding in low-permeability reservoirs[J].Special Oil & Gas Res⁃ ervoirs,2021,28(2):120-125.
参考文献 17
李阳.低渗透油藏CO2驱提高采收率技术进展及展望[J].油气地质与采收率,2020,27(1):1-10.LI Yang.Technical advancement and prospect for CO2 flooding en⁃ hanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.
参考文献 18
张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.
参考文献 19
周思宾.红河致密砂岩油藏注CO2可行性室内评价研究[J].石油化工高等学校学报,2019,32(1):41-46.ZHOU Sibin.Feasibility study of CO2 flooding in Honghe tight oil reservoir[J].Journal of Petrochemical Universities,2019,32(1):41-46.
参考文献 20
杨晶.CO2驱油非达西渗流理论模型研究及应用[D].大庆:东北石油大学,2011.YANG Jing.Research and application on Non-Darcy flow theori⁃ cal model of CO2 flooding[D].Daqing:Northeast Petroleum Uni⁃ versity,2011.
参考文献 21
章星,杨胜来,文博,等.低渗油藏 CO2混相驱启动压力梯度实验研究[J].石油实验地质,2013,35(5):583-586.ZHANG Xing,YANG Shenglai,WEN Bo,et al.Experimental study on threshold pressure gradient of CO2 miscible flooding in low permeability reservoir[J].Petroleum Geology & Experiment,2013,35(5):583-586.
参考文献 22
白素.榆树林油田 CO2驱非线性渗流数值模拟研究[D].大庆:东北石油大学,2011.BAI Su.Numerical simulation research on Non-Darcy flow of CO2 flooding in Yushulin Oilfield[D].Daqing:Northeast Petroleum University,2011.
参考文献 23
曹绪龙,吕广忠,王杰,等.滩坝砂特低渗透油藏 CO2驱油技术及应用[J].油气藏评价与开发,2019,9(3):41-46.CAO Xulong,LÜ Guangzhong,WANG Jie,et al.Technology and application of CO2 flooding in ultra-low permeability beach-bar sand reservoir[J].Reservoir Evaluation and Development,2019,9(3):41-46.
参考文献 24
杨钊.大庆外围低渗透油田分类方法及开发对策研究[D].大庆:东北石油大学,2010.YANG Zhao.Study on Daqing peripheral low permeability reser⁃ voir classification method and development countermeasures[D].Daqing:Northeast Petroleum University,2010.
目录contents

    摘要

    特低渗透油藏储层物性差,流体流动困难,常表现出非线性渗流特征。以往非线性渗流规律的研究以水驱为主,对CO2驱的研究较少。针对胜利油田高89地区特低渗透油藏CO2驱非线性渗流规律认识不足的问题,开展了渗流规律实验研究,揭示了CO2与原油相互作用对原油渗流特征的影响规律,建立了不同渗透率下CO2驱最小启动压力梯度计算公式及CO2驱非线性渗流规律表征模型。结果表明:特低渗透油藏CO2驱存在启动压力,原油最小启动压力梯度与流度呈良好的幂函数关系,随着流度的增加,启动压力梯度显著降低;CO2驱渗流曲线呈现“曲线段+直线段”的两段式特征,直线段的流速与压力梯度呈良好的线性关系,曲线段的流速与压力梯度呈良好的二次函数关系;CO2溶于原油后有显著的膨胀降黏效果,使得原油最小启动压力梯度明显降低,原油渗流能力增强,渗流曲线非线性段变短。

    Abstract

    The ultra-low permeability reservoirs have poor physical properties,which leads to difficult fluid flow,often showing the characteristics of non-linear flow. In the past,the study on non-linear flow laws focused more on water flooding but less on CO2 flooding. Considering the insufficient understanding of the non-linear flow laws of CO2 flooding in ultra-low permeability reservoirs in Gao89 area of Shengli Oilfield,an experimental study in this regard was carried out to reveal the influence of the interaction between CO2 and crude oil on the flow characteristics of crude oil. The calculation formula of the minimum threshold pressure gradient and the non-linear flow characteristic representation model of CO2 flooding under different permeability were constructed. The results show that there is threshold pressure in CO2 flooding in the ultra-low permeability reservoirs,and the minimum threshold pressure gradient of crude oil has a good power function relationship with fluidity. With the increase in fluidity,the threshold pressure gradient decreases significantly. In addition,the flow curve of CO2 flooding shows the characteristics of two stages,i.e.,non-linear stage+linear stage. The flow velocity at the lin- ear stage has a good linear relationship with the pressure gradient,and that at the non-linear stage has a good quadratic function relationship with the pressure gradient. CO2 dissolved in crude oil has a significant swelling and viscosity reduc- tion effect,which drastically lowers the minimum threshold pressure gradient of crude oil and enhances the flow capability of crude oil,and the non-linear stage in the flow curve is shortened.

  • 胜利油田特低渗透油藏储量丰富,目前原油探明地质储量高达 12.2×108 t [1],占胜利油田原油总探明地质储量的 22%[2],开发前景广阔。由于特低渗透油藏孔隙结构复杂、渗透率低、孔隙度低、非均质性强、渗流阻力大,常规水驱面临“水井注不进、油井采不出、采油速度低、采收率低”的技术难题[3-4],严重影响该类油藏的开发效果。因此,对于特低渗透油藏,迫切需要研究新的驱油剂和驱油方式。

  • CO2易溶于原油且能与原油发生混相,可有效增加原油流动能力,扩大气驱波及体积,从而大幅提高原油采收率[5-7],且同时可实现 CO2地质封存,兼具良好的经济效益和社会效益。因此,CO2作为良好的驱油溶剂,在特低渗透油藏开发方面具有非常好的应用前景。

  • 特低渗透油藏复杂的孔隙结构使得原油流动存在启动压力梯度,渗流规律异常复杂,常表现出非线性渗流特征[8-9]。启动压力梯度的存在使得特低渗透油藏流体流动和压力传播规律与中、高渗透油藏存在显著差异,进而导致该类油藏 CO2驱开发效果受到很大的影响。目前,中外对 CO2驱的研究主要集中在驱油机理、技术政策界限等方面[10-18],而针对特低渗透油藏CO2驱非线性渗流规律的研究相对较少。张海龙针对吉林油田黑 59 块开展了 CO2 混相驱提高原油采收率实验研究,发现 CO2混相驱能够降低 CO2-原油体系的启动压力梯度[18]。周思宾针对红河油田致密砂岩油藏注CO2的可行性进行了室内评价研究,结果表明红河油田注 CO2存在非线性渗流特征,注CO2最小启动压力梯度比注水小,与渗透率相关性较差[19]。杨晶针对榆树林油田开展了 CO2驱渗流规律研究,认为低渗透油藏 CO2驱存在启动压力,且随着渗透率的降低,启动压力梯度增大[20]。章星等针对吉林油田黑 79 块开展了 CO2混相驱启动压力梯度实验研究,发现低渗透岩心压力梯度与流量关系呈凹型分布,存在非线性流动和线性流动[21]。白素针对榆树林油田树101块开展了 CO2驱渗流规律数值模拟研究,认为启动压力对 CO2驱开发效果有重要的影响,渗透率越低其影响越大[22]。尽管上述学者们已开展了部分关于CO2 驱渗流规律的研究,但由于不同地区储层物性、流体物性、温度和压力等条件存在明显差异,因此得到的研究结果也不尽相同,且没有形成适用于不同储层条件下 CO2驱渗流规律的表征模型,故无法计算其他区块 CO2驱渗流特征参数,如最小启动压力梯度等。

  • 高 89 地区特低渗透油藏是胜利油田 CO2驱开发技术应用的主阵地,为了揭示该区 CO2驱渗流规律,基于高 89 地区特低渗透油藏的岩心和油样,开展了 CO2与原油相互作用实验研究,并采用不同渗透率级别的岩心分别开展了CO2驱渗流规律实验研究,最终建立了不同渗透率岩心 CO2驱最小启动压力梯度计算公式和 CO2驱非线性渗流规律表征模型,为胜利油田特低渗透油藏 CO2驱启动压力梯度及渗流特征曲线的计算提供了有效方法。

  • 1 CO2驱渗流规律实验

  • 特低渗透油藏储层孔隙尺度小、孔隙结构复杂,原油流动受孔隙壁面作用影响较大,存在启动压力梯度,只有当驱替压力梯度高于最小启动压力梯度时,原油才可以流动。在 CO2驱过程中,随着 CO2的注入,根据原油中CO2含量的不同可将注入井至采油井间的储层划分为5个相带(图1),即CO2相带、高CO2含量原油带、中CO2含量原油带、低CO2含量原油带和原始油相带。

  • 图1 CO2驱过程中不同相带分布示意

  • Fig.1 Distribution of different phase zones in CO2 flooding

  • 为了研究高 89 地区特低渗透油藏 CO2驱替过程中不同 CO2含量原油带的启动压力梯度变化规律,根据目标储层温度、压力、油气组成及原始气油比,配制地层原油及不同CO2含量的原油,开展PVT 实验研究,分析CO2对原油性质的影响规律;选取目标储层岩心,在不同条件下测定原油流速-压力梯度关系曲线,求取不同CO2含量原油启动压力梯度,分析 CO2驱非线性渗流规律,建立 CO2驱原油启动压力梯度计算公式及CO2驱非线性渗流规律表征模型。

  • 1.1 实验设备

  • 地层原油及不同CO2含量原油的配制所用设备为高精度地层流体 PVT 分析仪;CO2驱渗流规律实验所用设备为高温高压岩心驱替系统,主要由高精度的微量注入泵、岩心夹持器、围压泵、回压泵、回压阀、恒温系统及产出流体测量系统组成(图2)。

  • 图2 高温高压岩心驱替实验系统

  • Fig.2 Experiment system for high-temperature and high-pressure core displacement

  • 1.2 实验样品及条件

  • 岩心 实验所用岩心为胜利油田高 89 地区特低渗透油藏3类不同渗透率级别储层的岩心(表1), G1 和 G2 岩心渗透率小于 1 mD,G3 和 G4 岩心渗透率为1~3 mD,G5和G6岩心渗透率大于3 mD。

  • 表1 实验所用岩心基础物性

  • Table1 Basic physical properties of cores used in experiments

  • 流体 实验用水为根据储层水样组成配制而成的CaCl2型模拟地层水;实验用油为根据储层油气组成及原始气油比配制而成的地层原油及添加不同 CO2含量配制而成的模拟油,用于模拟CO2注入过程中原始油相带、低 CO2含量原油带、中 CO2含量原油带和高CO2含量原油带的原油。

  • 实验条件 设定实验温度与储层温度一致,即 126℃,CO2驱渗流规律实验中设定回压高于油样泡点压力。

  • 1.3 实验步骤

  • 实验步骤主要包括:①配制地层原油;②在已配制的地层原油中分别加入不同含量的 CO2,制成不同CO2溶解气油比(RCO2)的模拟油;③开展地层原油及模拟油的 PVT 实验,测定各油样的泡点压力、原油密度、原油黏度及体积系数;④岩心抽真空饱和水,通过称重法测定岩心孔隙度,然后设定回压高于油样泡点压力,油驱水至束缚水状态,恒温老化 24 h;⑤设定注入泵流量为 0.001 mL/min 进行油驱水,待岩心出口段开始有原油流出后,关闭岩心夹持器上游开关,待压力稳定后记录此时的压力,即为油样最小启动压力;⑥逐步增加注入泵的流量,记录不同流量下岩心上下游压力稳定后的压差;⑦更换不同渗透率的岩心,重复步骤④—⑥。

  • 2 结果及分析

  • 2.1 CO2对原油性质的影响

  • 配制了 CO2溶解气油比分别为 0,8.71,30.63 和 67.79 m3 /m3 共 4 种油样模拟 CO2注入过程中原始油相带、低 CO2含量原油带、中 CO2含量原油带和高 CO2含量原油带的原油,并开展了 PVT 实验研究。不同 CO2含量的油样物性参数如表2所示。结果表明,随着地层原油中CO2含量的升高,原油饱和压力和体积系数逐渐升高,密度和黏度均逐渐降低。这是由于非极性的 CO2分子易溶于地层原油,使得原油膨胀,饱和压力升高,体积系数增大。当原油中的CO2溶解气油比由0(原始地层原油)升高至67.79m3 /m3 时,原油密度由0.783 g/cm3 降至0.750 g/cm3,降幅为 4.2%,而原油黏度由 1.310 mPa·s 降至 0.980 mPa·s,降幅为 25.2%。由此可见,注入 CO2对于胜利油田高 89 地区特低渗透油藏原油具有良好的膨胀降黏作用。

  • 表2 不同CO2含量的油样物性参数

  • Table2 Physical properties of crude oil samples with different CO2 content

  • 2.2 CO2驱原油渗流能力分析

  • 针对胜利油田高 89 地区特低渗透油藏 3 类不同渗透率级别的 6 块岩心,分别采用 4 种油样进行流速-压力梯度关系测定,每组实验分别以7种不同流速驱替。由不同油样在不同渗透率岩心中的流速-压力梯度关系曲线(图3)可见,所有曲线均不通过原点,这种非线性特征表明 CO2驱油过程中原油存在启动压力梯度。对于不同渗透率的岩心,在相同压力梯度下不同油样的流速由高到低依次为:油样4、油样3、油样2和油样1,这表明CO2含量越高的原油,在相同压力梯度作用下其流动能力越强。此外,渗透率越低的岩心,不同油样的流速-压力梯度曲线越分散,油样流动能力差别越大,而随着岩心渗透率的增大,不同油样的流速-压力梯度曲线越集中,CO2含量对原油流动能力的影响逐渐减小,这也进一步体现了CO2驱在特低渗透油藏开发中的优越性。

  • 由不同CO2含量的油样在不同渗透率岩心中的最小启动压力梯度(表3)可知,4种油样在不同渗透率岩心中的启动压力梯度均随着岩心渗透率的增加而降低,这表明在渗透率较低的储层中,原油流动所需的启动压差更大,而对于渗透率相对较高的储层,原油流动所需的启动压差则相对较小,如 G6 岩心,由于渗透率较高,最小启动压力梯度最低。胜利油田高89地区特低渗透油藏渗透率差异大、非均质性强[23],渗透率较高的砂体条带原油启动压力梯度较小,易成为CO2的优势渗流通道,从而可能加快气窜,降低油藏的最终采收率。

  • 图3 不同渗透率岩心中不同CO2含量的油样流速-压力梯度关系曲线

  • Fig.3 Flow velocity-pressure gradient curves of crude oil samples with different CO2 content in cores with different permeability

  • 表3 不同CO2含量油样的最小启动压力梯度

  • Table3 Minimum threshold pressure gradient of crude oil samples with different CO2 content

  • 此外,表3 中相同渗透率的岩心中不同油样最小启动压力梯度均随着油样中CO2含量的增加而降低。如 G1 岩心,当原油中 CO2溶解气油比为 67.79 m3 /m3 时,相比原始地层原油,最小启动压力梯度降低了 31.5%。这表明注入 CO2后孔隙壁面与原油的相互作用减弱,原油流动性增强,有效改善了特低渗透油藏中原油的渗流能力。在 CO2注入过程中,由注入井至采油井,原油中的CO2含量依次降低,近注入井的高 CO2含量原油带与 CO2相互作用较强,由于CO2的膨胀降黏作用及其对原油中轻质组分的抽提作用,使得原油启动压力梯度降低,原油流动能力增强;随着与注入井距离的增加,原油中的CO2 含量逐渐降低,中、低CO2含量原油带启动压力梯度逐渐增大;远离注入井的原始油相带流动能力最差,启动压力梯度最高。但随着 CO2前缘的推进, CO2与原油的接触面积增大,CO2-原油相互作用增强,油相启动压力梯度会逐渐降低,流动性增强,从而能够大幅提高原油采收率。

  • 不同油样最小启动压力梯度与岩心渗透率的关系(图4)表明,渗透率对高 89地区特低渗透油藏中原油的流动能力有显著的影响,对于不同 CO2含量的原油,最小启动压力梯度均随着渗透率的降低而升高,当渗透率低于 2 mD 时,最小启动压力梯度急剧增大,这与水驱最小启动压力梯度变化规律相似[24]。这是由于渗透率越低的储层,孔喉结构越复杂,控制流体通过的喉道越窄,渗流阻力越大,流体流动所需的启动压差越高。但与水驱不同的是,特低渗透油藏 CO2驱最小启动压力梯度明显低于水驱。研究表明相同条件下水驱最小启动压力梯度为 CO2驱的 2~4倍[16],且随着渗透率的降低,二者差异逐渐增大。其主要原因有两个方面:①由于吸附作用,水被吸附在储层孔隙表面而形成一层水化膜,导致流体渗流阻力增大,且孔隙越小,水化膜对流体流动的影响越明显,而CO2不会产生薄膜,流动能力强于水;②由于CO2易溶于原油,使得原油体积膨胀,黏度降低,且随着压力的升高,CO2与原油界面张力逐渐降低直至混相,流体系统流动阻力低。因此,相比水驱CO2驱启动压力梯度更低,对于特低渗透油藏的开发更具优势。

  • 图4 不同CO2含量的油样最小启动压力梯度与岩心渗透率的关系

  • Fig.4 Relationship between minimum threshold pressure gradient and permeability of crude oil samples with different CO2 content

  • 2.3 CO2驱最小启动压力梯度计算公式

  • 分析不同CO2含量的油样在不同渗透率岩心中的最小启动压力梯度与流度的关系,发现两者呈现很好的幂函数关系(图5),可表示为:

  • ΔPLmin=mKgμon
    (1)
  • 图5 不同CO2含量的油样最小启动压力梯度与流度的关系

  • Fig.5 Relationship between minimum threshold pressure gradient and fluidity of crude oil samples with different CO2 content

  • 分析常数 mnRCO2的关系(图6),两者与 RCO2 均呈良好的负线性关系,由此可得胜利油田高 89地区特低渗透油藏CO2驱最小启动压力梯度的计算公式为:

  • ΔPLmin=-6×10-5RCO2+0.01Kgμo-0.0015RCO2-0.4664
    (2)
  • 图6 常数mnRCO2 的关系

  • Fig.6 Relationship between constants mn and RCO2

  • 2.4 CO2驱非线性渗流规律表征模型

  • 分析图3可知,高 89地区特低渗透油藏中原油流动表现出非线性渗流特征,渗流曲线呈“直线段+ 曲线段”的两段式,这与水驱非线性渗流特征相似。但 CO2驱非线性段初始值,即最小启动压力梯度显著低于水驱最小启动压力梯度。以油样 2 在 G2 岩心中的流速-压力梯度关系曲线为例,分析不同阶段流速与压力梯度的关系。如图7 所示,在压力梯度较小时,流速与压力梯度呈良好的二次函数关系,可表示为:

  • q=aΔPL2+bΔPL+c
    (3)
  • 图7 油样2在岩心G2中的流速-压力梯度关系

  • Fig.7 Relationship between flow velocity and pressure gradient of crude oil sample in Core G2

  • 在压力梯度较大时,流速与压力梯度呈良好的线性关系,可表示为:

  • q=αΔPL+β
    (4)
  • 经分析,在不同压力梯度范围内,4种油样分别在 6 块岩心中的流速-压力梯度关系均满足上述的二次函数关系和线性关系。因此,采用(3)式和(4) 式分别拟合不同油样在不同岩心中的流速-压力梯度关系曲线,拟合参数如表4所示。

  • 进一步分析参数 abcαβ 与流度的关系可知,ab分别与流度呈二次函数关系,αβ与流度分别呈对数函数关系,即:

  • a=0.3323Kgμo2-0.034Kgμo+0.0526R2=0.9552
    (5)
  • b=0.0107Kgμo2-0.019Kgμo+0.0085R2=0.6524
    (6)
  • α=0.3073lnKgμo+0.4064R2=0.7848
    (7)
  • β=-0.0031lnKgμo-0.006R2=0.8226
    (8)
  • c=0.00025
    (9)
  • 参数c与流度无明显关系,且不同条件下c值接近,故取其平均值为 0.000 25。结合(3)—(9)式,根据目标区块储层岩心的渗透率和原油黏度,则可近似求得该区块的流速-压力梯度关系曲线。

  • 3 结论

  • 胜利油田高 89 地区特低渗透油藏 CO2驱过程中油相流动呈现明显的非线性渗流特征,渗流曲线表现为“直线段+曲线段”的两段式,直线段的流速与压力梯度呈良好的线性关系,曲线段的流速与压力梯度呈现良好的二次函数关系。CO2溶于原油后由于膨胀降黏作用,使得 CO2驱最小启动压力梯度明显低于水驱最小启动压力梯度,且原油中 CO2含量越高,原油渗流能力越强,渗流曲线非线性段变短;CO2驱最小启动压力梯度与流度呈良好的幂函数关系,随着流度的增加,原油启动压力梯度显著降低。基于 CO2驱过程中油相的非线性渗流规律,考虑特低渗透油藏渗透率及原油黏度的影响,建立了高 89 地区特低渗透油藏 CO2驱最小启动压力梯度计算公式和CO2驱非线性渗流规律表征模型。

  • 表4 不同油样在不同渗透率岩心中流速-压力梯度关系曲线拟合参数

  • Table4 Fitting parameters for flow velocity-pressure gradient curves of different crude oil samples in cores with different permeability

  • 符号解释

  • abcαβ——与储层物性、原油性质有关的参数;

  • Kg——岩心气测渗透率,mD;

  • L——岩心长度,cm;

  • mn——与原油性质有关的常数;

  • q——流速,cm/min;

  • RCO2——CO2在原油中的溶解气油比,本文指单位体积地面脱气油在地层条件下溶解的CO2的标准体积,m3 /m3

  • ΔP——最小启动压差,MPa;

  • μo——储层条件下油相的黏度,mPa·s。

  • 参考文献

    • [1] 刘小波.CO2混相驱技术在特低渗透滩坝砂油藏的开发实践及效果评价[J].油气地质与采收率,2020,27(3):113-119.LIU Xiaobo.Application and evaluation of CO2 miscible flooding in extra-low permeability beach-bar sand reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(3):113-119.

    • [2] 李金志.胜利油田低渗透油藏 CO2混相驱合理注采井距研究 [J].油气地质与采收率,2020,27(3):64-69.LI Jinzhi.Reasonable well spacing for CO2 miscible flooding in low-permeability reservoirs of Shengli Oilfield[J].Petroleum Ge⁃ ology and Recovery Efficiency,2020,27(3):64-69.

    • [3] 束青林,郭迎春,孙志刚,等.特低渗透油藏渗流机理研究及应用[J].油气地质与采收率,2016,23(5):58-64.SHU Qinglin,GUO Yingchun,SUN Zhigang,et al.Research and application of percolation mechanism in extro-low permeability oil reservoir[J].Petroleum Geology and Recovery Efficiency,2016,23(5):58-64.

    • [4] 阳晓燕.非均质油藏水驱开发效果研究[J].特种油气藏,2019,26(2):152-156.YANG Xiaoyan.Waterflood development effect study of heteroge⁃ neous reservoir[J].Special Oil & Gas Reservoirs,2019,26(2):152-156.

    • [5] AZZOLINA N A,NAKLES D V,GORECKI C D,et al.CO2 storage associated with CO2 enhanced oil recovery:A statistical analysis of historical operations[J].International Journal of Greenhouse Gas Control,2015,37(3):384-397.

    • [6] 龙冕,齐桂雪,冯超林.二氧化碳混相与非混相驱油技术研究进展[J].中外能源,2018,23(2):18-26.LONG Mian,QI Guixue,FENG Chaolin.Research progress of mis⁃ cible and immiscible carbon dioxide flooding[J].Sino-Global En⁃ ergy,2018,23(2):18-26.

    • [7] 杨勇.胜利油田特低渗透油藏CO2驱技术研究与实践[J].油气地质与采收率,2020,27(1):11-19.YANG Yong.Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(1):11-19.

    • [8] 李玉丹,董平川,张荷,等.低渗透油藏渗透率及启动压力梯度应力敏感性分析[J].油气地质与采收率,2016,23(6):57-63.LI Yudan,DONG Pingchuan,ZHANG He,et al.Stress sensitivity analysis of permeability and threshold pressure gradient in lowpermeability reservoir[J].Petroleum Geology and Recovery Effi⁃ ciency,2016,23(6):57-63.

    • [9] 熊伟,雷群,刘先贵,等.低渗透油藏拟启动压力梯度[J].石油勘探与开发,2009,36(2):232-236. XIONG Wei,LEI Qun,LIU Xiangui,et al.Pseudo threshold pres⁃ sure gradient to flow for low permeability reservoirs[J].Petroleum Exploration and Development,2009,36(2):232-236.

    • [10] 曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.Migration law of CO2-crude oil miscible zone and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.

    • [11] 张东,刘显太,刘彦东,等.CO2驱合理注入量计算方法[J].油气地质与采收率,2020,27(1):107-112.ZHANG Dong,LIU Xiantai,LIU Yandong,et al.Calculation meth⁃ od of reasonable injection amount of CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(1):107-112.

    • [12] 史云清,贾英,潘伟义,等.致密低渗透气藏注 CO2提高采收率潜力评价[J].天然气工业,2017,37(3):62-69.SHI Yunqing,JIA Ying,PAN Weiyi,et al.Potential evaluation on CO2-EGR in tight and low-permeability reservoirs[J].Natural Gas Industry,2017,37(3):62-69.

    • [13] BIKKINA P,WAN Jiamin,KIM Y,et al.Influence of wettability and permeability heterogeneity on miscible CO2 flooding efficiency [J].Fuel,2016,166:219-226.

    • [14] FIROUZ A Q,TORABI F.Utilization of carbon dioxide and meth⁃ ane in huff-and-puff injection scheme to improve heavy oil recov⁃ ery[J].Fuel,2014,117:966-973.

    • [15] PU Wanfen,WEI Bing,JIN Fayang,et al.Experimental investiga⁃ tion of CO2 huff-and-puff process for enhancing oil recovery in tight reservoirs[J].Chemical Engineering Research and Design,2016,111:269-276.

    • [16] 于友,魏建光,张宝忠,等.低渗透油藏常规水驱与二氧化碳驱井距界限研究[J].特种油气藏,2021,28(2):120-125.YU You,WEI Jianguang,ZHANG Baozhong,et al.Study on well spacing limit for conventional water flooding and carbon dioxide flooding in low-permeability reservoirs[J].Special Oil & Gas Res⁃ ervoirs,2021,28(2):120-125.

    • [17] 李阳.低渗透油藏CO2驱提高采收率技术进展及展望[J].油气地质与采收率,2020,27(1):1-10.LI Yang.Technical advancement and prospect for CO2 flooding en⁃ hanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.

    • [18] 张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.

    • [19] 周思宾.红河致密砂岩油藏注CO2可行性室内评价研究[J].石油化工高等学校学报,2019,32(1):41-46.ZHOU Sibin.Feasibility study of CO2 flooding in Honghe tight oil reservoir[J].Journal of Petrochemical Universities,2019,32(1):41-46.

    • [20] 杨晶.CO2驱油非达西渗流理论模型研究及应用[D].大庆:东北石油大学,2011.YANG Jing.Research and application on Non-Darcy flow theori⁃ cal model of CO2 flooding[D].Daqing:Northeast Petroleum Uni⁃ versity,2011.

    • [21] 章星,杨胜来,文博,等.低渗油藏 CO2混相驱启动压力梯度实验研究[J].石油实验地质,2013,35(5):583-586.ZHANG Xing,YANG Shenglai,WEN Bo,et al.Experimental study on threshold pressure gradient of CO2 miscible flooding in low permeability reservoir[J].Petroleum Geology & Experiment,2013,35(5):583-586.

    • [22] 白素.榆树林油田 CO2驱非线性渗流数值模拟研究[D].大庆:东北石油大学,2011.BAI Su.Numerical simulation research on Non-Darcy flow of CO2 flooding in Yushulin Oilfield[D].Daqing:Northeast Petroleum University,2011.

    • [23] 曹绪龙,吕广忠,王杰,等.滩坝砂特低渗透油藏 CO2驱油技术及应用[J].油气藏评价与开发,2019,9(3):41-46.CAO Xulong,LÜ Guangzhong,WANG Jie,et al.Technology and application of CO2 flooding in ultra-low permeability beach-bar sand reservoir[J].Reservoir Evaluation and Development,2019,9(3):41-46.

    • [24] 杨钊.大庆外围低渗透油田分类方法及开发对策研究[D].大庆:东北石油大学,2010.YANG Zhao.Study on Daqing peripheral low permeability reser⁃ voir classification method and development countermeasures[D].Daqing:Northeast Petroleum University,2010.

  • 参考文献

    • [1] 刘小波.CO2混相驱技术在特低渗透滩坝砂油藏的开发实践及效果评价[J].油气地质与采收率,2020,27(3):113-119.LIU Xiaobo.Application and evaluation of CO2 miscible flooding in extra-low permeability beach-bar sand reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(3):113-119.

    • [2] 李金志.胜利油田低渗透油藏 CO2混相驱合理注采井距研究 [J].油气地质与采收率,2020,27(3):64-69.LI Jinzhi.Reasonable well spacing for CO2 miscible flooding in low-permeability reservoirs of Shengli Oilfield[J].Petroleum Ge⁃ ology and Recovery Efficiency,2020,27(3):64-69.

    • [3] 束青林,郭迎春,孙志刚,等.特低渗透油藏渗流机理研究及应用[J].油气地质与采收率,2016,23(5):58-64.SHU Qinglin,GUO Yingchun,SUN Zhigang,et al.Research and application of percolation mechanism in extro-low permeability oil reservoir[J].Petroleum Geology and Recovery Efficiency,2016,23(5):58-64.

    • [4] 阳晓燕.非均质油藏水驱开发效果研究[J].特种油气藏,2019,26(2):152-156.YANG Xiaoyan.Waterflood development effect study of heteroge⁃ neous reservoir[J].Special Oil & Gas Reservoirs,2019,26(2):152-156.

    • [5] AZZOLINA N A,NAKLES D V,GORECKI C D,et al.CO2 storage associated with CO2 enhanced oil recovery:A statistical analysis of historical operations[J].International Journal of Greenhouse Gas Control,2015,37(3):384-397.

    • [6] 龙冕,齐桂雪,冯超林.二氧化碳混相与非混相驱油技术研究进展[J].中外能源,2018,23(2):18-26.LONG Mian,QI Guixue,FENG Chaolin.Research progress of mis⁃ cible and immiscible carbon dioxide flooding[J].Sino-Global En⁃ ergy,2018,23(2):18-26.

    • [7] 杨勇.胜利油田特低渗透油藏CO2驱技术研究与实践[J].油气地质与采收率,2020,27(1):11-19.YANG Yong.Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(1):11-19.

    • [8] 李玉丹,董平川,张荷,等.低渗透油藏渗透率及启动压力梯度应力敏感性分析[J].油气地质与采收率,2016,23(6):57-63.LI Yudan,DONG Pingchuan,ZHANG He,et al.Stress sensitivity analysis of permeability and threshold pressure gradient in lowpermeability reservoir[J].Petroleum Geology and Recovery Effi⁃ ciency,2016,23(6):57-63.

    • [9] 熊伟,雷群,刘先贵,等.低渗透油藏拟启动压力梯度[J].石油勘探与开发,2009,36(2):232-236. XIONG Wei,LEI Qun,LIU Xiangui,et al.Pseudo threshold pres⁃ sure gradient to flow for low permeability reservoirs[J].Petroleum Exploration and Development,2009,36(2):232-236.

    • [10] 曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.Migration law of CO2-crude oil miscible zone and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.

    • [11] 张东,刘显太,刘彦东,等.CO2驱合理注入量计算方法[J].油气地质与采收率,2020,27(1):107-112.ZHANG Dong,LIU Xiantai,LIU Yandong,et al.Calculation meth⁃ od of reasonable injection amount of CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(1):107-112.

    • [12] 史云清,贾英,潘伟义,等.致密低渗透气藏注 CO2提高采收率潜力评价[J].天然气工业,2017,37(3):62-69.SHI Yunqing,JIA Ying,PAN Weiyi,et al.Potential evaluation on CO2-EGR in tight and low-permeability reservoirs[J].Natural Gas Industry,2017,37(3):62-69.

    • [13] BIKKINA P,WAN Jiamin,KIM Y,et al.Influence of wettability and permeability heterogeneity on miscible CO2 flooding efficiency [J].Fuel,2016,166:219-226.

    • [14] FIROUZ A Q,TORABI F.Utilization of carbon dioxide and meth⁃ ane in huff-and-puff injection scheme to improve heavy oil recov⁃ ery[J].Fuel,2014,117:966-973.

    • [15] PU Wanfen,WEI Bing,JIN Fayang,et al.Experimental investiga⁃ tion of CO2 huff-and-puff process for enhancing oil recovery in tight reservoirs[J].Chemical Engineering Research and Design,2016,111:269-276.

    • [16] 于友,魏建光,张宝忠,等.低渗透油藏常规水驱与二氧化碳驱井距界限研究[J].特种油气藏,2021,28(2):120-125.YU You,WEI Jianguang,ZHANG Baozhong,et al.Study on well spacing limit for conventional water flooding and carbon dioxide flooding in low-permeability reservoirs[J].Special Oil & Gas Res⁃ ervoirs,2021,28(2):120-125.

    • [17] 李阳.低渗透油藏CO2驱提高采收率技术进展及展望[J].油气地质与采收率,2020,27(1):1-10.LI Yang.Technical advancement and prospect for CO2 flooding en⁃ hanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.

    • [18] 张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.

    • [19] 周思宾.红河致密砂岩油藏注CO2可行性室内评价研究[J].石油化工高等学校学报,2019,32(1):41-46.ZHOU Sibin.Feasibility study of CO2 flooding in Honghe tight oil reservoir[J].Journal of Petrochemical Universities,2019,32(1):41-46.

    • [20] 杨晶.CO2驱油非达西渗流理论模型研究及应用[D].大庆:东北石油大学,2011.YANG Jing.Research and application on Non-Darcy flow theori⁃ cal model of CO2 flooding[D].Daqing:Northeast Petroleum Uni⁃ versity,2011.

    • [21] 章星,杨胜来,文博,等.低渗油藏 CO2混相驱启动压力梯度实验研究[J].石油实验地质,2013,35(5):583-586.ZHANG Xing,YANG Shenglai,WEN Bo,et al.Experimental study on threshold pressure gradient of CO2 miscible flooding in low permeability reservoir[J].Petroleum Geology & Experiment,2013,35(5):583-586.

    • [22] 白素.榆树林油田 CO2驱非线性渗流数值模拟研究[D].大庆:东北石油大学,2011.BAI Su.Numerical simulation research on Non-Darcy flow of CO2 flooding in Yushulin Oilfield[D].Daqing:Northeast Petroleum University,2011.

    • [23] 曹绪龙,吕广忠,王杰,等.滩坝砂特低渗透油藏 CO2驱油技术及应用[J].油气藏评价与开发,2019,9(3):41-46.CAO Xulong,LÜ Guangzhong,WANG Jie,et al.Technology and application of CO2 flooding in ultra-low permeability beach-bar sand reservoir[J].Reservoir Evaluation and Development,2019,9(3):41-46.

    • [24] 杨钊.大庆外围低渗透油田分类方法及开发对策研究[D].大庆:东北石油大学,2010.YANG Zhao.Study on Daqing peripheral low permeability reser⁃ voir classification method and development countermeasures[D].Daqing:Northeast Petroleum University,2010.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告