en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

鞠斌山(1972—),男,山东青州人,教授,博士,从事CCUS和油气田开发工程领域的研究。E-mail:jubs2936@163.com。

中图分类号:TE357.45

文献标识码:A

文章编号:1009-9603(2023)02-0053-15

DOI:10.13673/j.cnki.cn37-1359/te.202208001

参考文献 1
RACKLEY S A.Carbon capture and storage[M].Amsterdam:Else⁃ vier,2010:3-9.
参考文献 2
WANG Kuanmin.The relationship between carbon dioxide emis⁃ sions and economic growth:quantile panel-type analysis[J].Qual⁃ ity & Quantity,2013,47(3):1 337-1 366.
参考文献 3
孙枢.CO2地下封存的地质学问题及其对减缓气候变化的意义 [J].中国基础科学,2006,8(3):17-22.SUN Shu.Geological problems of CO2 underground storage and its significance on mitigating climate change[J].China Basic Sci⁃ ence,2006,8(3):17-22.
参考文献 4
姜大膀,富元海.2 ℃全球变暖背景下中国未来气候变化预估 [J].大气科学,2012,36(2):234-246.JIANG Dabang,FU Yuanhai.Climate change over China with a 2 ℃ global warming[J].Chinese Journal of Atmospheric Scienc⁃ es,2012,36(2):234-246.
参考文献 5
British Petroleum Company.BP statistical review of world energy [R].London:BP Company,2018.
参考文献 6
British Petroleum Company.BP statistical review of world energy [R].London:BP Company,2017.
参考文献 7
ZHANG Zhien,PAN Shuyuan,LI Hao,et al.Recent advances in carbon dioxide utilization[J].Renewable and Sustainable Energy Reviews,2020,125:109799.
参考文献 8
GODIN J,LIU Weizao,REN Shan,et al.Advances in recovery and utilization of carbon dioxide:a brief review[J].Journal of Environ⁃ mental Chemical Engineering,2021,9(4):105644.
参考文献 9
王敏生,姚云飞.碳中和约束下油气行业发展形势及应对策略 [J].石油钻探技术,2021,49(5):1-6.WANG Minsheng,YAO Yunfei.Development situation and coun⁃ termeasures of the oil and gas industry facing the challenge of car⁃ bon neutrality[J].Petroleum Drilling Techniques,2021,49(5):1-6.
参考文献 10
江怀友,沈平平,陈立滇,等.北美石油工业二氧化碳提高采收率现状研究[J].中国能源,2007,29(7):29-33.JIANG Huaiyou,SHEN Pingping,CHEN Lidian,et al.The status of EOR technology using CO2 in North American Oil industry[J].Energy of China,2007,29(7):29-33.
参考文献 11
沈平平,江怀友.温室气体提高采收率的资源化利用及地下埋存[J].中国工程科学,2009,11(5):55-59.SHEN Pingping,JIANG Huaiyou.Utilization of greenhouse gas as resource in EOR and storage it underground[J].Strategic Study of CAE,2009,11(5):55-59.
参考文献 12
毕永斌,耿文爽,张雪娜,等.高含水油藏全生命周期剩余油挖潜三参数研究[J].断块油气田,2021,28(1):109-114.BI Yongbin,GENG Wenshuang,ZHANG Xuena,et al.Study on three parameters of remaining oil potential tapping in high water cut reservoir during its whole life cycle[J].Fault-Block Oil & Gas Field,2021,28(1):109-114.
参考文献 13
NOVAK K,MALVIC T,SIMON K.Increased hydrocarbon recov⁃ ery and CO2 management,a Croatian example[J].Environmental Earth Sciences,2013,68(4):1 187-1 197.
参考文献 14
岳湘安,赵仁保,赵凤兰.我国CO2提高石油采收率面临的技术挑战[J].中国科技论文在线,2007,2(7):487-491.YUE Xiang’an,ZHAO Renbao,ZHAO Fenglan.Technological challenges for CO2 EOR in China[J].Sciencepaper Online,2007,2(7):487-491.
参考文献 15
徐怀颖,张宝生.川东北气田伴生CO2注入川中油田EOR可行性分析——以普光气田伴生 CO2注入桂花油田为例[J].天然气工业,2012,32(1):101-103.XU Huaiying,ZHANG Baosheng.Potential analysis of oil recovery enhancing treatment by injecting the associated CO2 gas from the Puguang Gas Field into the Guihua Oil Field[J].Natural Gas In⁃ dustry,2012,32(1):101-103.
参考文献 16
赵宏军,廖新维.中国低渗透油藏 CO2驱油与地质埋存关键问题分析[J].陕西科技大学学报:自然科学版,2011,29(1):1-6.ZHAO Hongjun,LIAO Xinwei.Key problems analysis on CO2 dis⁃ placement and geological storage in low permeability oil reser⁃ voir,China[J].Journal of Shaanxi University of Science & Tech⁃ nology:Natural Science Edition,2011,29(1):1-6.
参考文献 17
蔡晖,闫涛,陈建波,等.海上稠油油田二氧化碳驱注入参数优化[J].科学技术与工程,2010,10(34):8 394-8 397.CAI Hui,YAN Tao,CHEN Jianbo,et al.Optimizing injection pa⁃ rameters of heavy oil for carbon dioxide flooding in offshore oil⁃ field[J].Science Technology and Engineering,2010,10(34):8 394-8 397.
参考文献 18
KUMAR S,KUMAR A,MANDAL A.Characterizations of surfac⁃ tant synthesized from Jatropha oil and its application in enhanced oil recovery[J].AIChE Journal,2017,63(7):2 731-2 741.
参考文献 19
BAI Mingxing,ZHANG Zhichao,FU Xiaofei.A review on well in⁃ tegrity issues for CO2 geological storage and enhanced gas recov⁃ ery[J].Renewable & Sustainable Energy Reviews,2016,59:920-926.
参考文献 20
李国欣,朱如凯.中国石油非常规油气发展现状、挑战与关注问题[J].中国石油勘探,2020,25(2):1-13.LI Guoxin,ZHU Rukai.Progress,challenges and key issues of un⁃ conventional oil and gas development of CNPC[J].China Petro⁃ leum Exploration,2020,25(2):1-13.
参考文献 21
胡素云,李建忠,王铜山,等.中国石油油气资源潜力分析与勘探选区思考[J].石油实验地质,2020,42(5):813-823.HU Suyun,LI Jianzhong,WANG Tongshan,et al.CNPC oil and gas resource potential and exploration target selection[J].Petro⁃ leum Geology & Experiment,2020,42(5):813-823.
参考文献 22
白喜俊,王延斌,常毓文,等.高含水油田面临的形势及对策 [J].中国国土资源经济,2009,22(11):21-22.BAI Xijun,WANG Yanbin,CHANG Yuwen,et al.The situations and countermeasures of the oilfields in high water cut period[J]. Natural Resource Economics of China,2009,22(11):21-22.
参考文献 23
李梅.高含水期油田 CO2驱油效果评价[D].北京:中国地质大学(北京),2015.LI Mei.Evaluation on the effect of CO2 flooding in high water-cut oil fields[D].Beijing:China University of Geosciences(Beijing),2015.
参考文献 24
孔祥言.高等流体力学[M].合肥:中国科学技术大学出版社,2010.KONG Xiangyan.Advanced mechanics of fluids in porous media [M].Hefei:USTC Press,2010.
参考文献 25
王玉普,刘义坤,邓庆军.中国陆相砂岩油田特高含水期开发现状及对策[J].东北石油大学学报,2014,38(1):1-9.WANG Yupu,LIU Yikun,DENG Qingjun.Current situation and development strategy of the extra high water cut stage of continen⁃ tal facies sandstone oil fields in China[J].Journal of Northeast Pe⁃ troleum University,2014,38(1):1-9.
参考文献 26
马超,高屾,闫建文.以科技创新为国增“油”添“气”[N].中国石油报,2021-09-16(001).MA Chao,GAO Shen,YAN Jianwen.Add“oil”and“gas”to Chi⁃ na with scientific and technological innovation[N].China Petro⁃ leum Daily,2021-09-16(001).
参考文献 27
秦积舜,李永亮,吴德斌,等.CCUS 全球进展与中国对策建议 [J].油气地质与采收率,2020,27(1):20-28.QIN Jishun,LI Yongliang,WU Debin,et al.CCUS global progress and China’s policy suggestions[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(1):20-28.
参考文献 28
HOLM W L.Evolution of the carbon dioxide flooding processes[J].Journal of Petroleum Technology,1987,39(11):1 337-1 342.
参考文献 29
KLINS M A.Carbon dioxide flooding;basic mechanism and proj⁃ ect design[M].Netherlands:Springer Netherlands,1984.
参考文献 30
MUNGAN N.Carbon dioxide flooding-fundamentals[J].Journal of Canadian Petroleum Technology,1981,20(1):81-92.
参考文献 31
HOLM L W,JOSENDAL V A.Mechanisms of oil displacement by carbon dioxide[J].Journal of Petroleum Technology,1974,26(12):1 427-1 438.
参考文献 32
BAVIERE M.Basic concepts in enhanced oil recovery processes [M].London:Elsevier Applied Science,1991.
参考文献 33
YANG Yongfei,LI Yingwen,YAO Jun,et al.Dynamic pore-scale dissolution by CO2-saturated brine in carbonates:impact of homo⁃ geneous versus fractured versus vuggy pore structure[J].Water Resources Research,2020,56(4):1-27.
参考文献 34
周翔,周丹,邓家胜,等.超临界 CO2驱提高致密油藏采收率实验研究[J].特种油气藏,2021,28(3):118-123.ZHOU Xiang,ZHOU Dan,DENG Jiasheng,et al.Experimental study on improving recovery efficiency of tight oil reservoirs with supercritical carbon dioxide flooding[J].Special Oil & Gas Reser⁃ voirs,2021,28(3):118-123.
参考文献 35
邓宝康,李军建,高银山,等.鄂尔多斯盆地致密油藏注 CO2吞吐微观剩余油分布特征[J].大庆石油地质与开发,2020,39(6):119-125.DENG Baokang,LI Junjian,GAO Yinshan,et al.Microscopic re⁃ mained oil distribution characteristics of CO2 huff and puff in the tight oil reservoir in Ordos Basin[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(6):119-125.
参考文献 36
李士伦,汤勇,侯承希.注CO2提高采收率技术现状及发展趋势 [J].油气藏评价与开发,2019,9(3):1-8.LI Shilun,TANG Yong,HOU Chengxi.Present situation and de⁃ velopment trend of CO2 injection enhanced oil recovery technolo⁃gy[J].Reservoir Evaluation and Development,2019,9(3):1-8.
参考文献 37
胡永乐,郝明强,陈国利.注二氧化碳提高石油采收率技术 [M].北京:石油工业出版社,2018:1-40.HU Yongle,HAO Mingqiang,CHEN Guoli.Technology of en⁃ hanced oil recovery by carbon dioxide[M].Beijing:Petroleum In⁃ dustry Press,2018:1-40.
参考文献 38
谷丽冰,李治平,欧瑾.利用二氧化碳提高原油采收率研究进展[J].中国矿业,2007,16(10):66-69.GU Libing,LI Zhiping,OU Jin.The existing state of enhanced oil recovery by utilizing carbon dioxide[J].China Mining Magazine,2007,16(10):66-69.
参考文献 39
袁士义,王强,李军诗,等.注气提高采收率技术进展及前景展望[J].石油学报,2020,41(12):1 623-1 632.YUAN Shiyi,WANG Qiang,LI Junshi,et al.Technology progress and prospects of enhanced oil recovery by gas injection[J].Acta Petrolei Sinica,2020,41(12):1 623-1 632.
参考文献 40
曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.Migration law of CO2-crude oil miscible zone and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.
参考文献 41
秦积舜,张可,陈兴隆,等.高含水后 CO2驱油机理的探讨[J]. 石油学报,2010,31(5):797-800.QIN Jishun,ZHANG Ke,CHEN Xinglong.Mechanism of the CO2 flooding as reservoirs containing high water[J].Acta Petrolei Sini⁃ ca,2010,31(5):797-800.
参考文献 42
郭立强.高含水油藏 CO2驱机理深化研究[J].内蒙古石油化工,2019,45(6):11-12.GUO Liqiang.Further study on the mechanism of CO2 flooding in high water cut reservoir[J].Inner Mongolia Petrochemical Indus⁃ try,2019,45(6):11-12.
参考文献 43
CUI Maolei,WANG Rui,LÜ Chengyuan,et al.Research on micro⁃ scopic oil displacement mechanism of CO2 EOR in extra-high wa⁃ ter cut reservoirs[J].Journal of Petroleum Science and Engineer⁃ ing,2017,154:315-321.
参考文献 44
吕成远,王锐,崔茂蕾,等.高含水条件下 CO2混相驱替实验 [J].石油学报,2017,38(11):1 293-1 298.LÜ Chengyuan,WANG Rui,CUI Maolei,et al.Displacement ex⁃ periment of CO2 miscible flooding under high water condition[J].Acta Petrolei Sinica,2017,38(11):1 293-1 298.
参考文献 45
周宇,王锐,苟斐斐,等.高含水油藏 CO2驱油机理[J].石油学报,2016,37(S1):143-150.ZHOU Yu,WANG Rui,GOU Feifei,et al.CO2 flooding mecha⁃ nism in high water cut reservoirs[J].Acta Petrolei Sinica,2016,37(S1):143-150.
参考文献 46
MOSLEH M H,SEDIGHI M,BABAEI M,et al.Geological seques⁃ tration of carbon dioxide[M].Amsterdam:Elsevier,2019:487-500.
参考文献 47
BACHU S,ADAMS J J.Sequestration of CO2 in geological media in response to climate change:capacity of deep saline aquifers to sequester CO2 in solution[J].Energy Conversion & Management,2003,44(20):3 151-3 175.
参考文献 48
WILDGUST N,GILBOY C,TONTIWACHWUTHIKUL P.Intro⁃ duction to a decade of research by the IEAGHG Weyburn-Midale CO2 monitoring and storage project[J].International Journal of Greenhouse Gas Control,2013,16S:S1-S4.
参考文献 49
VOORMEIJ D A,SIMANDL G J.Geological and mineral CO2 se⁃ questration options:a technical review[J].Geoscience Canada,2004,31(1):11-22.
参考文献 50
高冉,吕成远,伦增珉,等.二氧化碳驱替与埋存一体化数值模拟[J].特种油气藏,2021,28(2):102-107.GAO Ran,LÜ Chengyuan,LUN Zengmin,et al.Integrated numeri⁃ cal simulation of carbon dioxide displacement and sequestration [J].Special Oil & Gas Reservoirs,2021,28(2):102-107.
参考文献 51
ZHAO Dongfeng,LIAO Xinwei,YIN Dandan.An experimental study for the effect of CO2-brine-rock interaction on reservoir physical properties[J].Journal of the Energy Institute,2015,88(1):27-35.
参考文献 52
SAEEDI A,PIANE C D,ESTEBAN L,et al.Flood characteristic and fluid rock interactions of a supercritical CO2,brine,rock sys⁃ tem:South West Hub,Western Australia[J].International Journal of Greenhouse Gas Control,2016,54(Part1):309-321.
参考文献 53
SOONG Y,HOWARD B H,DILMORE R M,et al.CO2/brine/rock interactions in Lower Tuscaloosa Formation[J].Greenhouse Gas⁃ es:Science and Technology,2016,6(6):824-837.
参考文献 54
TARKOWSKI R,WDOWIN M,MANECKI M.Petrophysical exam⁃ ination of CO-brine-rock interactions-results of the first stage of long-term experiments in the potential Zaosie Anticline reservoir(central Poland)for CO2 storage[J].Environmental Monitoring and Assessment,2015,187(1):4 215:1-4 215:10.
参考文献 55
CANTUCCI B,MONTEGROSSI G,VASELLI O,et al.Geochemi⁃ cal modeling of CO2 storage in deep reservoirs:the Weyburn Proj⁃ ect(Canada)case study[J].Chemical Geology,2009,265(1/2):181-197.
参考文献 56
WANG Kairan,XU Tianfu,WANG Fugang,et al.Experimental study of CO2-brine-rock interaction during CO2 sequestration in deep coal seams[J].International Journal of Coal Geology,2016,154/155:265-274.
参考文献 57
王闯,朱前林,黄春霞,等.吴起油田油藏 CO2地质封存潜力评价与分析[J]环境工程,2019,37(S1):268-273.WANG Chuang,ZHU Qianlin,HUANG Chunxia,et al.Evaluation and analysis of CO2 geologic storage capacity in Wuqi OilField[J] Environmental Engineering,2019,37(S1):268-273.
参考文献 58
崔国栋,张亮,任韶然,等.油藏 CO2驱及封存过程中地化反应特征及埋存效率[J].中国石油大学学报:自然科学版,2017,41(6):123-131.CUI Guodong,ZHANG Liang,REN Shaoran,et al.Geochemical reactions and CO2 storage efficiency during CO2 EOR process and subsequent storage[J].Journal of China University of Petroleum:Edition of Natural Science,2017,41(6):123-131.
参考文献 59
AMINU M D,NABAVI S A,ROCHELLE C A,et al.A review of developments in carbon dioxide storage[J].Applied Energy,2017,208:1 389-1419.
参考文献 60
WANG Dayong,DONG Bo,BREEN S,et al.Review:approaches to research on CO2/brine two-phase migration in saline aquifers[J].Hydrogeology Journal,2014,23(1):1-18.
参考文献 61
BOLSTER D.The fluid mechanics of dissolution trapping in geo⁃ logic storage of CO2[J].Journal of Fluid Mechanics,2014,740:1-4.
参考文献 62
IPCC.IPCC special report:carbon capture and storage[M].Cam⁃ bridge:Cambridge University Press,2005.
参考文献 63
宁雅洁.盐水层 CO2埋存量影响因素数值模拟研究[D].北京:中国地质大学(北京),2020.NING Yajie.Research on the factors influencing porosity in the process of CO2 storage in the saline aquifer[D].Beijing:China University of Geosciences(Beijing),2020.
参考文献 64
AKBARABADI M,PIRI M.Co-sequestration of SO2 with super⁃ critical CO2 in carbonates:an experimental study of capillary trap⁃ ping,relative permeability,and capillary pressure[J].Advances in Water Resources,2015,77:44-56.
参考文献 65
DE SILVA P N K,RANJITH P G.Advanced core flooding appara⁃ tus to estimate permeability and storage dynamics of CO2 in large coal specimens[J].Fuel,2013,104:417-425.
参考文献 66
PENTLAND C H,EL-MAGHRABY R,GEORGIADIS A,et al.Immiscible displacements and capillary trapping in CO2 storage [J].Energy Procedia,2011,4:4 969-4 976.
参考文献 67
LI Qi.Coupled reactive transport model for heat and density driven flow in CO2 storage in saline aquifers[J].Journal of Hazardous Toxic and Radioactive Waste,2011,15(4):251-258.
参考文献 68
PANG Zhonghe,LI Yiman,YANG Fengtian,et al.Geochemistry of a continental saline aquifer for CO2 sequestration:the Guantao Formation in the Bohai Bay Basin,North China[J].Applied Geo⁃ chemistry,2012,27(9):1 821-1 828.
参考文献 69
LIU Weizao,TENG Liumei,ROHANI S,et al.CO2 mineral carbon⁃ ation using industrial solid wastes:a review of recent develop⁃ ments[J].Chemical Engineering Journal,2021,416(7273):129093.
参考文献 70
WANG Fei,DREISINGER D B,JARVIS M,et al.The technology of CO2 sequestration by mineral carbonation:current status and fu⁃ ture prospects[J].Canadian Metallurgical Quarterly,2017,57(1):1-13.
参考文献 71
NARAHARISETTI P K,YEO T Y,BU Jie.New classification of CO2 mineralization processes and economic evaluation[J].Renew⁃ able and Sustainable Energy Reviews,2019,99:220-233.
参考文献 72
HELLEVANG H,HAILE B G,TETTEH A.Experimental study to better understand factors affecting the CO2 mineral trapping poten⁃ tial of basalt[J].Greenhouse Gases:Science and Technology,2017,7(1):143-157.
参考文献 73
SUNDAL A,HELLEVANG H,MIRI R,et al.Variations in miner⁃ alization potential for CO2 related to sedimentary facies and burial depth—a comparative study from the North Sea[J].Energy Proce⁃ dia,2014,63:5 063-5 070.
参考文献 74
GUNTER W D,BACHU S,BENSON S.The role of hydrogeologi⁃ cal and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide[J].Geological Society,Lon⁃ don,Special Publications,2004,233(1):129-145.
参考文献 75
BACHU S.Review of CO2 storage efficiency in deep saline aquifers [J].International Journal of Greenhouse Gas Control,2015,40:188-202.
参考文献 76
BACHU S,BONIJOLY D,BRADSHAW J,et al.Estimation of CO2 storage capacity in geological media[R/OL].CSLF-T-2007-04.[2022-08-01].https://www.cslforum.org/cslf/sites/default/files/documents/PhaseII Report Storage Capacity Measurement Task Force.pdf.
参考文献 77
BUTTINELLI M,PROCESI M,CANTUCCI B,et al.The geo-data⁃ base of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy[J].Energy,2011,36(5):2 968-2 983.
参考文献 78
DE SILVA P N K,RANJITH P G.A study of methodologies for CO2 storage capacity estimation of saline aquifers[J].Fuel,2012,93:13-27.
参考文献 79
ZHAO Xiaoliang,LIAO Xinwei,WANG Wanfu,et al.The CO2 storage capacity evaluation:Methodology and determination of key factors[J].Journal of the Energy Institute,2014,87(4):297-305.
参考文献 80
CANTUCCI B,BUTTINELLI M,PROCESI M,et al.Algorithms for CO2 storage capacity estimation:review and case study[M]//VISHAL V,SINGH T N.Geologic Carbon Sequestration:Under⁃ standing Reservoir Behavior.New York:Springer Cham,2016:21-44.
参考文献 81
沈平平,廖新维,刘庆杰.二氧化碳在油藏中埋存量计算方法 [J].石油勘探与开发,2009,36(2):216-220. SHEN Pingping,LIAO Xinwei,LIU Qingjie.Methodology for esti⁃ mation of CO2 storage capacity in reservoirs[J].Petroleum Explo⁃ ration and Development,2009,36(2):216-220.
参考文献 82
BACHU S,SHAW J C,PEARSON R M.Estimation of oil recovery and CO2 storage capacity in CO2 EOR incorporating the effect of underlying aquifers[R].SPE/DOE Symposium on Improved Oil Recovery,Tulsa,2004:SPE-89340-MS.
参考文献 83
任建峰.油田 CO2封存渗漏机制及监测方法研究[D].青岛:中国石油大学(华东),2016.REN Jianfeng.Mechanisms and monitoring of CO2 leakage during EOR and geological storage processes[D].Qingdao:China Univer⁃ sity of Petroleum(East China),2016.
参考文献 84
SUN Yankun,LIU Jinquan,XUE Ziqiu,et al.A critical review of distributed fiber optic sensing for real-time monitoring geologic CO2 sequestration[J].Journal of Natural Gas Science and Engi⁃ neering,2021,88:103751.
参考文献 85
SAFFOU E,RAZA A,GHOLAMI R,et al.Geomechanical charac⁃ terization of CO2 storage sites:a case study from a nearly depleted gas field in the Bredasdorp Basin,South Africa[J].Journal of Nat⁃ ural Gas Science and Engineering,2020,81:103446.
参考文献 86
KUMAR S,FOROOZESH J,EDLMANN K,et al.A comprehen⁃ sive review of value-added CO2 sequestration in subsurface saline aquifers[J].Journal of Natural Gas Science and Engineering,2020,81:103437.
参考文献 87
WIMMER B T,KRAPAC I G,LOCKE R,et al.Applying monitor⁃ ing,verification,and accounting techniques to a real-world,en⁃ hanced oil recovery operational CO2 leak[J].Energy Procedia,2011,4:3 330-3 337.
参考文献 88
宋兆杰.高含水油田 CO2驱油适应性评价方法研究[D].北京:中国地质大学(北京),2014.SONG Zhaojie.Feasility study on CO2 flooding in high water cut oilfields[D].Beijing:China University of Geosciences(Beijing),2014.
参考文献 89
SCHERER G W,CELIA M A,PREVOST J H,et al.Chapter10— Leakage of CO2 through abandoned wells:role of corrosion of ce⁃ ment[M]//THOMAS D,BENSON S.Carbon Dioxide Capture for Storage in Deep Geologic Formations.Amsterdam:Elsevier Sci⁃ ence,2005:827-848.
参考文献 90
GASDA S E,BACHU S,CELIA M A.Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin[J].Environmental Geology,2004,46(6/7):707-720.
参考文献 91
CONNELL L,DOWN D,LU Meng,et al.An investigation into the integrity of wellbore cement in CO2 storage wells:core flooding ex⁃ periments and simulations[J].International Journal of Greenhouse Gas Control,2015,37:424-440.
参考文献 92
QUATTROCCHI F,BOSCHI E.Case histories in scientific and pseudo-scientific mass-media communication in energy/heat pro⁃ duction from underground(geogas storage,geothermics,hydrocar⁃ bons),in the frame of Nimby Sindrome enhancement in Europe:the proposal of a new European Direct[J].Veterinary Research,2015,46(1):115.
参考文献 93
IDE S T,FRIEDMANN S J,HERZOG H J.CO2 leakage through existing wells:current technology and regulations[C].Trondheim:8th International Conference on Greenhouse Gas Control Technol⁃ ogies,2006:19-33.
参考文献 94
RUTQVIST J,TSANG C F.A study of caprock hydromechanical changes associated with CO2-injection into a brine formation[J].Environmental Geology,2002,42(2/3):296-305.
参考文献 95
HOU Lianhua,YU Zhichao,LUO Xia,et al.Self-sealing of cap⁃ rocks during CO2 geological sequestration[J].Energy,2022,252:124064.
参考文献 96
EBIGBO A,CLASS H,HELMIG R.CO2 leakage through an aban⁃ doned well:problem-oriented benchmarks[J].Computational Geo⁃ sciences,2007,11(2):103-115.
参考文献 97
GAUS I.Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks[J].International Journal of Green⁃ house Gas Control,2010,4(1):73-89.
参考文献 98
WANG Jianguo,PENG Yan.Numerical modeling for the combined effects of two-phase flow,deformation,gas diffusion and CO2 sorp⁃ tion on caprock sealing efficiency[J].Journal of Geochemical Ex⁃ ploration,2014,144(A):154-167.
参考文献 99
VILARRASA V,RUTQVIST J.Thermal effects on geologic carbon storage[J].Earth-Science Reviews,2017,165:245-256.
参考文献 100
CHIQUET P,BROSETA D,THIBEAU S.Wettability alteration of caprock minerals by carbon dioxide[J].Geofluids,2007,7(2):112-122.
参考文献 101
YANG Dayong,TONTIWACHWUTHIKUL P,GU Yongan.Interfa⁃ cial interactions between reservoir brine and CO2 at high pres⁃ sures and elevated temperatures[J].Energy & Fuels,2005,19(1):216-223.
参考文献 102
YANG Dayong,TONTIWACHWUTHIKUL P.Interfacial tensions of the crude oil+reservoir brine+CO2 systems at pressures up to 31 MPa and temperatures of 27 ℃ and 58 ℃[J].Journal of Chemical & Engineering Data,2005,50(4):1 242-1 249.
参考文献 103
LI Shihong,DONG Mingzhe,LI Zengchen,et al.Gas breakthrough pressure for hydrocarbon reservoir seal rocks:implications for the security of long-term CO2 storage in the Weyburn field[J].Geoflu⁃ ids,2005,5(4):326-334.
参考文献 104
HILDENBRAND A,SCHLÖMER S,KROOSS B.Gas break⁃ through experiments on fine-grained sedimentary rocks[J].Geo⁃ fluids,2002,2(1):3-23.
参考文献 105
SONG Juan,ZHANG Dongxiao.Comprehensive review of cap⁃ rock-sealing mechanisms for geologic carbon sequestration[J].Environmental Science & Technology,2013,47(1):9-22.
参考文献 106
FARRELL N J C,HEALY D,TAYLOR C W.Anisotropy of perme⁃ ability in faulted porous sandstones[J].Journal of Structural Geol⁃ ogy,2014,63(3):50-67.
参考文献 107
LI Zhaowen,DONG Mingzhe,LI Shuliang,et al.CO2 sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity[J].Energy Conversion and Management,2006,47(11/12):1 372-1 382.
参考文献 108
张森琦,刁玉杰,程旭学,等.二氧化碳地质储存逃逸通道及环境监测研究[J].冰川冻土,2010,32(6):1 251-1 261.ZHANG Senqi,DIAO Yujie,CHENG Xuxue,et al.CO2 geological storage leakage routes and environment monitoring[J].Journal of Glaciology and Geocryology,2010,32(6):1 251-1 261.
参考文献 109
强薇,李义连,文冬光,等.温室性气体地质处置研究进展及其问题[J].地质科技情报,2006,25(2):83-88.QIANG Wei,LI Yilian,WEN Dongguang,et al.Advances and problems of geological disposal of greenhouse gases[J].Geologi⁃ cal Science and Technology Information,2006,25(2):83-88.
参考文献 110
曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放—— 二氧化碳地下储存研究[J].中国科学基金,2004,18(4):196-200.ZENG Rongshu,SUN Shu,CHEN Daizhao,et al.Decrease carbon dioxide emission into the atmosphere—underground disposal of carbon dioxide[J].Bulletin of National Natural Science Founda⁃ tion of China,2004,18(4):196-200.
参考文献 111
许志刚,陈代钊,曾荣树.CO2地质埋存渗漏风险及补救对策 [J].地质论评,2008,54(3):373-386.XU Zhigang,CHEN Daizhao,ZENG Rongshu.The leakage risk as⁃ sessment and remediation options of CO2 geological storage[J].Geological Review,2008,54(3):373-386.
参考文献 112
METZ B,DAVIDSON O,DE CONINCK H,et al.IPCC special re⁃ port on carbon dioxide capture and storage[M].Cambridge:Cam⁃ bridge University Press,2005.
参考文献 113
CAWLEY S J,SAUNDERS M R,LE GALLO Y,et al.Chapter5— The Ngcas project-assessing the potential for EOR and CO2 stor⁃ age at the Forties Oilfield,Offshore UK[M]//THOMAS D,BEN⁃ SON S.Carbon dioxide capture for storage in deep geologic forma⁃ tions.Amsterdam:Elsevier Science,2005:713-750.
参考文献 114
WALTON F B,TAIT J C,LE NEVEU D,et al.Geological storage of CO2:a statistical approach to assessing performance and risk [R].Proceedings of the 7th International Conference on Green⁃ house Gas Control Technologies(GH GT-7),Vancouver,2004:693-700.
参考文献 115
ZHOU Weixian,STENHOUSE M J,ARTHUR S R,et al.The IEA Weyburn CO2 monitoring and storage project-modeling of the long-term migration of CO2 from Weyburn[R].Proceedings of the 7th International Conference on Greenhouse Gas Control Technol⁃ ogies,Vancouver,2004:721-729.
参考文献 116
STALKER L,NOBLE R R P,PEJCIC B,et al.Feasibility of moni⁃ toring techniques for substances mobilised by CO2 storage in geo⁃ logical formations[J].Energy Procedia,2012,23(1):439-448.
参考文献 117
MYERS M,STALKER L,PEJCIC B,et al.Tracers-past,present and future applications in CO2 geosequestration[J].Applied Geo⁃ chemistry,2013,30:125-135.
参考文献 118
ZHANG Tian,ZHANG Wanchang,YANG Ruizhao,et al.CO2 cap⁃ ture and storage monitoring based on remote sensing techniques:a review[J].Journal of Cleaner Production,2020:124409.
参考文献 119
DEAN M,TUCKER O.A risk-based framework for Measurement,Monitoring and Verification(MMV)of the Goldeneye storage com⁃ plex for the Peterhead CCS project,UK[J].International Journal of Greenhouse Gas Control,2017,61:1-15.
参考文献 120
ROBERTS J J,GILFILLAN S M V,STALKER L,et al.Geochemi⁃ cal tracers for monitoring offshore CO2 stores[J].International Journal of Greenhouse Gas Control,2017,65:218-234.
参考文献 121
THIRUCHITTAMPALAM S,RAVAL S A,GLENN N F,et al.In⁃ direct remote sensing techniques for long term monitoring of CO2 leakage in geological carbon sequestration:a review[J].Journal of Natural Gas Science and Engineering,2022,100:104488.
参考文献 122
SAITO H,NOBUOKA D,AZUMA H,et al.Time-lapse crosswell seismic tomography for monitoring injected CO2 in an onshore aquifer,Nagaoka,Japan[J].Geophysical Exploration,2006,37(1):30-36.
参考文献 123
AJO-FRANKLIN J B,PETERSON J,DOETSCH J,et al.Highresolution characterization of a CO2 plume using crosswell seismic tomography:Cranfield,MS,USA[J].International Journal of Greenhouse Gas Control,2013,18:497-509.
参考文献 124
BÖHM G,CARCIONE J M,GEI D,et al.Cross-well seismic and electromagnetic tomography for CO2 detection and monitoring in a saline aquifer[J].Journal of Petroleum Science and Engineering,2015,133:245-257.
参考文献 125
RAJI W O,HARRIS J M,LU Shaoyu.Seismic velocity tomogra⁃ phy for CO2 monitor in subsurface geological structures[J].Jour⁃ nal of King Saud University-Science,2016,30(1):57-64.
目录contents

    摘要

    为实现中国碳达峰、碳中和的长远目标,将化石能源燃烧生成的CO2捕集后注入到高含水油藏,不仅可提高原油采收率,而且能在油层中实现CO2地质封存,有利于实现油气增产和降低碳排放的双重目标。针对高含水油藏的特点,从CO2驱油和地质封存机理、赋存方式、埋存量计算方法以及CO2运移、泄漏风险预测与评价等方面进行了全面回顾。基于高含水油藏CO2驱油与地质封存的中外研究现状,结合与之密切相关的科学领域及其矿场面临的难题,提出了CO2与储层岩石和流体反应、驱油机理和封存方式、赋存量、封存效率、泄漏与风险防控等亟需深入研究的10个关键问题,为CO2驱油与地质封存研究方向及产业化技术储备提供参考。CO2驱油与地质封存问题的解决,对服务于“碳减排”和“碳增汇”,实现中国的碳达峰、碳中和战略目标具有重要意义。

    Abstract

    To realize long-term objectives of carbon peaking and neutrality in China,injecting captured CO2 generated by fossil fuel combustion into high-water-cut reservoirs may not only enhance oil recovery,but realize CO2 geological storage in oil layers. This is conducive to achieving the dual goals of increasing oil and gas production and reducing carbon emis- sions. In view of the characteristics of high-water-cut reservoirs,a comprehensive review is carried out from the aspects of CO2 flooding and geological storage mechanisms,storage modes,storage-capacity calculation methods,CO2 migration,and leakage-risk prediction and evaluation. Based on the research status of CO2 flooding and geological storage in high-watercut reservoirs in China and abroad,as well as the closely related scientific fields and the problems faced by mines,this pa- per puts forward ten key issues needing further research,such as reaction of CO2 with reservoir rocks and fluids,CO2 flood- ing mechanism and storage mode,storage capacity,storage efficiency,and leakage-risk prevention and control. This pro- vides a reference for research directions of CO2 flooding and geological storage,as well as industrial technology reserves. The solution to the key issues of CO2 flooding and geological storage is of great significance for serving“carbon emission re- duction”and“carbon sink increase”to achieve the strategic goals of carbon peaking and neutrality in China.

  • 自 1750 年以来,全球因化石燃料的燃烧以 CO2 形式向大气中排放了 2 800×108 t 的碳,大气中的 CO2体积分数由1750年的280×10-6 增加到2010年的 388×10-6,夏威夷莫纳罗亚天文台从 1958 年 3 月起直接测量大气中的 CO2,2020 年 12 月 CO2体积分数达到 414.02×10-6。据联合国气候变化专家委员会报道,过去 100 a 里,全球平均地表温度上升了 (0.74±0.18)℃[1],而从19世纪以来,最热的7 a都出现在过去10 a中,2020年的气温已经比19世纪的气温高出约 1.2℃。WANG 对 1971年以来 138个国家的资料研究表明:随着经济的发展,CO2排放量稳步增长[2]。CO2作为温室气体主要成分之一,对全球气候变暖及其引起的生态等问题具有重要影响[3-4]。文献[5-6]给出了 2017年全球和中国的 CO2排放量分别为 334.44×108 和 93.32×108 t。英国气象局预计,到 2021年大气中的 CO2排放量将首次超过工业化前水平的50%以上,减排压力较大。中国提出了 2030年“碳达峰”和2060年“碳中和”的目标,该目标实现与否不但事关全球有效治理和家园保护,而且事关中国生态、环境治理和经济持续发展。另一方面,中国对原油的需求量日益增加,据 2022 年 1 月 14日海关总署公布的数据显示,2021年中国进口原油5.4×108 t,对外依存度达到73%。

  • CO2驱油与封存技术有助于增强油田碳汇功能,该技术可实现 CO2提高原油采收率和地质封存的双重目标,是当前减少碳排放的有效方式之一[7-8],具有良好的经济和社会双重效益。中国老油田都面临着提高采收率(EOR)问题,而将 CO2注入油层可以大幅度提高原油采收率[9-13]。美国和加拿大的 CO2-EOR 项目取得了较好的效果[10]。近年来中国的石油研究机构、高校和企业等加大了 CO2-EOR室内研究工作[14-16] 和矿场试验的力度[1517]

  • 目前中国处于高含水期开发阶段的油田产量占全国总产量的 70% 以上。石油企业为油气生产所钻遇储层孔隙的内部主要含有油和水 2 种流体,从目前CO2驱油与地质封存的技术和经济可行性考虑,这些高含水油藏是适合 CO2封存和再利用(驱油)的最佳地质场所之一[18-21]。因此在 CO2减排和油气需求增加与提高油田采收率的双重压力和背景下,把握高含水油藏 CO2驱油与地质封存机理研究现状,明确待解决的关键问题,近期实现驱油增产,远期实现CO2长久地质封存,既有迫切的工业需求,又有良好的社会和经济效益。

  • 1 高含水油藏CO2驱油机理研究现状

  • 1.1 高含水油藏特征及驱油潜力

  • 含水率大于 60% 的高含水期是油田开发的重要阶段,中国大部分油田非均质性强,原油黏度高,综合含水率上升快[22],约 60%~70% 的可采储量要在中、高含水阶段采出,该阶段具有周期长、潜力大的特点。在开发过程中优势渗流通道的形成会进一步增强储层的非均质性。而当注水开发的油田达到高含水后期,原油产量的递减趋势十分明显,地下剩余油呈现出整体高度分散、局部相对富集的分布格局[23]

  • 高含水期的剩余油主要附着在孔隙表面,或者 “卡”在细小的孔喉处,水与油之间的黏附力小于油与孔隙壁之间的黏附力[24],注入水难以将这些剩余油驱替出来,无法进一步提高采收率。进入高含水开发阶段的油田,面临的首要任务是挖潜剩余油,实现持续稳产[25],最大限度地提高储量动用程度。

  • 据《中国矿产资源报告(2021)》显示,2020年中国石油剩余探明技术可采储量达36.19×108 t。但面临着探明储量品位低、开发难度大等问题,其中非常规等油气藏占比达到 85%[26]。相比水驱油田开发,因 CO2的流动能力更好,CO2驱可作为低渗透油藏提高采收率的优先方式。中国混相条件较好的技术可行CO2驱潜力约为70×108 t [27],预计平均提高采收率为12%,新增可采储量为8.4×108 t,驱油潜力巨大。

  • 1.2 CO2驱油机理

  • 1.2.1 CO2提高采收率机理

  • 原油体积膨胀 由于 CO2溶解到原油中,原油体积增大10%~60%。这种现象在轻油中更明显,而且会使残余油饱和度降低[28]。膨胀系数取决于溶解CO2的摩尔分数和原油的相对分子质量。驱油后残留在油藏中的剩余油与膨胀系数成反比,即膨胀系数越大,残留在油藏中的剩余油就越少;并且,当原油体积膨胀并迫使水离开孔隙空间时,之前不相连的的油团可能会变成相连。原油体积膨胀为驱油提供了动能,提高了驱油效率[29-30]

  • 扩散形成溶解气驱 就像 CO2随着油藏压力的增加进入溶液一样,注入阶段结束后,随着压力下降,CO2将从溶液中逸出,液体内产生气体驱动力,继续将油驱入井筒[31]。另外,一些CO2驱油后,占据了一定的孔隙空间,成为束缚气,也可使原油增产。

  • 原油黏度降低 CO2在原油中的溶解也会导致原油黏度降低。计算表明,降黏是提高采收率的主要机理。黏度下降幅度与地层压力、温度和原油组分相关。实验表明,在给定的饱和压力下,对于原始黏度更高的原油,其黏度下降幅度更大[32]

  • 萃取原油中的轻烃 CO2具有较高的萃取轻烃能力,有利于提高轻烃采收率。

  • 降低油水界面张力 通常原油与水的界面张力为30.68 mN/m,是原油与CO2界面张力的10.5倍,随着压力的升高,CO2与原油界面张力逐渐降低,当界面张力消失时,CO2与原油达到混相条件,可大幅度提高驱油效率和原油采收率。

  • 降低残余油饱和度 低渗透油藏水驱后剩余油赋存状态以油膜为主,其它为盲端、孤岛状。进行 CO2交替驱后 3 种不同状态残余油饱和度均有明显降低。

  • 1.2.2 高含水油田CO2驱油

  • 将 CO2注入油层可较大幅度提高油气采收率,已被证明是有效的提高采收率技术[33-35]。注入的 CO2对油藏油、水系统有多种影响,包括原油体积膨胀、原油黏度及毛细管力降低[36]。微观实验也表明,注气具有扩大波及体积和提高驱油效率的作用[37]。CO2 溶解于原油后可使其体积膨胀 10%~40%、降黏30%~99%、降低界面张力和驱油阻力,有效地改善油、水流度比[38]。在微观驱油机理方面,混相驱可消除贾敏效应;如果采用水气交替(WAG) 驱油,可降低“气窜效应”,扩大波及程度。如果油藏压力足够高,可通过相间组分传质,降低界面张力,逐步达到混相状态,实现大幅度提高原油采收率的目的[39-40]。CO2与原油动态混相所需的压力,远低于天然气、烟道气或氮气所需的压力。因此与其它气体相比,CO2混相驱的潜力储量要大得多。

  • 高含水期微观剩余油的分布复杂多样,可视孔隙网络模型水驱到高含水阶段的剩余油分布见图1。由于孔喉结构的复杂性,水驱后形成了不同类型的剩余油,主要有连片型剩余油、分支状剩余油、膜状剩余油、滴状或柱状剩余油等,特高含水阶段含油饱和度较低,大部分空间被水占据。

  • 对于高含水油藏,CO2与岩石长期作用会改变岩石润湿性,以柱状流、连续油膜流等形式被驱替出来[40-41]。CO2能够驱替水驱不到的更细小孔隙内的剩余油。一般情况下,CO2注入油层后在原油中的溶解度是其在水中的10倍,甚至更高[42]。对于盲端位置的剩余油,CO2驱油机理主要为抽提与溶解作用;“孤立型”和“簇状”剩余油的动用,主要依靠 CO2驱替作用[43]。然而由于水膜的存在,一定程度上屏蔽了 CO2与原油的接触,大大延缓了 CO2与原油的混相过程,且水膜厚度越大,混相过程延缓时间越长,导致CO2驱油效果变差[44]。尽管如此,水驱后注CO2,无论是非混相油藏还是混相油藏,都能较好地提高采收率。高压与低速注气结合,CO2与原油更易于实现混相,缓解气体突破,增大驱油效率和波及系数[43]。总体来说,高含水油藏 CO2驱的见效特征表现为:注气早期含水率较高、采油速度较低; 当 CO2突破后,含水率急剧下降,采油速度提高[45],有利于实现高含水期剩余油的有效动用和开采。

  • 图1 高含水期微观剩余油分布

  • Fig.1 Microscopic remaining-oil distribution in high water-cut stage

  • 2 高含水油藏CO2地质封存机理研究现状

  • 油藏是 CO2理想的地质封存场所,因为其中已储存了数千年到数百万年的碳氢化合物,有良好的封闭性,泄漏风险最小[46]。油藏中已部署生产井和注入井,储层相关参数齐全,并有相应的计算机软件可以模拟、预测地下 CO2的运移、捕获,是最理想的CO2埋存地点[47-50]

  • 2.1 CO2-水-岩石相互作用

  • 一旦 CO2溶解在地层水中,就会形成弱酸性溶液,引发一连串的地球化学反应,最终可能会将CO2 捕获为固体碳酸盐矿物。最初,CO2以溶解(如 CO2 水合物和HCO3-离子)的形式被捕获。富含Ca或Mg 的硅酸盐矿物的溶解会将这些元素释放到溶液中,如果 pH值足够高,会形成次生碳酸盐相的沉淀,将 CO2捕获在次生矿物中。

  • CO2-水-岩石相互作用可能使矿物溶解和次生矿物生成。在溶解/腐蚀速率方面,碳酸盐矿物比长石溶解/腐蚀速率快,石英的溶解/腐蚀速率更高[50]。由于 CO2-水-岩石相互作用会影响孔隙结构,相互作用后,岩石渗透率可能升高或降低,驱替压力也可能升高或降低,从而对 CO2运移速率产生影响。 CO2-水-岩石反应的程度以及自由相 CO2、溶解 CO2 和矿化CO2的比例取决于储存地层中活性矿物的数量及其反应速率[51],以及 CO2与水和岩石混合的程度。

  • 前人通过实验研究了 CO2储存背景下的 CO2-水-岩石相互作用。SAEEDI 等利用实验对西澳大利亚西南中心的三叠纪 Lesueur 砂岩样品进行了多相流特性研究,结果表明:岩样具有良好的残留毛细管捕集特性,CO2驱后岩心的绝对渗透率下降幅度为25%~60%,并认为渗透率的降低归因于岩石孔隙内高岭石颗粒运移引起的地层损害[52]。SOONG 等利用来自美国密西西比州杰克逊县下塔斯卡卢萨地层的样品,探索了类似于盐水层的 CO2-水-岩石静态系统中的地球化学相互作用[53]。在连续接触CO2 6个月之后,使用各种分析技术来确定与CO2 作用前后岩样的渗透率,结果表明接触 CO2的砂岩渗透率降低,推断长时间作用后可能对储层产生影响。TARKOWSKI 等还利用来自波兰中部 Zaosie 背斜油藏的岩样,通过 CO2-水-岩石相互作用实验进行了岩石物理分析,研究目的是确定储层岩石性质和由CO2引起的变化[54]。在原始地层条件下对样品进行测试,并通过比表面积、孔隙度、孔径大小和分布对其进行表征。岩石基质和胶结物均部分溶解; 而储层岩石性质变化不明显,对 CO2储量的影响可以忽略不计。

  • 还有一些学者通过数值模拟对CO2-水-岩石相互作用进行了研究。CANTUCCI 等基于加拿大 Weyburn油田案例,对水-岩石相互作用进行了地球化学模拟,以评估在深层地质构造中短期和中期封存CO2的效果[55]。结果表明,注入100 a后,CO2可通过溶解性和析出的钠锌矿捕获来中和。WANG 等对深部煤层中CO2-水-岩石相互作用进行了数值模拟和实验研究[56]。渗滤液的化学分析结果表明,由于煤系地层中硅酸盐和碳酸盐矿物的溶解,主要元素有明显的迁移作用。岩屑砂岩(与 CO2-水和无 CO2-水反应后)中石英、斜长石、绿泥石和伊利石的含量显著增加,而黑云母、高岭石、伊利石/蒙脱石的含量则显著减少。处理 12 d 后,钙质泥岩(与 CO2-水和无 CO2-水反应)矿物发生了主要的蚀变。此外,还发现 CO2以白云石和菱铁矿的形式被永久封存。地球化学模拟虽能在一定程度上考虑了矿物的溶解和沉淀,但与实验结果不太吻合。建议进一步改进模型,充分考虑流体流动、地球化学反应和地质力学的作用,以达到更好的预测效果。

  • 2.2 CO2在油藏中的封存方式

  • 在应用 CO2驱油时,突破后部分 CO2随原油一起产出,可将采出的 CO2经分离和处理后重新注入油层,在非混相条件下 CO2以游离气形式赋存在储层孔隙中;在与原油和地层水接触时,CO2会溶解于其中;CO2与地层水及岩石矿物成分通过多级化学反应,实现碳酸盐等固态形式的地质封存[57-58]

  • CO2注入到油藏后通常以矿化、溶解、构造和地层圈闭、束缚空间等形式封存[59-61],其封存比例如图2 所示[62-63]。大部分注入的 CO2以自由气形式封存存于储层中,扩散速率由流体的性质和储层的孔隙度、渗透率共同决定,并受边界性质的影响。

  • 图2 4种CO2封存方式封存比例随时间的变化 (据文献[62]修改)

  • Fig.2 Changes of sequestration percentage under four types of CO2 sequestration with time(Modification according to reference[62]

  • 2.2.1 构造和地层圈闭封存

  • 物理圈闭包括构造圈闭和地层圈闭[64]。当凹陷结构和低渗透密封层(即盖层)阻碍了CO2羽流的迁移时,就会发生捕获现象[65]。构造圈闭和地层圈闭是CO2地质封存早期最主要的圈闭机制。

  • 2.2.2 束缚空间封存

  • 当 CO2在细小孔隙内运移,受毛细管力和贾敏效应束缚作用,实现束缚封存。束缚捕获是一个相对快速的过程,在岩心实验中发生在几天到几个月的时间范围[66]

  • 2.2.3 溶解封存

  • 在 CO2注入油藏之后,高压条件下大量的 CO2 溶解于原油和地层水。这种类型的捕集主要为短期和中期封存,一旦注入的CO2溶于盐水层,它就不再作为一个单独的部分存在,从而消除了推动其向上的浮力[67]。从长期来看,由地下水中 CO2溶解引起的酸化所驱动的水-岩石相互作用将导致 CO2的矿物捕获[68]

  • 2.2.4 矿化封存

  • CO2溶于水形成碳酸,碳酸又进一步电离成H+, HCO3- 和 CO3 2-,促进含 Ca 或 Mg 等的硅酸盐矿物的溶解和碳酸化[69-71],生成一些固相的碳酸盐(如 Ca⁃ CO3和MgCO3),反应方程式包括:

  • CO2+H2OH2CO3
    (1)
  • H2CO3H++HCO3-
    (2)
  • HCO3-H++CO32-
    (3)
  • (Ca,Mg)xSiyOx+2y+zH2z+xCO2x(Ca/Mg)CO3+ySiO2+zH2O
    (4)
  • CO2+2OH-CO32-+H2O
    (5)
  • Ca2+/Mg2++CO32-(Ca/Mg)CO3
    (6)
  • 该机制是一种较为永久和安全的 CO2封存形式,这一过程比溶解捕获要慢,并且发生在较长的地质时间尺度上[72-75]

  • 3 CO2在油藏中埋存量的计算方法

  • CO2埋存量主要与地质构造类型、岩化反应时间以及边界条件(开放与封闭)有关。利用资源和储量的概念,碳收集领导人论坛(CSLF)研究人员绘制了一个CO2埋存量的技术经济资源储量金字塔型示意图[76] (图3)。在该图中,CO2储量以质量计量,而不是以体积来计量,因为存储的 CO2体积取决于储层的压力和温度;理论埋存量是指在油田中可以储存 CO2的最大容量;有效埋存量在计算中考虑了浮力、重力超覆、流度比、非均质性、含水饱和度等因素的影响;实际埋存量考虑了CO2储存的技术、法律、政府和经济因素,其会随着技术、政策、数据和经济的变化而变化;匹配埋存量是根据埋存体的容积、注入量和供给量进行评价,这个容量是最小的。

  • 图3 CO2在油藏中的埋存量分级

  • Fig.3 Classification diagram of CO2 storage capacity

  • 3.1 CO2理论埋存量计算方法

  • 基于物质守恒计算理论,CSLF 给出了油气藏 CO2潜力埋存量计算公式,还有一些学者提出了不同估计存储容量的方法[77-80],这些方法的局限性在于没有考虑与含水层和水淹层内水的作用,不适用于中国注水开发油田的油藏条件,沈平平等考虑注水开发油藏的开发特点和溶解作用,建立了 CO2理论埋存量计算方法[81]

  • 3.1.1 注水开发油藏

  • 假设原始储层压力条件,考虑 CO2在原油和水中溶解的埋存量方程为[81]

  • Mt=ρr109ERAhϕ1-Swi-Viw+Vpw+CwsAhϕSwi+Viw-Vpw+Cos1-ERAhϕ1-Sw
    (7)
  • 3.1.2 CO2驱油藏

  • 文献[81]结合 BACHU 等[82] 建立的 CO2突破和突破前后的埋存量计算原理,结合(7)式中考虑的因素,推导出 CO2突破之前和 CO2突破之后的计算公式分别为:

  • Mtb=ρr109ERAhϕ1-Swi-Viw+Vpw+CwsAhϕSwi+Viw-Vpw+Cos1-ERbAhϕ1-Swi
    (8)
  • Mta=ρr1090.4ERb+0.6ERhAhϕ1-Swi-Viw+Vpw+CwsAhϕSw+Viw-Vpw+Cos1-0.4ERb-0.6ERhAhϕ1-Swi
    (9)
  • 其中,(8)和(9)式需要的原油采收率等参数,借用油藏数值模拟等方法获取。

  • 3.2 CO2有效埋存量计算方法

  • 由于受流体性质、重力作用水体等因素的影响,实际地层无法达到理论埋存量。文献[81]建立了考虑非均质性、水体强度、重力分异和流度比等因素的有效埋存量的计算方程:

  • Me=CeMt=CmCbChCwCaMt
    (10)
  • 3.3 单位体积CO2埋存量计算方法

  • 基于前人的研究[73],笔者提出一种单位体积 CO2埋存量计算方法。计算思路是单位体积 CO2埋存量为溶解于油、水,以及储存在自由空间中3种形式的 CO2总量,在不同的温度和压力下,这 3种形式的埋存量不同。通过单位体积 CO2埋存量计算,已知油藏体积和温度、压力分布情况,可以算出整个油藏的CO2埋存量,计算公式为:

  • V(T,p)=Vw(T,p)+Vo(T,p)+Vg(T,p)+Va(T,p)+Vm(T,p)=SwXw(T,p)+SoXo(T,p)+Sg+Xa(T,p)+Xm(T,p)
    (11)
  • 4 高含水油藏中CO2运移和泄漏风险预测与评价

  • 4.1 CO2泄漏途径分析

  • CO2地质埋存过程中,随着注入过程中储层温度、压力的变化或地质构造运动对储盖层的影响以及井的密封失效等因素都可能导致埋存 CO2的泄漏。可能的泄漏途径有:井的密封失效、CO2在盖层内的扩散运移以及地层中可能存在的断层、裂缝等[83],基于前人的研究[62] 绘制泄漏位置示意图(图4)。这些泄漏可能是由于断层的突然开启[84]、储层地质力学参数的变化[85]、封存地点附近地下地质的变化[86] 以及管道连接故障[87],目前还未见到 CO2泄漏的相关报道[59]

  • 图4 CO2埋存过程中潜在的泄漏位置示意

  • Fig.4 Potential leakage paths during CO2 storage

  • 4.1.1 井的密封失效引起的泄漏

  • 油气开采过程中的各类井眼、注气过程中局部高压对地质构造的影响以及注入的CO2与地层水反应造成的酸性环境对井筒、套管和地层的溶蚀等可能会为埋存的 CO2提供相应的渗漏通道,从而导致密封失效[88]。当井塞或盖层-水泥密封的完整性受到损害时,重力分异作用下 CO2就有可能泄漏到井中。因此,高质量的井眼密封(以及最终的封堵)是 CO2封存的先决条件[89]

  • GASDA 等通过分析井口对埋存 CO2逃逸的影响,认为井密度对埋存CO2散失的影响比较明显[90]。 CONNELL 等利用岩心驱油实验和模拟研究了 CO2 储存中井筒水泥的完整性[91]。实验结果表明,水泥的降解分为 2 个阶段:第 1 阶段是各相碳酸盐的析出;第2阶段是碳酸钙溶入地层水后对水泥的侵蚀。研究表明,只有当水流(碳酸钙和钙离子不饱和)通过水泥分散溶解的碳酸钙时,才会发生相当大的侵蚀。因此,即使水泥密封底部最初发生反应,如果井眼密封良好,反应可能很快就停止。另一方面,如果密封性差,连续的流体流动允许渐进反应,从而增加渗透率。因此,保证初始密封的质量对油井的长期密封性能至关重要。此外,在一些国家,已经有了封堵 CO2泄漏井的丰富经验,但各地区依然需要根据具体情况对井进行评估和监测[92]

  • 在完成注入后,对废弃井采取封堵措施,这样 CO2不太可能逸出。然而废弃井如果监测部署不当,就会存在潜在风险。通过废弃井的可能泄漏通道如图5所示[90],其中①—⑥所处位置可产生裂隙,形成的泄漏通道可能会对存储安全造成潜在风险[93]。因此,对废弃井采取适当的管理措施是必要的。

  • 图5 通过废弃井可能的泄漏通道(据文献[90]修改)

  • Fig.5 Possible leakage channels through abandoned wells (Modification according to reference[90]

  • 4.1.2 盖层的扩散运移引起的泄漏

  • 不管是通过 CO2驱提高采收率的方式,还是将 CO2埋存于枯竭的油气藏,大部分CO2会以游离态存在于储层中。由于密度差异的影响,在重力分异作用下,CO2向构造顶部运移,且因为盖层的遮挡,运移到构造顶部的 CO2产生横向运移,此时对盖层的完整性要求极高。RUTQVIST等认为,CO2地质埋存过程中要充分考虑盖层的形成条件,并与实验结果进行对比,才能得到较全面的认识[94]。HOU等研究了不同矿物组合和岩石类型的盖层的自封闭能力,结果表明CO2注入后能够触发自封闭的主要矿物是方解石、菱铁矿等碳酸盐、白云石和高岭石等黏土[95]。富长石页岩和富伊利石页岩中CO2-流体-岩石相互作用相对较弱,有利于CO2的安全地质封存。富碳酸盐页岩中CO2-流体-岩石相互作用剧烈且波动较大,不利于 CO2的短期安全固存,但有利于 CO2 的中长期安全固存。因此,有效识别盖层的岩石类型和封闭能力可为安全封存 CO2提供依据。EBIG⁃ BO 等利用数值模拟方法研究了在盖层不完整的条件下CO2的逃逸问题[96],结果表明:油气与水之间的界面张力比CO2与水之间的界面张力大,CO2散失时盖层的封堵能力降低,容易造成CO2散失。

  • CO2浓度梯度可使 CO2通过分子迁移进入岩层的水饱和孔隙空间。对于一个完整的盖层来说, CO2的传输仅限于非常缓慢的分子扩散,因此极少量的 CO2可以进入盖层,这反过来限制了储层的矿化反应速率,并可能由于降解而改变孔隙度和渗透率。另一方面,对于渗透性岩石,渗流更占优势,意味着更多的 CO2可以流过,因此长期反应和矿物圈闭的影响是显著的[5997]

  • WANG 等建立了裂缝网络中 CO2-水相互作用的数值模拟模型,并基于岩层变形、气体扩散、渗流和CO2吸附,评价了盖层的封闭效率[98]。结果表明,扩散过程通过 CO2的吸附,导致页岩基质最初膨胀后收缩,并改变了裂缝网络的孔隙度和渗透率。然而,在该模型没有考虑地球化学反应动力,需要进一步提高模拟的准确性。在考虑CO2储存系统内潜在泄漏时,扩散是一个重要因素,但在CO2注入过程中温度和压力变化导致的流动值得关注,特别是对于裂缝性油田封存系统[99]

  • 毛细管渗漏是影响盖层封堵效率的另一个因素。当盐水饱和盖层中CO2压力超过毛细管入口压力时,就会发生毛细管泄漏[100]。毛细管入口压力与盖层的润湿性、盖层内的孔隙大小有关。当接触 CO2 时,盖层的润湿性发生变化[101-103]。HILDEN⁃BRAND 等描述了盖层的封闭能力和界面张力之间的关系,认为 CO2和水之间的界面张力低于油和水的界面张力,也远低于甲烷和水的界面张力[104],这意味着盖层对CO2的密封效率都低于对碳氢化合物的密封效率。

  • 4.1.3 断层与裂缝引起的泄漏

  • 裂缝和断层为潜在的泄漏位置,孕震源可作为评价孕震围岩裂缝和断层的参考。尽管在断层发育的位置,地震活动的可能性大,但岩石的应力可能会受到岩石围压或孔隙压力的影响[105]。在注入过程中,过高的注入速度可能会导致岩石的局部孔隙压力升高。因此闭合的裂缝可能被重新开启,并可能形成小裂缝。此外,盖层和储层系统内部的反应,如矿物溶蚀作用,可能会影响原有断层和裂缝的封闭能力。因此,在注入过程及结束后都应实时监测井下压力和 CO2注入速度。此外,要测量 CO2 储存地点上方和附近的土壤气体和CO2通量。

  • 岩石渗透率的各向异性可能会导致CO2在不同方向上的运移存在差异。在 FARRELL 等的研究中,各向异性渗透率与断层倾角平行测量,发现沿断层走向的渗透率最高为其它方向渗透率的 10 倍[106]。因此,在确定 CO2在断层和裂缝网络中的运移和泄漏时,考虑渗透率的各向异性是非常重要的。此外,断层内部晶粒变形导致的渗透率各向异性还没有准确量化,需要深入研究。

  • LI 等运用理论分析和三轴应力实验得出的结论和解释为:CO2的存在导致孔隙内部压力增大,降低了作用于岩层上的有效应力,有效应力降到一定极限,引起岩层破裂[107]

  • 4.2 CO2泄漏危害分析

  • 4.2.1 对人体的危害

  • CO2没有毒性,轻微泄漏对人体及生态危害不大,但因封存失败,集中在短时间内大量泄漏,过高的 CO2浓度会对泄漏区内的生命健康造成伤害,严重时会造成窒息死亡[108]

  • 4.2.2 对地下水质的危害

  • CO2泄漏后进入地下水层,溶解于水后的系列化学反应引起水的酸性增强,pH 值减小,导致水中铅离子等重金属含量增加,降低地下水质量[109-110]

  • 4.2.3 诱发地震等地质灾害

  • 大量 CO2注入岩层会增大孔隙压力,改变作用于岩层上的有效应力。摩尔圆理论可以解释注入 CO2引起岩层破裂和诱发地震的机理[111]。美国科罗拉多州的 Rangely 油田和加拿大艾伯特冷湖油田的高压流体注入引发了后续的地震。美国 5.3级 Den⁃ver 地震(1967 年)和 2.9 级 Ohio 地震(1986—1987 年)也均被证明与注入地下流体相关[112],因此 CO2 地质封存注入设计时必须论证诱发地震的可能性。

  • 4.3 CO2泄漏风险评价

  • 计算机模拟技术为研究 CO2运移过程、分布规律及泄漏风险评估提供了有效的研究手段。对北海Forties油田储层中CO2突破盖层毛细管力之后的模拟结果[113]表明,经过 1 000 a,CO2散失量小于全部地质储量的千分之二。WALTON 等用概率模拟方法对加拿大Weyburn油田的研究表明:5 000 a后, CO2的散失量为 0.1% 左右[114]。ZHOU 等对废弃井泄漏的研究结果为:5 000 a 后,其散失量小于总埋存量的 0.14%[115],游离态 CO2初期发生泄漏的可能性大[83]。可以看出CO2埋存的稳定性能维持百年或千年以上,泄漏的可能性和泄漏量很小,总体上稳定,但不排除有地震等极端事件下的泄漏风险。

  • 4.4 CO2泄漏监测方法

  • 根据监控点相对于地表的位置,CO2泄漏监测方法分为:①地下监测:部署井下压力计和分布式光纤传感,注入并检测化学示踪剂等。②地面监测:安装土壤气体探头、微生物取样仪、位移引伸计和地震勘测等。③近地表监测:采用遥感技术 (RS)[84116-118]。CO2储存地点岩体变形的示意图和监测方法如图6 [59]。地下和地面监测方法能够比较准确地检测泄漏点。从理论上讲,泄漏风险随着时间的推移而降低。然而,地下和地面监测方法的部署需要高额的安装维护成本和人工干预[119-120]。 THIRUCHITTAMPALAM 等认为 CO2注入后地面和地下监测具有监测井空间狭小、示踪剂可能和地质地层发生反应等局限性[121],而遥感技术风险较低、监测成本较小,可以作为经济可行的长期预警系统。遥感技术也可以与其它监测方法一起用于定位和监测泄漏区域。SAITO 等研究表明,将 CO2注入咸水层或油气储层可使储层的地震波传播速度改变 20% 以上[122-124]。地震速度层析成像技术可以用来研究注入后地层的地震波速变化,以监测泄漏的可能性。RAJI 等在 2018 年用地震速度层析成像模拟了安哥拉 Marmouzi 复杂储层结构中的 CO2运移[125],证明了此方法在监测复杂地层中 CO2运移的能力和有效性,可以用于探测地下地质构造中 CO2 的存在、移动和泄漏。

  • 5 待解决的关键问题

  • 高含水油藏CO2驱油与地质封存是一项极其复杂的系统工程,学科上涉及 CO2-油-水和岩石反应化学、多相流体流固耦合渗流力学、地质力学、地下流体迁移及泄漏预测科学等诸多科学领域;工程上涉及石油与天然气工程、地质工程、地下流体泄漏、防范及安全工程等。成功地实施CO2驱油与地质封存,需要多学科、多领域的密切协同攻关。针对该领域中外研究现状,结合高含水油藏 CO2驱油与地质封存的难点,提出了需要深入研究和待解决的10 个关键问题。

  • 图6 CO2储存地点岩体变形的示意图(红色)和监测方法(蓝色)

  • Fig.6 Schematic diagram(red)and monitoring method(blue) of geological deformation at CO2 storage site

  • 第一,建立 CO2与储层岩石和流体反应的实验技术和定量表征方法。CO2注入储层后与油藏中原油和地层水中的成分发生反应,其产物也与岩石的矿物发生次生反应,弄清这些复杂反应机制,必须建立有针对性的实验测定技术,基于实验测定数据,综合利用化学反应原理和数学建模手段,建立描述这些反应的定量表征方法,为 CO2驱油与地质封存技术奠定基础。

  • 第二,明确CO2在高含水油藏内的相态、驱油机理和封存方式。CO2在油藏内通常以超临界状态作用于油相,依据油藏温度、压力和原油组分特征可形成混相或非混相驱油 2 种情况,需要在准确预测 CO2-原油的动态混相压力基础上,弄清其驱油机理,揭示CO2溶解于原油的赋存方式。CO2作用于地层水及岩石,需要弄清水岩作用与反应的溶解赋存方式、矿物赋存方式。此外多余的 CO2还以游离态形成含有少量烃组分和水组分的富 CO2相赋存方式。

  • 第三,建立基于驱油和封存空间的各种赋存方式及其赋存量的计算方法。该问题需要基于高含水油藏的可容纳空间体积,分别计算油、水相体积,在各种赋存方式及原理的基础上,分类计算每种赋存方式的赋存量和油藏总体的赋存量,为高含水油藏CO2驱油与地质封存项目的设计和决策提供关键依据。

  • 第四,筛选适合 CO2驱油与地质封存的油藏类型,提出增大注入油藏的 CO2波及程度和提高驱油效率的技术策略。兼顾油藏岩石和流体特征及经济成本,筛选适合的油藏类型;从油藏构造、倾角、非均质性、注采井与裂缝走向、驱油前缘的稳定性等方面考虑提高波及程度的策略,从油藏压力、注入CO2的纯度和混相压力等方面考虑提高驱油效率的策略,为最大限度地提高 CO2驱油采收率制定最佳方案提供技术支持。

  • 第五,建立充分考虑 CO2-油-水和岩石体系相互作用条件下的多相多组分非等温渗流的关键方程。需要运用近现代应用数学方法和现代渗流理论,建立 CO2与地质流体相互作用的多相多组分化学反应的非等温渗流数学模型,实现气、液、固多相多组分在油层岩石孔隙内流动的定量描述。

  • 第六,研制适合模拟高含水油藏内 CO2储层封存和驱油数值模拟软件系统。该工作需要基于新建立的 CO2与地质流体相互作用渗流数学模型,研发全面考虑CO2与地质流体和储渗介质多重耦合作用的数值模拟软件,为定量预测 CO2驱油与赋存状态及其变化提供可靠的预测手段。

  • 第七,建立驱油效果、封存效率的可靠预测方法。高含水油藏 CO2驱油与地质封存 2个最受关注的参数是驱油效果和封存效率,其中驱油效果事关项目的经济可靠性,封存效率事关能否实现 CO2有效封存的目标。因注入 CO2达到一定量后,在油井处会突破,产出CO2。这2个参数的确定需要利用物质守恒理论,通常采用数值模拟的结果,建立可靠的驱油效果、封存效率计算方法。

  • 第八,加强井筒及围岩区密封及防 CO2泄漏技术研究。井筒及围岩区结构主要包括油管、套管、环套空间、固井水泥环等,是地面与油藏的通道和力学结构薄弱区,长期的腐蚀和地应力的变化均可导致该区形成裂隙,密封失效,这是发生CO2泄漏的最大风险位置,需要形成该区密封和防漏的技术,以免因此引起封存失败。

  • 第九,建立基于地应力及流固耦合作用下的封存安全评估方法。CO2注入过程和长期的封存过程中,流动和封存空间均受有效地应力的影响,流固相互作用均可引起密封作用的盖层和遮挡断层的破坏。尤其是未来历经百年至千年时间尺度内地震引发的圈闭破坏是导致封存失败的主要因素。因此需要建立基于地应力及流固耦合作用下的封存安全评估方法,为CO2封存的选址提供技术支持。

  • 第十,建立 CO2驱油与封存的油藏及其地下水动力关联区域的长期动态监测方法,制定应对泄漏风险的防控预案。实现CO2的永久地质封存是实现碳达峰和碳中和的重要措施之一,封存圈闭与地面注采井及周围岩体的密封薄弱带、断层及在圈闭和地面形成同一水动力系统的连通岩体均需要建立长期的实时动态监测系统,针对泄漏风险的位置,制定有效的防止或治理泄漏方案,以防意外。

  • 6 结论

  • 高含水油藏CO2驱油与地质封存是实现国家碳中和战略的重要途径之一,因其兼顾了驱油和封存,故具有良好的经济和社会效益,对于提高中国油气资源供应和实现“双碳”目标具有重大意义和良好的前景。

  • 高含水油藏CO2驱油与地质封存是一项复杂的系统工程,涉及 CO2-油-水-岩石反应化学、多相流体流固耦合渗流力学等多学科和石油与天然气工程、地质工程等多领域。实施 CO2驱油与地质封存的目标需要多学科、多领域密切协同攻关。系统回顾了高含水油藏 CO2驱油和地质封存机理、赋存方式、埋存量计算方法和CO2运移、泄漏风险预测与评价等领域的研究历程和进展,总结了 CO2驱油和地质封存问题的中外研究现状和趋势。

  • 基于高含水油藏CO2驱油与地质封存的中外研究现状,提出了CO2与储层岩石和流体反应、驱油机理和封存方式、赋存量、封存效率、泄漏与风险防控等需要深入研究的 10 个关键问题,为中国未来的 CO2驱油与地质封存的产业化研究方向提供了参考。

  • 致谢:本文受到中国石化胜利油田分公司勘探开发研究院项目(P21075-3)组专家与成员的支持,在本文相关热点领域与作者进行过多次讨论,审稿专家和责任编辑提出了许多宝贵修改建议,在此一并表示衷心感谢。

  • 符号解释

  • A——油藏面积,m2

  • Ca——地下水体影响有效埋存系数;

  • Cb——浮力影响有效埋存系数;

  • Ce——综合影响有效埋存系数;

  • Ch——油藏非均质性校正有效埋存系数;

  • Cm——流度影响有效埋存系数;

  • Cos——CO2在原油中的溶解系数;

  • Cw——含水饱和度影响有效埋存系数;

  • Cws——CO2在水中的溶解系数;

  • ER——原油采收率;

  • ERbERh——CO2突破前和注入一定体积CO2下的原油采收率;

  • h——油藏厚度,m;

  • Me——油藏中CO2有效埋存量,106 t;

  • Mt ——CO2在油藏中的理论埋存量,106 t;

  • Mta——CO2突破之后的埋存量,106 t;

  • Mtb——CO2突破之前的埋存量,106 t;

  • p——压力,Pa;

  • Sg——含气饱和度;

  • So——含油饱和度;

  • Sw——含水饱和度;

  • Swi——束缚水饱和度;

  • T——温度,℃;

  • Viw——注入水体积,m3

  • Vpw——产出水体积,m3

  • VTp)——温度 T、压力 p 条件下单位油藏体积内 CO2 的埋存量,m3

  • VaTp)——温度 T、压力 p 条件下单位油藏体积内 CO2 以吸附形式存在的量,m3

  • VgTp)——温度 T、压力 p 条件下单位油藏体积内 CO2 以自由气形式存在的量,m3

  • VmTp)——温度 T、压力 p 条件下单位油藏体积内 CO2 以矿化形式存在的量,m3

  • VoTp)——温度 T、压力 p 条件下单位油藏体积内 CO2 在原油中的溶解量,m3 /m3

  • VwTp)——温度 T、压力 p 条件下单位油藏体积内 CO2 在水中的溶解量,m3 /m3

  • XaTp)——温度 T、压力 p 条件下 CO2在油藏中的吸附量,m3 /m3

  • XmTp)——温度 T、压力 p条件下 CO2在油藏中的化学反应量,m3 /m3

  • XoTp)——温度 T、压力 p 条件下 CO2在原油中的溶解量,m3 /m3

  • XwTp)——温度T、压力p条件下CO2在水中的溶解量,m3 /m3

  • ρr ——油藏温度、压力下的CO2密度,kg/m3

  • ϕ——孔隙度。

  • 参考文献

    • [1] RACKLEY S A.Carbon capture and storage[M].Amsterdam:Else⁃ vier,2010:3-9.

    • [2] WANG Kuanmin.The relationship between carbon dioxide emis⁃ sions and economic growth:quantile panel-type analysis[J].Qual⁃ ity & Quantity,2013,47(3):1 337-1 366.

    • [3] 孙枢.CO2地下封存的地质学问题及其对减缓气候变化的意义 [J].中国基础科学,2006,8(3):17-22.SUN Shu.Geological problems of CO2 underground storage and its significance on mitigating climate change[J].China Basic Sci⁃ ence,2006,8(3):17-22.

    • [4] 姜大膀,富元海.2 ℃全球变暖背景下中国未来气候变化预估 [J].大气科学,2012,36(2):234-246.JIANG Dabang,FU Yuanhai.Climate change over China with a 2 ℃ global warming[J].Chinese Journal of Atmospheric Scienc⁃ es,2012,36(2):234-246.

    • [5] British Petroleum Company.BP statistical review of world energy [R].London:BP Company,2018.

    • [6] British Petroleum Company.BP statistical review of world energy [R].London:BP Company,2017.

    • [7] ZHANG Zhien,PAN Shuyuan,LI Hao,et al.Recent advances in carbon dioxide utilization[J].Renewable and Sustainable Energy Reviews,2020,125:109799.

    • [8] GODIN J,LIU Weizao,REN Shan,et al.Advances in recovery and utilization of carbon dioxide:a brief review[J].Journal of Environ⁃ mental Chemical Engineering,2021,9(4):105644.

    • [9] 王敏生,姚云飞.碳中和约束下油气行业发展形势及应对策略 [J].石油钻探技术,2021,49(5):1-6.WANG Minsheng,YAO Yunfei.Development situation and coun⁃ termeasures of the oil and gas industry facing the challenge of car⁃ bon neutrality[J].Petroleum Drilling Techniques,2021,49(5):1-6.

    • [10] 江怀友,沈平平,陈立滇,等.北美石油工业二氧化碳提高采收率现状研究[J].中国能源,2007,29(7):29-33.JIANG Huaiyou,SHEN Pingping,CHEN Lidian,et al.The status of EOR technology using CO2 in North American Oil industry[J].Energy of China,2007,29(7):29-33.

    • [11] 沈平平,江怀友.温室气体提高采收率的资源化利用及地下埋存[J].中国工程科学,2009,11(5):55-59.SHEN Pingping,JIANG Huaiyou.Utilization of greenhouse gas as resource in EOR and storage it underground[J].Strategic Study of CAE,2009,11(5):55-59.

    • [12] 毕永斌,耿文爽,张雪娜,等.高含水油藏全生命周期剩余油挖潜三参数研究[J].断块油气田,2021,28(1):109-114.BI Yongbin,GENG Wenshuang,ZHANG Xuena,et al.Study on three parameters of remaining oil potential tapping in high water cut reservoir during its whole life cycle[J].Fault-Block Oil & Gas Field,2021,28(1):109-114.

    • [13] NOVAK K,MALVIC T,SIMON K.Increased hydrocarbon recov⁃ ery and CO2 management,a Croatian example[J].Environmental Earth Sciences,2013,68(4):1 187-1 197.

    • [14] 岳湘安,赵仁保,赵凤兰.我国CO2提高石油采收率面临的技术挑战[J].中国科技论文在线,2007,2(7):487-491.YUE Xiang’an,ZHAO Renbao,ZHAO Fenglan.Technological challenges for CO2 EOR in China[J].Sciencepaper Online,2007,2(7):487-491.

    • [15] 徐怀颖,张宝生.川东北气田伴生CO2注入川中油田EOR可行性分析——以普光气田伴生 CO2注入桂花油田为例[J].天然气工业,2012,32(1):101-103.XU Huaiying,ZHANG Baosheng.Potential analysis of oil recovery enhancing treatment by injecting the associated CO2 gas from the Puguang Gas Field into the Guihua Oil Field[J].Natural Gas In⁃ dustry,2012,32(1):101-103.

    • [16] 赵宏军,廖新维.中国低渗透油藏 CO2驱油与地质埋存关键问题分析[J].陕西科技大学学报:自然科学版,2011,29(1):1-6.ZHAO Hongjun,LIAO Xinwei.Key problems analysis on CO2 dis⁃ placement and geological storage in low permeability oil reser⁃ voir,China[J].Journal of Shaanxi University of Science & Tech⁃ nology:Natural Science Edition,2011,29(1):1-6.

    • [17] 蔡晖,闫涛,陈建波,等.海上稠油油田二氧化碳驱注入参数优化[J].科学技术与工程,2010,10(34):8 394-8 397.CAI Hui,YAN Tao,CHEN Jianbo,et al.Optimizing injection pa⁃ rameters of heavy oil for carbon dioxide flooding in offshore oil⁃ field[J].Science Technology and Engineering,2010,10(34):8 394-8 397.

    • [18] KUMAR S,KUMAR A,MANDAL A.Characterizations of surfac⁃ tant synthesized from Jatropha oil and its application in enhanced oil recovery[J].AIChE Journal,2017,63(7):2 731-2 741.

    • [19] BAI Mingxing,ZHANG Zhichao,FU Xiaofei.A review on well in⁃ tegrity issues for CO2 geological storage and enhanced gas recov⁃ ery[J].Renewable & Sustainable Energy Reviews,2016,59:920-926.

    • [20] 李国欣,朱如凯.中国石油非常规油气发展现状、挑战与关注问题[J].中国石油勘探,2020,25(2):1-13.LI Guoxin,ZHU Rukai.Progress,challenges and key issues of un⁃ conventional oil and gas development of CNPC[J].China Petro⁃ leum Exploration,2020,25(2):1-13.

    • [21] 胡素云,李建忠,王铜山,等.中国石油油气资源潜力分析与勘探选区思考[J].石油实验地质,2020,42(5):813-823.HU Suyun,LI Jianzhong,WANG Tongshan,et al.CNPC oil and gas resource potential and exploration target selection[J].Petro⁃ leum Geology & Experiment,2020,42(5):813-823.

    • [22] 白喜俊,王延斌,常毓文,等.高含水油田面临的形势及对策 [J].中国国土资源经济,2009,22(11):21-22.BAI Xijun,WANG Yanbin,CHANG Yuwen,et al.The situations and countermeasures of the oilfields in high water cut period[J]. Natural Resource Economics of China,2009,22(11):21-22.

    • [23] 李梅.高含水期油田 CO2驱油效果评价[D].北京:中国地质大学(北京),2015.LI Mei.Evaluation on the effect of CO2 flooding in high water-cut oil fields[D].Beijing:China University of Geosciences(Beijing),2015.

    • [24] 孔祥言.高等流体力学[M].合肥:中国科学技术大学出版社,2010.KONG Xiangyan.Advanced mechanics of fluids in porous media [M].Hefei:USTC Press,2010.

    • [25] 王玉普,刘义坤,邓庆军.中国陆相砂岩油田特高含水期开发现状及对策[J].东北石油大学学报,2014,38(1):1-9.WANG Yupu,LIU Yikun,DENG Qingjun.Current situation and development strategy of the extra high water cut stage of continen⁃ tal facies sandstone oil fields in China[J].Journal of Northeast Pe⁃ troleum University,2014,38(1):1-9.

    • [26] 马超,高屾,闫建文.以科技创新为国增“油”添“气”[N].中国石油报,2021-09-16(001).MA Chao,GAO Shen,YAN Jianwen.Add“oil”and“gas”to Chi⁃ na with scientific and technological innovation[N].China Petro⁃ leum Daily,2021-09-16(001).

    • [27] 秦积舜,李永亮,吴德斌,等.CCUS 全球进展与中国对策建议 [J].油气地质与采收率,2020,27(1):20-28.QIN Jishun,LI Yongliang,WU Debin,et al.CCUS global progress and China’s policy suggestions[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(1):20-28.

    • [28] HOLM W L.Evolution of the carbon dioxide flooding processes[J].Journal of Petroleum Technology,1987,39(11):1 337-1 342.

    • [29] KLINS M A.Carbon dioxide flooding;basic mechanism and proj⁃ ect design[M].Netherlands:Springer Netherlands,1984.

    • [30] MUNGAN N.Carbon dioxide flooding-fundamentals[J].Journal of Canadian Petroleum Technology,1981,20(1):81-92.

    • [31] HOLM L W,JOSENDAL V A.Mechanisms of oil displacement by carbon dioxide[J].Journal of Petroleum Technology,1974,26(12):1 427-1 438.

    • [32] BAVIERE M.Basic concepts in enhanced oil recovery processes [M].London:Elsevier Applied Science,1991.

    • [33] YANG Yongfei,LI Yingwen,YAO Jun,et al.Dynamic pore-scale dissolution by CO2-saturated brine in carbonates:impact of homo⁃ geneous versus fractured versus vuggy pore structure[J].Water Resources Research,2020,56(4):1-27.

    • [34] 周翔,周丹,邓家胜,等.超临界 CO2驱提高致密油藏采收率实验研究[J].特种油气藏,2021,28(3):118-123.ZHOU Xiang,ZHOU Dan,DENG Jiasheng,et al.Experimental study on improving recovery efficiency of tight oil reservoirs with supercritical carbon dioxide flooding[J].Special Oil & Gas Reser⁃ voirs,2021,28(3):118-123.

    • [35] 邓宝康,李军建,高银山,等.鄂尔多斯盆地致密油藏注 CO2吞吐微观剩余油分布特征[J].大庆石油地质与开发,2020,39(6):119-125.DENG Baokang,LI Junjian,GAO Yinshan,et al.Microscopic re⁃ mained oil distribution characteristics of CO2 huff and puff in the tight oil reservoir in Ordos Basin[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(6):119-125.

    • [36] 李士伦,汤勇,侯承希.注CO2提高采收率技术现状及发展趋势 [J].油气藏评价与开发,2019,9(3):1-8.LI Shilun,TANG Yong,HOU Chengxi.Present situation and de⁃ velopment trend of CO2 injection enhanced oil recovery technolo⁃gy[J].Reservoir Evaluation and Development,2019,9(3):1-8.

    • [37] 胡永乐,郝明强,陈国利.注二氧化碳提高石油采收率技术 [M].北京:石油工业出版社,2018:1-40.HU Yongle,HAO Mingqiang,CHEN Guoli.Technology of en⁃ hanced oil recovery by carbon dioxide[M].Beijing:Petroleum In⁃ dustry Press,2018:1-40.

    • [38] 谷丽冰,李治平,欧瑾.利用二氧化碳提高原油采收率研究进展[J].中国矿业,2007,16(10):66-69.GU Libing,LI Zhiping,OU Jin.The existing state of enhanced oil recovery by utilizing carbon dioxide[J].China Mining Magazine,2007,16(10):66-69.

    • [39] 袁士义,王强,李军诗,等.注气提高采收率技术进展及前景展望[J].石油学报,2020,41(12):1 623-1 632.YUAN Shiyi,WANG Qiang,LI Junshi,et al.Technology progress and prospects of enhanced oil recovery by gas injection[J].Acta Petrolei Sinica,2020,41(12):1 623-1 632.

    • [40] 曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.Migration law of CO2-crude oil miscible zone and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.

    • [41] 秦积舜,张可,陈兴隆,等.高含水后 CO2驱油机理的探讨[J]. 石油学报,2010,31(5):797-800.QIN Jishun,ZHANG Ke,CHEN Xinglong.Mechanism of the CO2 flooding as reservoirs containing high water[J].Acta Petrolei Sini⁃ ca,2010,31(5):797-800.

    • [42] 郭立强.高含水油藏 CO2驱机理深化研究[J].内蒙古石油化工,2019,45(6):11-12.GUO Liqiang.Further study on the mechanism of CO2 flooding in high water cut reservoir[J].Inner Mongolia Petrochemical Indus⁃ try,2019,45(6):11-12.

    • [43] CUI Maolei,WANG Rui,LÜ Chengyuan,et al.Research on micro⁃ scopic oil displacement mechanism of CO2 EOR in extra-high wa⁃ ter cut reservoirs[J].Journal of Petroleum Science and Engineer⁃ ing,2017,154:315-321.

    • [44] 吕成远,王锐,崔茂蕾,等.高含水条件下 CO2混相驱替实验 [J].石油学报,2017,38(11):1 293-1 298.LÜ Chengyuan,WANG Rui,CUI Maolei,et al.Displacement ex⁃ periment of CO2 miscible flooding under high water condition[J].Acta Petrolei Sinica,2017,38(11):1 293-1 298.

    • [45] 周宇,王锐,苟斐斐,等.高含水油藏 CO2驱油机理[J].石油学报,2016,37(S1):143-150.ZHOU Yu,WANG Rui,GOU Feifei,et al.CO2 flooding mecha⁃ nism in high water cut reservoirs[J].Acta Petrolei Sinica,2016,37(S1):143-150.

    • [46] MOSLEH M H,SEDIGHI M,BABAEI M,et al.Geological seques⁃ tration of carbon dioxide[M].Amsterdam:Elsevier,2019:487-500.

    • [47] BACHU S,ADAMS J J.Sequestration of CO2 in geological media in response to climate change:capacity of deep saline aquifers to sequester CO2 in solution[J].Energy Conversion & Management,2003,44(20):3 151-3 175.

    • [48] WILDGUST N,GILBOY C,TONTIWACHWUTHIKUL P.Intro⁃ duction to a decade of research by the IEAGHG Weyburn-Midale CO2 monitoring and storage project[J].International Journal of Greenhouse Gas Control,2013,16S:S1-S4.

    • [49] VOORMEIJ D A,SIMANDL G J.Geological and mineral CO2 se⁃ questration options:a technical review[J].Geoscience Canada,2004,31(1):11-22.

    • [50] 高冉,吕成远,伦增珉,等.二氧化碳驱替与埋存一体化数值模拟[J].特种油气藏,2021,28(2):102-107.GAO Ran,LÜ Chengyuan,LUN Zengmin,et al.Integrated numeri⁃ cal simulation of carbon dioxide displacement and sequestration [J].Special Oil & Gas Reservoirs,2021,28(2):102-107.

    • [51] ZHAO Dongfeng,LIAO Xinwei,YIN Dandan.An experimental study for the effect of CO2-brine-rock interaction on reservoir physical properties[J].Journal of the Energy Institute,2015,88(1):27-35.

    • [52] SAEEDI A,PIANE C D,ESTEBAN L,et al.Flood characteristic and fluid rock interactions of a supercritical CO2,brine,rock sys⁃ tem:South West Hub,Western Australia[J].International Journal of Greenhouse Gas Control,2016,54(Part1):309-321.

    • [53] SOONG Y,HOWARD B H,DILMORE R M,et al.CO2/brine/rock interactions in Lower Tuscaloosa Formation[J].Greenhouse Gas⁃ es:Science and Technology,2016,6(6):824-837.

    • [54] TARKOWSKI R,WDOWIN M,MANECKI M.Petrophysical exam⁃ ination of CO-brine-rock interactions-results of the first stage of long-term experiments in the potential Zaosie Anticline reservoir(central Poland)for CO2 storage[J].Environmental Monitoring and Assessment,2015,187(1):4 215:1-4 215:10.

    • [55] CANTUCCI B,MONTEGROSSI G,VASELLI O,et al.Geochemi⁃ cal modeling of CO2 storage in deep reservoirs:the Weyburn Proj⁃ ect(Canada)case study[J].Chemical Geology,2009,265(1/2):181-197.

    • [56] WANG Kairan,XU Tianfu,WANG Fugang,et al.Experimental study of CO2-brine-rock interaction during CO2 sequestration in deep coal seams[J].International Journal of Coal Geology,2016,154/155:265-274.

    • [57] 王闯,朱前林,黄春霞,等.吴起油田油藏 CO2地质封存潜力评价与分析[J]环境工程,2019,37(S1):268-273.WANG Chuang,ZHU Qianlin,HUANG Chunxia,et al.Evaluation and analysis of CO2 geologic storage capacity in Wuqi OilField[J] Environmental Engineering,2019,37(S1):268-273.

    • [58] 崔国栋,张亮,任韶然,等.油藏 CO2驱及封存过程中地化反应特征及埋存效率[J].中国石油大学学报:自然科学版,2017,41(6):123-131.CUI Guodong,ZHANG Liang,REN Shaoran,et al.Geochemical reactions and CO2 storage efficiency during CO2 EOR process and subsequent storage[J].Journal of China University of Petroleum:Edition of Natural Science,2017,41(6):123-131.

    • [59] AMINU M D,NABAVI S A,ROCHELLE C A,et al.A review of developments in carbon dioxide storage[J].Applied Energy,2017,208:1 389-1419.

    • [60] WANG Dayong,DONG Bo,BREEN S,et al.Review:approaches to research on CO2/brine two-phase migration in saline aquifers[J].Hydrogeology Journal,2014,23(1):1-18.

    • [61] BOLSTER D.The fluid mechanics of dissolution trapping in geo⁃ logic storage of CO2[J].Journal of Fluid Mechanics,2014,740:1-4.

    • [62] IPCC.IPCC special report:carbon capture and storage[M].Cam⁃ bridge:Cambridge University Press,2005.

    • [63] 宁雅洁.盐水层 CO2埋存量影响因素数值模拟研究[D].北京:中国地质大学(北京),2020.NING Yajie.Research on the factors influencing porosity in the process of CO2 storage in the saline aquifer[D].Beijing:China University of Geosciences(Beijing),2020.

    • [64] AKBARABADI M,PIRI M.Co-sequestration of SO2 with super⁃ critical CO2 in carbonates:an experimental study of capillary trap⁃ ping,relative permeability,and capillary pressure[J].Advances in Water Resources,2015,77:44-56.

    • [65] DE SILVA P N K,RANJITH P G.Advanced core flooding appara⁃ tus to estimate permeability and storage dynamics of CO2 in large coal specimens[J].Fuel,2013,104:417-425.

    • [66] PENTLAND C H,EL-MAGHRABY R,GEORGIADIS A,et al.Immiscible displacements and capillary trapping in CO2 storage [J].Energy Procedia,2011,4:4 969-4 976.

    • [67] LI Qi.Coupled reactive transport model for heat and density driven flow in CO2 storage in saline aquifers[J].Journal of Hazardous Toxic and Radioactive Waste,2011,15(4):251-258.

    • [68] PANG Zhonghe,LI Yiman,YANG Fengtian,et al.Geochemistry of a continental saline aquifer for CO2 sequestration:the Guantao Formation in the Bohai Bay Basin,North China[J].Applied Geo⁃ chemistry,2012,27(9):1 821-1 828.

    • [69] LIU Weizao,TENG Liumei,ROHANI S,et al.CO2 mineral carbon⁃ ation using industrial solid wastes:a review of recent develop⁃ ments[J].Chemical Engineering Journal,2021,416(7273):129093.

    • [70] WANG Fei,DREISINGER D B,JARVIS M,et al.The technology of CO2 sequestration by mineral carbonation:current status and fu⁃ ture prospects[J].Canadian Metallurgical Quarterly,2017,57(1):1-13.

    • [71] NARAHARISETTI P K,YEO T Y,BU Jie.New classification of CO2 mineralization processes and economic evaluation[J].Renew⁃ able and Sustainable Energy Reviews,2019,99:220-233.

    • [72] HELLEVANG H,HAILE B G,TETTEH A.Experimental study to better understand factors affecting the CO2 mineral trapping poten⁃ tial of basalt[J].Greenhouse Gases:Science and Technology,2017,7(1):143-157.

    • [73] SUNDAL A,HELLEVANG H,MIRI R,et al.Variations in miner⁃ alization potential for CO2 related to sedimentary facies and burial depth—a comparative study from the North Sea[J].Energy Proce⁃ dia,2014,63:5 063-5 070.

    • [74] GUNTER W D,BACHU S,BENSON S.The role of hydrogeologi⁃ cal and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide[J].Geological Society,Lon⁃ don,Special Publications,2004,233(1):129-145.

    • [75] BACHU S.Review of CO2 storage efficiency in deep saline aquifers [J].International Journal of Greenhouse Gas Control,2015,40:188-202.

    • [76] BACHU S,BONIJOLY D,BRADSHAW J,et al.Estimation of CO2 storage capacity in geological media[R/OL].CSLF-T-2007-04.[2022-08-01].https://www.cslforum.org/cslf/sites/default/files/documents/PhaseII Report Storage Capacity Measurement Task Force.pdf.

    • [77] BUTTINELLI M,PROCESI M,CANTUCCI B,et al.The geo-data⁃ base of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy[J].Energy,2011,36(5):2 968-2 983.

    • [78] DE SILVA P N K,RANJITH P G.A study of methodologies for CO2 storage capacity estimation of saline aquifers[J].Fuel,2012,93:13-27.

    • [79] ZHAO Xiaoliang,LIAO Xinwei,WANG Wanfu,et al.The CO2 storage capacity evaluation:Methodology and determination of key factors[J].Journal of the Energy Institute,2014,87(4):297-305.

    • [80] CANTUCCI B,BUTTINELLI M,PROCESI M,et al.Algorithms for CO2 storage capacity estimation:review and case study[M]//VISHAL V,SINGH T N.Geologic Carbon Sequestration:Under⁃ standing Reservoir Behavior.New York:Springer Cham,2016:21-44.

    • [81] 沈平平,廖新维,刘庆杰.二氧化碳在油藏中埋存量计算方法 [J].石油勘探与开发,2009,36(2):216-220. SHEN Pingping,LIAO Xinwei,LIU Qingjie.Methodology for esti⁃ mation of CO2 storage capacity in reservoirs[J].Petroleum Explo⁃ ration and Development,2009,36(2):216-220.

    • [82] BACHU S,SHAW J C,PEARSON R M.Estimation of oil recovery and CO2 storage capacity in CO2 EOR incorporating the effect of underlying aquifers[R].SPE/DOE Symposium on Improved Oil Recovery,Tulsa,2004:SPE-89340-MS.

    • [83] 任建峰.油田 CO2封存渗漏机制及监测方法研究[D].青岛:中国石油大学(华东),2016.REN Jianfeng.Mechanisms and monitoring of CO2 leakage during EOR and geological storage processes[D].Qingdao:China Univer⁃ sity of Petroleum(East China),2016.

    • [84] SUN Yankun,LIU Jinquan,XUE Ziqiu,et al.A critical review of distributed fiber optic sensing for real-time monitoring geologic CO2 sequestration[J].Journal of Natural Gas Science and Engi⁃ neering,2021,88:103751.

    • [85] SAFFOU E,RAZA A,GHOLAMI R,et al.Geomechanical charac⁃ terization of CO2 storage sites:a case study from a nearly depleted gas field in the Bredasdorp Basin,South Africa[J].Journal of Nat⁃ ural Gas Science and Engineering,2020,81:103446.

    • [86] KUMAR S,FOROOZESH J,EDLMANN K,et al.A comprehen⁃ sive review of value-added CO2 sequestration in subsurface saline aquifers[J].Journal of Natural Gas Science and Engineering,2020,81:103437.

    • [87] WIMMER B T,KRAPAC I G,LOCKE R,et al.Applying monitor⁃ ing,verification,and accounting techniques to a real-world,en⁃ hanced oil recovery operational CO2 leak[J].Energy Procedia,2011,4:3 330-3 337.

    • [88] 宋兆杰.高含水油田 CO2驱油适应性评价方法研究[D].北京:中国地质大学(北京),2014.SONG Zhaojie.Feasility study on CO2 flooding in high water cut oilfields[D].Beijing:China University of Geosciences(Beijing),2014.

    • [89] SCHERER G W,CELIA M A,PREVOST J H,et al.Chapter10— Leakage of CO2 through abandoned wells:role of corrosion of ce⁃ ment[M]//THOMAS D,BENSON S.Carbon Dioxide Capture for Storage in Deep Geologic Formations.Amsterdam:Elsevier Sci⁃ ence,2005:827-848.

    • [90] GASDA S E,BACHU S,CELIA M A.Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin[J].Environmental Geology,2004,46(6/7):707-720.

    • [91] CONNELL L,DOWN D,LU Meng,et al.An investigation into the integrity of wellbore cement in CO2 storage wells:core flooding ex⁃ periments and simulations[J].International Journal of Greenhouse Gas Control,2015,37:424-440.

    • [92] QUATTROCCHI F,BOSCHI E.Case histories in scientific and pseudo-scientific mass-media communication in energy/heat pro⁃ duction from underground(geogas storage,geothermics,hydrocar⁃ bons),in the frame of Nimby Sindrome enhancement in Europe:the proposal of a new European Direct[J].Veterinary Research,2015,46(1):115.

    • [93] IDE S T,FRIEDMANN S J,HERZOG H J.CO2 leakage through existing wells:current technology and regulations[C].Trondheim:8th International Conference on Greenhouse Gas Control Technol⁃ ogies,2006:19-33.

    • [94] RUTQVIST J,TSANG C F.A study of caprock hydromechanical changes associated with CO2-injection into a brine formation[J].Environmental Geology,2002,42(2/3):296-305.

    • [95] HOU Lianhua,YU Zhichao,LUO Xia,et al.Self-sealing of cap⁃ rocks during CO2 geological sequestration[J].Energy,2022,252:124064.

    • [96] EBIGBO A,CLASS H,HELMIG R.CO2 leakage through an aban⁃ doned well:problem-oriented benchmarks[J].Computational Geo⁃ sciences,2007,11(2):103-115.

    • [97] GAUS I.Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks[J].International Journal of Green⁃ house Gas Control,2010,4(1):73-89.

    • [98] WANG Jianguo,PENG Yan.Numerical modeling for the combined effects of two-phase flow,deformation,gas diffusion and CO2 sorp⁃ tion on caprock sealing efficiency[J].Journal of Geochemical Ex⁃ ploration,2014,144(A):154-167.

    • [99] VILARRASA V,RUTQVIST J.Thermal effects on geologic carbon storage[J].Earth-Science Reviews,2017,165:245-256.

    • [100] CHIQUET P,BROSETA D,THIBEAU S.Wettability alteration of caprock minerals by carbon dioxide[J].Geofluids,2007,7(2):112-122.

    • [101] YANG Dayong,TONTIWACHWUTHIKUL P,GU Yongan.Interfa⁃ cial interactions between reservoir brine and CO2 at high pres⁃ sures and elevated temperatures[J].Energy & Fuels,2005,19(1):216-223.

    • [102] YANG Dayong,TONTIWACHWUTHIKUL P.Interfacial tensions of the crude oil+reservoir brine+CO2 systems at pressures up to 31 MPa and temperatures of 27 ℃ and 58 ℃[J].Journal of Chemical & Engineering Data,2005,50(4):1 242-1 249.

    • [103] LI Shihong,DONG Mingzhe,LI Zengchen,et al.Gas breakthrough pressure for hydrocarbon reservoir seal rocks:implications for the security of long-term CO2 storage in the Weyburn field[J].Geoflu⁃ ids,2005,5(4):326-334.

    • [104] HILDENBRAND A,SCHLÖMER S,KROOSS B.Gas break⁃ through experiments on fine-grained sedimentary rocks[J].Geo⁃ fluids,2002,2(1):3-23.

    • [105] SONG Juan,ZHANG Dongxiao.Comprehensive review of cap⁃ rock-sealing mechanisms for geologic carbon sequestration[J].Environmental Science & Technology,2013,47(1):9-22.

    • [106] FARRELL N J C,HEALY D,TAYLOR C W.Anisotropy of perme⁃ ability in faulted porous sandstones[J].Journal of Structural Geol⁃ ogy,2014,63(3):50-67.

    • [107] LI Zhaowen,DONG Mingzhe,LI Shuliang,et al.CO2 sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity[J].Energy Conversion and Management,2006,47(11/12):1 372-1 382.

    • [108] 张森琦,刁玉杰,程旭学,等.二氧化碳地质储存逃逸通道及环境监测研究[J].冰川冻土,2010,32(6):1 251-1 261.ZHANG Senqi,DIAO Yujie,CHENG Xuxue,et al.CO2 geological storage leakage routes and environment monitoring[J].Journal of Glaciology and Geocryology,2010,32(6):1 251-1 261.

    • [109] 强薇,李义连,文冬光,等.温室性气体地质处置研究进展及其问题[J].地质科技情报,2006,25(2):83-88.QIANG Wei,LI Yilian,WEN Dongguang,et al.Advances and problems of geological disposal of greenhouse gases[J].Geologi⁃ cal Science and Technology Information,2006,25(2):83-88.

    • [110] 曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放—— 二氧化碳地下储存研究[J].中国科学基金,2004,18(4):196-200.ZENG Rongshu,SUN Shu,CHEN Daizhao,et al.Decrease carbon dioxide emission into the atmosphere—underground disposal of carbon dioxide[J].Bulletin of National Natural Science Founda⁃ tion of China,2004,18(4):196-200.

    • [111] 许志刚,陈代钊,曾荣树.CO2地质埋存渗漏风险及补救对策 [J].地质论评,2008,54(3):373-386.XU Zhigang,CHEN Daizhao,ZENG Rongshu.The leakage risk as⁃ sessment and remediation options of CO2 geological storage[J].Geological Review,2008,54(3):373-386.

    • [112] METZ B,DAVIDSON O,DE CONINCK H,et al.IPCC special re⁃ port on carbon dioxide capture and storage[M].Cambridge:Cam⁃ bridge University Press,2005.

    • [113] CAWLEY S J,SAUNDERS M R,LE GALLO Y,et al.Chapter5— The Ngcas project-assessing the potential for EOR and CO2 stor⁃ age at the Forties Oilfield,Offshore UK[M]//THOMAS D,BEN⁃ SON S.Carbon dioxide capture for storage in deep geologic forma⁃ tions.Amsterdam:Elsevier Science,2005:713-750.

    • [114] WALTON F B,TAIT J C,LE NEVEU D,et al.Geological storage of CO2:a statistical approach to assessing performance and risk [R].Proceedings of the 7th International Conference on Green⁃ house Gas Control Technologies(GH GT-7),Vancouver,2004:693-700.

    • [115] ZHOU Weixian,STENHOUSE M J,ARTHUR S R,et al.The IEA Weyburn CO2 monitoring and storage project-modeling of the long-term migration of CO2 from Weyburn[R].Proceedings of the 7th International Conference on Greenhouse Gas Control Technol⁃ ogies,Vancouver,2004:721-729.

    • [116] STALKER L,NOBLE R R P,PEJCIC B,et al.Feasibility of moni⁃ toring techniques for substances mobilised by CO2 storage in geo⁃ logical formations[J].Energy Procedia,2012,23(1):439-448.

    • [117] MYERS M,STALKER L,PEJCIC B,et al.Tracers-past,present and future applications in CO2 geosequestration[J].Applied Geo⁃ chemistry,2013,30:125-135.

    • [118] ZHANG Tian,ZHANG Wanchang,YANG Ruizhao,et al.CO2 cap⁃ ture and storage monitoring based on remote sensing techniques:a review[J].Journal of Cleaner Production,2020:124409.

    • [119] DEAN M,TUCKER O.A risk-based framework for Measurement,Monitoring and Verification(MMV)of the Goldeneye storage com⁃ plex for the Peterhead CCS project,UK[J].International Journal of Greenhouse Gas Control,2017,61:1-15.

    • [120] ROBERTS J J,GILFILLAN S M V,STALKER L,et al.Geochemi⁃ cal tracers for monitoring offshore CO2 stores[J].International Journal of Greenhouse Gas Control,2017,65:218-234.

    • [121] THIRUCHITTAMPALAM S,RAVAL S A,GLENN N F,et al.In⁃ direct remote sensing techniques for long term monitoring of CO2 leakage in geological carbon sequestration:a review[J].Journal of Natural Gas Science and Engineering,2022,100:104488.

    • [122] SAITO H,NOBUOKA D,AZUMA H,et al.Time-lapse crosswell seismic tomography for monitoring injected CO2 in an onshore aquifer,Nagaoka,Japan[J].Geophysical Exploration,2006,37(1):30-36.

    • [123] AJO-FRANKLIN J B,PETERSON J,DOETSCH J,et al.Highresolution characterization of a CO2 plume using crosswell seismic tomography:Cranfield,MS,USA[J].International Journal of Greenhouse Gas Control,2013,18:497-509.

    • [124] BÖHM G,CARCIONE J M,GEI D,et al.Cross-well seismic and electromagnetic tomography for CO2 detection and monitoring in a saline aquifer[J].Journal of Petroleum Science and Engineering,2015,133:245-257.

    • [125] RAJI W O,HARRIS J M,LU Shaoyu.Seismic velocity tomogra⁃ phy for CO2 monitor in subsurface geological structures[J].Jour⁃ nal of King Saud University-Science,2016,30(1):57-64.

  • 参考文献

    • [1] RACKLEY S A.Carbon capture and storage[M].Amsterdam:Else⁃ vier,2010:3-9.

    • [2] WANG Kuanmin.The relationship between carbon dioxide emis⁃ sions and economic growth:quantile panel-type analysis[J].Qual⁃ ity & Quantity,2013,47(3):1 337-1 366.

    • [3] 孙枢.CO2地下封存的地质学问题及其对减缓气候变化的意义 [J].中国基础科学,2006,8(3):17-22.SUN Shu.Geological problems of CO2 underground storage and its significance on mitigating climate change[J].China Basic Sci⁃ ence,2006,8(3):17-22.

    • [4] 姜大膀,富元海.2 ℃全球变暖背景下中国未来气候变化预估 [J].大气科学,2012,36(2):234-246.JIANG Dabang,FU Yuanhai.Climate change over China with a 2 ℃ global warming[J].Chinese Journal of Atmospheric Scienc⁃ es,2012,36(2):234-246.

    • [5] British Petroleum Company.BP statistical review of world energy [R].London:BP Company,2018.

    • [6] British Petroleum Company.BP statistical review of world energy [R].London:BP Company,2017.

    • [7] ZHANG Zhien,PAN Shuyuan,LI Hao,et al.Recent advances in carbon dioxide utilization[J].Renewable and Sustainable Energy Reviews,2020,125:109799.

    • [8] GODIN J,LIU Weizao,REN Shan,et al.Advances in recovery and utilization of carbon dioxide:a brief review[J].Journal of Environ⁃ mental Chemical Engineering,2021,9(4):105644.

    • [9] 王敏生,姚云飞.碳中和约束下油气行业发展形势及应对策略 [J].石油钻探技术,2021,49(5):1-6.WANG Minsheng,YAO Yunfei.Development situation and coun⁃ termeasures of the oil and gas industry facing the challenge of car⁃ bon neutrality[J].Petroleum Drilling Techniques,2021,49(5):1-6.

    • [10] 江怀友,沈平平,陈立滇,等.北美石油工业二氧化碳提高采收率现状研究[J].中国能源,2007,29(7):29-33.JIANG Huaiyou,SHEN Pingping,CHEN Lidian,et al.The status of EOR technology using CO2 in North American Oil industry[J].Energy of China,2007,29(7):29-33.

    • [11] 沈平平,江怀友.温室气体提高采收率的资源化利用及地下埋存[J].中国工程科学,2009,11(5):55-59.SHEN Pingping,JIANG Huaiyou.Utilization of greenhouse gas as resource in EOR and storage it underground[J].Strategic Study of CAE,2009,11(5):55-59.

    • [12] 毕永斌,耿文爽,张雪娜,等.高含水油藏全生命周期剩余油挖潜三参数研究[J].断块油气田,2021,28(1):109-114.BI Yongbin,GENG Wenshuang,ZHANG Xuena,et al.Study on three parameters of remaining oil potential tapping in high water cut reservoir during its whole life cycle[J].Fault-Block Oil & Gas Field,2021,28(1):109-114.

    • [13] NOVAK K,MALVIC T,SIMON K.Increased hydrocarbon recov⁃ ery and CO2 management,a Croatian example[J].Environmental Earth Sciences,2013,68(4):1 187-1 197.

    • [14] 岳湘安,赵仁保,赵凤兰.我国CO2提高石油采收率面临的技术挑战[J].中国科技论文在线,2007,2(7):487-491.YUE Xiang’an,ZHAO Renbao,ZHAO Fenglan.Technological challenges for CO2 EOR in China[J].Sciencepaper Online,2007,2(7):487-491.

    • [15] 徐怀颖,张宝生.川东北气田伴生CO2注入川中油田EOR可行性分析——以普光气田伴生 CO2注入桂花油田为例[J].天然气工业,2012,32(1):101-103.XU Huaiying,ZHANG Baosheng.Potential analysis of oil recovery enhancing treatment by injecting the associated CO2 gas from the Puguang Gas Field into the Guihua Oil Field[J].Natural Gas In⁃ dustry,2012,32(1):101-103.

    • [16] 赵宏军,廖新维.中国低渗透油藏 CO2驱油与地质埋存关键问题分析[J].陕西科技大学学报:自然科学版,2011,29(1):1-6.ZHAO Hongjun,LIAO Xinwei.Key problems analysis on CO2 dis⁃ placement and geological storage in low permeability oil reser⁃ voir,China[J].Journal of Shaanxi University of Science & Tech⁃ nology:Natural Science Edition,2011,29(1):1-6.

    • [17] 蔡晖,闫涛,陈建波,等.海上稠油油田二氧化碳驱注入参数优化[J].科学技术与工程,2010,10(34):8 394-8 397.CAI Hui,YAN Tao,CHEN Jianbo,et al.Optimizing injection pa⁃ rameters of heavy oil for carbon dioxide flooding in offshore oil⁃ field[J].Science Technology and Engineering,2010,10(34):8 394-8 397.

    • [18] KUMAR S,KUMAR A,MANDAL A.Characterizations of surfac⁃ tant synthesized from Jatropha oil and its application in enhanced oil recovery[J].AIChE Journal,2017,63(7):2 731-2 741.

    • [19] BAI Mingxing,ZHANG Zhichao,FU Xiaofei.A review on well in⁃ tegrity issues for CO2 geological storage and enhanced gas recov⁃ ery[J].Renewable & Sustainable Energy Reviews,2016,59:920-926.

    • [20] 李国欣,朱如凯.中国石油非常规油气发展现状、挑战与关注问题[J].中国石油勘探,2020,25(2):1-13.LI Guoxin,ZHU Rukai.Progress,challenges and key issues of un⁃ conventional oil and gas development of CNPC[J].China Petro⁃ leum Exploration,2020,25(2):1-13.

    • [21] 胡素云,李建忠,王铜山,等.中国石油油气资源潜力分析与勘探选区思考[J].石油实验地质,2020,42(5):813-823.HU Suyun,LI Jianzhong,WANG Tongshan,et al.CNPC oil and gas resource potential and exploration target selection[J].Petro⁃ leum Geology & Experiment,2020,42(5):813-823.

    • [22] 白喜俊,王延斌,常毓文,等.高含水油田面临的形势及对策 [J].中国国土资源经济,2009,22(11):21-22.BAI Xijun,WANG Yanbin,CHANG Yuwen,et al.The situations and countermeasures of the oilfields in high water cut period[J]. Natural Resource Economics of China,2009,22(11):21-22.

    • [23] 李梅.高含水期油田 CO2驱油效果评价[D].北京:中国地质大学(北京),2015.LI Mei.Evaluation on the effect of CO2 flooding in high water-cut oil fields[D].Beijing:China University of Geosciences(Beijing),2015.

    • [24] 孔祥言.高等流体力学[M].合肥:中国科学技术大学出版社,2010.KONG Xiangyan.Advanced mechanics of fluids in porous media [M].Hefei:USTC Press,2010.

    • [25] 王玉普,刘义坤,邓庆军.中国陆相砂岩油田特高含水期开发现状及对策[J].东北石油大学学报,2014,38(1):1-9.WANG Yupu,LIU Yikun,DENG Qingjun.Current situation and development strategy of the extra high water cut stage of continen⁃ tal facies sandstone oil fields in China[J].Journal of Northeast Pe⁃ troleum University,2014,38(1):1-9.

    • [26] 马超,高屾,闫建文.以科技创新为国增“油”添“气”[N].中国石油报,2021-09-16(001).MA Chao,GAO Shen,YAN Jianwen.Add“oil”and“gas”to Chi⁃ na with scientific and technological innovation[N].China Petro⁃ leum Daily,2021-09-16(001).

    • [27] 秦积舜,李永亮,吴德斌,等.CCUS 全球进展与中国对策建议 [J].油气地质与采收率,2020,27(1):20-28.QIN Jishun,LI Yongliang,WU Debin,et al.CCUS global progress and China’s policy suggestions[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(1):20-28.

    • [28] HOLM W L.Evolution of the carbon dioxide flooding processes[J].Journal of Petroleum Technology,1987,39(11):1 337-1 342.

    • [29] KLINS M A.Carbon dioxide flooding;basic mechanism and proj⁃ ect design[M].Netherlands:Springer Netherlands,1984.

    • [30] MUNGAN N.Carbon dioxide flooding-fundamentals[J].Journal of Canadian Petroleum Technology,1981,20(1):81-92.

    • [31] HOLM L W,JOSENDAL V A.Mechanisms of oil displacement by carbon dioxide[J].Journal of Petroleum Technology,1974,26(12):1 427-1 438.

    • [32] BAVIERE M.Basic concepts in enhanced oil recovery processes [M].London:Elsevier Applied Science,1991.

    • [33] YANG Yongfei,LI Yingwen,YAO Jun,et al.Dynamic pore-scale dissolution by CO2-saturated brine in carbonates:impact of homo⁃ geneous versus fractured versus vuggy pore structure[J].Water Resources Research,2020,56(4):1-27.

    • [34] 周翔,周丹,邓家胜,等.超临界 CO2驱提高致密油藏采收率实验研究[J].特种油气藏,2021,28(3):118-123.ZHOU Xiang,ZHOU Dan,DENG Jiasheng,et al.Experimental study on improving recovery efficiency of tight oil reservoirs with supercritical carbon dioxide flooding[J].Special Oil & Gas Reser⁃ voirs,2021,28(3):118-123.

    • [35] 邓宝康,李军建,高银山,等.鄂尔多斯盆地致密油藏注 CO2吞吐微观剩余油分布特征[J].大庆石油地质与开发,2020,39(6):119-125.DENG Baokang,LI Junjian,GAO Yinshan,et al.Microscopic re⁃ mained oil distribution characteristics of CO2 huff and puff in the tight oil reservoir in Ordos Basin[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(6):119-125.

    • [36] 李士伦,汤勇,侯承希.注CO2提高采收率技术现状及发展趋势 [J].油气藏评价与开发,2019,9(3):1-8.LI Shilun,TANG Yong,HOU Chengxi.Present situation and de⁃ velopment trend of CO2 injection enhanced oil recovery technolo⁃gy[J].Reservoir Evaluation and Development,2019,9(3):1-8.

    • [37] 胡永乐,郝明强,陈国利.注二氧化碳提高石油采收率技术 [M].北京:石油工业出版社,2018:1-40.HU Yongle,HAO Mingqiang,CHEN Guoli.Technology of en⁃ hanced oil recovery by carbon dioxide[M].Beijing:Petroleum In⁃ dustry Press,2018:1-40.

    • [38] 谷丽冰,李治平,欧瑾.利用二氧化碳提高原油采收率研究进展[J].中国矿业,2007,16(10):66-69.GU Libing,LI Zhiping,OU Jin.The existing state of enhanced oil recovery by utilizing carbon dioxide[J].China Mining Magazine,2007,16(10):66-69.

    • [39] 袁士义,王强,李军诗,等.注气提高采收率技术进展及前景展望[J].石油学报,2020,41(12):1 623-1 632.YUAN Shiyi,WANG Qiang,LI Junshi,et al.Technology progress and prospects of enhanced oil recovery by gas injection[J].Acta Petrolei Sinica,2020,41(12):1 623-1 632.

    • [40] 曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.Migration law of CO2-crude oil miscible zone and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.

    • [41] 秦积舜,张可,陈兴隆,等.高含水后 CO2驱油机理的探讨[J]. 石油学报,2010,31(5):797-800.QIN Jishun,ZHANG Ke,CHEN Xinglong.Mechanism of the CO2 flooding as reservoirs containing high water[J].Acta Petrolei Sini⁃ ca,2010,31(5):797-800.

    • [42] 郭立强.高含水油藏 CO2驱机理深化研究[J].内蒙古石油化工,2019,45(6):11-12.GUO Liqiang.Further study on the mechanism of CO2 flooding in high water cut reservoir[J].Inner Mongolia Petrochemical Indus⁃ try,2019,45(6):11-12.

    • [43] CUI Maolei,WANG Rui,LÜ Chengyuan,et al.Research on micro⁃ scopic oil displacement mechanism of CO2 EOR in extra-high wa⁃ ter cut reservoirs[J].Journal of Petroleum Science and Engineer⁃ ing,2017,154:315-321.

    • [44] 吕成远,王锐,崔茂蕾,等.高含水条件下 CO2混相驱替实验 [J].石油学报,2017,38(11):1 293-1 298.LÜ Chengyuan,WANG Rui,CUI Maolei,et al.Displacement ex⁃ periment of CO2 miscible flooding under high water condition[J].Acta Petrolei Sinica,2017,38(11):1 293-1 298.

    • [45] 周宇,王锐,苟斐斐,等.高含水油藏 CO2驱油机理[J].石油学报,2016,37(S1):143-150.ZHOU Yu,WANG Rui,GOU Feifei,et al.CO2 flooding mecha⁃ nism in high water cut reservoirs[J].Acta Petrolei Sinica,2016,37(S1):143-150.

    • [46] MOSLEH M H,SEDIGHI M,BABAEI M,et al.Geological seques⁃ tration of carbon dioxide[M].Amsterdam:Elsevier,2019:487-500.

    • [47] BACHU S,ADAMS J J.Sequestration of CO2 in geological media in response to climate change:capacity of deep saline aquifers to sequester CO2 in solution[J].Energy Conversion & Management,2003,44(20):3 151-3 175.

    • [48] WILDGUST N,GILBOY C,TONTIWACHWUTHIKUL P.Intro⁃ duction to a decade of research by the IEAGHG Weyburn-Midale CO2 monitoring and storage project[J].International Journal of Greenhouse Gas Control,2013,16S:S1-S4.

    • [49] VOORMEIJ D A,SIMANDL G J.Geological and mineral CO2 se⁃ questration options:a technical review[J].Geoscience Canada,2004,31(1):11-22.

    • [50] 高冉,吕成远,伦增珉,等.二氧化碳驱替与埋存一体化数值模拟[J].特种油气藏,2021,28(2):102-107.GAO Ran,LÜ Chengyuan,LUN Zengmin,et al.Integrated numeri⁃ cal simulation of carbon dioxide displacement and sequestration [J].Special Oil & Gas Reservoirs,2021,28(2):102-107.

    • [51] ZHAO Dongfeng,LIAO Xinwei,YIN Dandan.An experimental study for the effect of CO2-brine-rock interaction on reservoir physical properties[J].Journal of the Energy Institute,2015,88(1):27-35.

    • [52] SAEEDI A,PIANE C D,ESTEBAN L,et al.Flood characteristic and fluid rock interactions of a supercritical CO2,brine,rock sys⁃ tem:South West Hub,Western Australia[J].International Journal of Greenhouse Gas Control,2016,54(Part1):309-321.

    • [53] SOONG Y,HOWARD B H,DILMORE R M,et al.CO2/brine/rock interactions in Lower Tuscaloosa Formation[J].Greenhouse Gas⁃ es:Science and Technology,2016,6(6):824-837.

    • [54] TARKOWSKI R,WDOWIN M,MANECKI M.Petrophysical exam⁃ ination of CO-brine-rock interactions-results of the first stage of long-term experiments in the potential Zaosie Anticline reservoir(central Poland)for CO2 storage[J].Environmental Monitoring and Assessment,2015,187(1):4 215:1-4 215:10.

    • [55] CANTUCCI B,MONTEGROSSI G,VASELLI O,et al.Geochemi⁃ cal modeling of CO2 storage in deep reservoirs:the Weyburn Proj⁃ ect(Canada)case study[J].Chemical Geology,2009,265(1/2):181-197.

    • [56] WANG Kairan,XU Tianfu,WANG Fugang,et al.Experimental study of CO2-brine-rock interaction during CO2 sequestration in deep coal seams[J].International Journal of Coal Geology,2016,154/155:265-274.

    • [57] 王闯,朱前林,黄春霞,等.吴起油田油藏 CO2地质封存潜力评价与分析[J]环境工程,2019,37(S1):268-273.WANG Chuang,ZHU Qianlin,HUANG Chunxia,et al.Evaluation and analysis of CO2 geologic storage capacity in Wuqi OilField[J] Environmental Engineering,2019,37(S1):268-273.

    • [58] 崔国栋,张亮,任韶然,等.油藏 CO2驱及封存过程中地化反应特征及埋存效率[J].中国石油大学学报:自然科学版,2017,41(6):123-131.CUI Guodong,ZHANG Liang,REN Shaoran,et al.Geochemical reactions and CO2 storage efficiency during CO2 EOR process and subsequent storage[J].Journal of China University of Petroleum:Edition of Natural Science,2017,41(6):123-131.

    • [59] AMINU M D,NABAVI S A,ROCHELLE C A,et al.A review of developments in carbon dioxide storage[J].Applied Energy,2017,208:1 389-1419.

    • [60] WANG Dayong,DONG Bo,BREEN S,et al.Review:approaches to research on CO2/brine two-phase migration in saline aquifers[J].Hydrogeology Journal,2014,23(1):1-18.

    • [61] BOLSTER D.The fluid mechanics of dissolution trapping in geo⁃ logic storage of CO2[J].Journal of Fluid Mechanics,2014,740:1-4.

    • [62] IPCC.IPCC special report:carbon capture and storage[M].Cam⁃ bridge:Cambridge University Press,2005.

    • [63] 宁雅洁.盐水层 CO2埋存量影响因素数值模拟研究[D].北京:中国地质大学(北京),2020.NING Yajie.Research on the factors influencing porosity in the process of CO2 storage in the saline aquifer[D].Beijing:China University of Geosciences(Beijing),2020.

    • [64] AKBARABADI M,PIRI M.Co-sequestration of SO2 with super⁃ critical CO2 in carbonates:an experimental study of capillary trap⁃ ping,relative permeability,and capillary pressure[J].Advances in Water Resources,2015,77:44-56.

    • [65] DE SILVA P N K,RANJITH P G.Advanced core flooding appara⁃ tus to estimate permeability and storage dynamics of CO2 in large coal specimens[J].Fuel,2013,104:417-425.

    • [66] PENTLAND C H,EL-MAGHRABY R,GEORGIADIS A,et al.Immiscible displacements and capillary trapping in CO2 storage [J].Energy Procedia,2011,4:4 969-4 976.

    • [67] LI Qi.Coupled reactive transport model for heat and density driven flow in CO2 storage in saline aquifers[J].Journal of Hazardous Toxic and Radioactive Waste,2011,15(4):251-258.

    • [68] PANG Zhonghe,LI Yiman,YANG Fengtian,et al.Geochemistry of a continental saline aquifer for CO2 sequestration:the Guantao Formation in the Bohai Bay Basin,North China[J].Applied Geo⁃ chemistry,2012,27(9):1 821-1 828.

    • [69] LIU Weizao,TENG Liumei,ROHANI S,et al.CO2 mineral carbon⁃ ation using industrial solid wastes:a review of recent develop⁃ ments[J].Chemical Engineering Journal,2021,416(7273):129093.

    • [70] WANG Fei,DREISINGER D B,JARVIS M,et al.The technology of CO2 sequestration by mineral carbonation:current status and fu⁃ ture prospects[J].Canadian Metallurgical Quarterly,2017,57(1):1-13.

    • [71] NARAHARISETTI P K,YEO T Y,BU Jie.New classification of CO2 mineralization processes and economic evaluation[J].Renew⁃ able and Sustainable Energy Reviews,2019,99:220-233.

    • [72] HELLEVANG H,HAILE B G,TETTEH A.Experimental study to better understand factors affecting the CO2 mineral trapping poten⁃ tial of basalt[J].Greenhouse Gases:Science and Technology,2017,7(1):143-157.

    • [73] SUNDAL A,HELLEVANG H,MIRI R,et al.Variations in miner⁃ alization potential for CO2 related to sedimentary facies and burial depth—a comparative study from the North Sea[J].Energy Proce⁃ dia,2014,63:5 063-5 070.

    • [74] GUNTER W D,BACHU S,BENSON S.The role of hydrogeologi⁃ cal and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide[J].Geological Society,Lon⁃ don,Special Publications,2004,233(1):129-145.

    • [75] BACHU S.Review of CO2 storage efficiency in deep saline aquifers [J].International Journal of Greenhouse Gas Control,2015,40:188-202.

    • [76] BACHU S,BONIJOLY D,BRADSHAW J,et al.Estimation of CO2 storage capacity in geological media[R/OL].CSLF-T-2007-04.[2022-08-01].https://www.cslforum.org/cslf/sites/default/files/documents/PhaseII Report Storage Capacity Measurement Task Force.pdf.

    • [77] BUTTINELLI M,PROCESI M,CANTUCCI B,et al.The geo-data⁃ base of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy[J].Energy,2011,36(5):2 968-2 983.

    • [78] DE SILVA P N K,RANJITH P G.A study of methodologies for CO2 storage capacity estimation of saline aquifers[J].Fuel,2012,93:13-27.

    • [79] ZHAO Xiaoliang,LIAO Xinwei,WANG Wanfu,et al.The CO2 storage capacity evaluation:Methodology and determination of key factors[J].Journal of the Energy Institute,2014,87(4):297-305.

    • [80] CANTUCCI B,BUTTINELLI M,PROCESI M,et al.Algorithms for CO2 storage capacity estimation:review and case study[M]//VISHAL V,SINGH T N.Geologic Carbon Sequestration:Under⁃ standing Reservoir Behavior.New York:Springer Cham,2016:21-44.

    • [81] 沈平平,廖新维,刘庆杰.二氧化碳在油藏中埋存量计算方法 [J].石油勘探与开发,2009,36(2):216-220. SHEN Pingping,LIAO Xinwei,LIU Qingjie.Methodology for esti⁃ mation of CO2 storage capacity in reservoirs[J].Petroleum Explo⁃ ration and Development,2009,36(2):216-220.

    • [82] BACHU S,SHAW J C,PEARSON R M.Estimation of oil recovery and CO2 storage capacity in CO2 EOR incorporating the effect of underlying aquifers[R].SPE/DOE Symposium on Improved Oil Recovery,Tulsa,2004:SPE-89340-MS.

    • [83] 任建峰.油田 CO2封存渗漏机制及监测方法研究[D].青岛:中国石油大学(华东),2016.REN Jianfeng.Mechanisms and monitoring of CO2 leakage during EOR and geological storage processes[D].Qingdao:China Univer⁃ sity of Petroleum(East China),2016.

    • [84] SUN Yankun,LIU Jinquan,XUE Ziqiu,et al.A critical review of distributed fiber optic sensing for real-time monitoring geologic CO2 sequestration[J].Journal of Natural Gas Science and Engi⁃ neering,2021,88:103751.

    • [85] SAFFOU E,RAZA A,GHOLAMI R,et al.Geomechanical charac⁃ terization of CO2 storage sites:a case study from a nearly depleted gas field in the Bredasdorp Basin,South Africa[J].Journal of Nat⁃ ural Gas Science and Engineering,2020,81:103446.

    • [86] KUMAR S,FOROOZESH J,EDLMANN K,et al.A comprehen⁃ sive review of value-added CO2 sequestration in subsurface saline aquifers[J].Journal of Natural Gas Science and Engineering,2020,81:103437.

    • [87] WIMMER B T,KRAPAC I G,LOCKE R,et al.Applying monitor⁃ ing,verification,and accounting techniques to a real-world,en⁃ hanced oil recovery operational CO2 leak[J].Energy Procedia,2011,4:3 330-3 337.

    • [88] 宋兆杰.高含水油田 CO2驱油适应性评价方法研究[D].北京:中国地质大学(北京),2014.SONG Zhaojie.Feasility study on CO2 flooding in high water cut oilfields[D].Beijing:China University of Geosciences(Beijing),2014.

    • [89] SCHERER G W,CELIA M A,PREVOST J H,et al.Chapter10— Leakage of CO2 through abandoned wells:role of corrosion of ce⁃ ment[M]//THOMAS D,BENSON S.Carbon Dioxide Capture for Storage in Deep Geologic Formations.Amsterdam:Elsevier Sci⁃ ence,2005:827-848.

    • [90] GASDA S E,BACHU S,CELIA M A.Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin[J].Environmental Geology,2004,46(6/7):707-720.

    • [91] CONNELL L,DOWN D,LU Meng,et al.An investigation into the integrity of wellbore cement in CO2 storage wells:core flooding ex⁃ periments and simulations[J].International Journal of Greenhouse Gas Control,2015,37:424-440.

    • [92] QUATTROCCHI F,BOSCHI E.Case histories in scientific and pseudo-scientific mass-media communication in energy/heat pro⁃ duction from underground(geogas storage,geothermics,hydrocar⁃ bons),in the frame of Nimby Sindrome enhancement in Europe:the proposal of a new European Direct[J].Veterinary Research,2015,46(1):115.

    • [93] IDE S T,FRIEDMANN S J,HERZOG H J.CO2 leakage through existing wells:current technology and regulations[C].Trondheim:8th International Conference on Greenhouse Gas Control Technol⁃ ogies,2006:19-33.

    • [94] RUTQVIST J,TSANG C F.A study of caprock hydromechanical changes associated with CO2-injection into a brine formation[J].Environmental Geology,2002,42(2/3):296-305.

    • [95] HOU Lianhua,YU Zhichao,LUO Xia,et al.Self-sealing of cap⁃ rocks during CO2 geological sequestration[J].Energy,2022,252:124064.

    • [96] EBIGBO A,CLASS H,HELMIG R.CO2 leakage through an aban⁃ doned well:problem-oriented benchmarks[J].Computational Geo⁃ sciences,2007,11(2):103-115.

    • [97] GAUS I.Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks[J].International Journal of Green⁃ house Gas Control,2010,4(1):73-89.

    • [98] WANG Jianguo,PENG Yan.Numerical modeling for the combined effects of two-phase flow,deformation,gas diffusion and CO2 sorp⁃ tion on caprock sealing efficiency[J].Journal of Geochemical Ex⁃ ploration,2014,144(A):154-167.

    • [99] VILARRASA V,RUTQVIST J.Thermal effects on geologic carbon storage[J].Earth-Science Reviews,2017,165:245-256.

    • [100] CHIQUET P,BROSETA D,THIBEAU S.Wettability alteration of caprock minerals by carbon dioxide[J].Geofluids,2007,7(2):112-122.

    • [101] YANG Dayong,TONTIWACHWUTHIKUL P,GU Yongan.Interfa⁃ cial interactions between reservoir brine and CO2 at high pres⁃ sures and elevated temperatures[J].Energy & Fuels,2005,19(1):216-223.

    • [102] YANG Dayong,TONTIWACHWUTHIKUL P.Interfacial tensions of the crude oil+reservoir brine+CO2 systems at pressures up to 31 MPa and temperatures of 27 ℃ and 58 ℃[J].Journal of Chemical & Engineering Data,2005,50(4):1 242-1 249.

    • [103] LI Shihong,DONG Mingzhe,LI Zengchen,et al.Gas breakthrough pressure for hydrocarbon reservoir seal rocks:implications for the security of long-term CO2 storage in the Weyburn field[J].Geoflu⁃ ids,2005,5(4):326-334.

    • [104] HILDENBRAND A,SCHLÖMER S,KROOSS B.Gas break⁃ through experiments on fine-grained sedimentary rocks[J].Geo⁃ fluids,2002,2(1):3-23.

    • [105] SONG Juan,ZHANG Dongxiao.Comprehensive review of cap⁃ rock-sealing mechanisms for geologic carbon sequestration[J].Environmental Science & Technology,2013,47(1):9-22.

    • [106] FARRELL N J C,HEALY D,TAYLOR C W.Anisotropy of perme⁃ ability in faulted porous sandstones[J].Journal of Structural Geol⁃ ogy,2014,63(3):50-67.

    • [107] LI Zhaowen,DONG Mingzhe,LI Shuliang,et al.CO2 sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity[J].Energy Conversion and Management,2006,47(11/12):1 372-1 382.

    • [108] 张森琦,刁玉杰,程旭学,等.二氧化碳地质储存逃逸通道及环境监测研究[J].冰川冻土,2010,32(6):1 251-1 261.ZHANG Senqi,DIAO Yujie,CHENG Xuxue,et al.CO2 geological storage leakage routes and environment monitoring[J].Journal of Glaciology and Geocryology,2010,32(6):1 251-1 261.

    • [109] 强薇,李义连,文冬光,等.温室性气体地质处置研究进展及其问题[J].地质科技情报,2006,25(2):83-88.QIANG Wei,LI Yilian,WEN Dongguang,et al.Advances and problems of geological disposal of greenhouse gases[J].Geologi⁃ cal Science and Technology Information,2006,25(2):83-88.

    • [110] 曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放—— 二氧化碳地下储存研究[J].中国科学基金,2004,18(4):196-200.ZENG Rongshu,SUN Shu,CHEN Daizhao,et al.Decrease carbon dioxide emission into the atmosphere—underground disposal of carbon dioxide[J].Bulletin of National Natural Science Founda⁃ tion of China,2004,18(4):196-200.

    • [111] 许志刚,陈代钊,曾荣树.CO2地质埋存渗漏风险及补救对策 [J].地质论评,2008,54(3):373-386.XU Zhigang,CHEN Daizhao,ZENG Rongshu.The leakage risk as⁃ sessment and remediation options of CO2 geological storage[J].Geological Review,2008,54(3):373-386.

    • [112] METZ B,DAVIDSON O,DE CONINCK H,et al.IPCC special re⁃ port on carbon dioxide capture and storage[M].Cambridge:Cam⁃ bridge University Press,2005.

    • [113] CAWLEY S J,SAUNDERS M R,LE GALLO Y,et al.Chapter5— The Ngcas project-assessing the potential for EOR and CO2 stor⁃ age at the Forties Oilfield,Offshore UK[M]//THOMAS D,BEN⁃ SON S.Carbon dioxide capture for storage in deep geologic forma⁃ tions.Amsterdam:Elsevier Science,2005:713-750.

    • [114] WALTON F B,TAIT J C,LE NEVEU D,et al.Geological storage of CO2:a statistical approach to assessing performance and risk [R].Proceedings of the 7th International Conference on Green⁃ house Gas Control Technologies(GH GT-7),Vancouver,2004:693-700.

    • [115] ZHOU Weixian,STENHOUSE M J,ARTHUR S R,et al.The IEA Weyburn CO2 monitoring and storage project-modeling of the long-term migration of CO2 from Weyburn[R].Proceedings of the 7th International Conference on Greenhouse Gas Control Technol⁃ ogies,Vancouver,2004:721-729.

    • [116] STALKER L,NOBLE R R P,PEJCIC B,et al.Feasibility of moni⁃ toring techniques for substances mobilised by CO2 storage in geo⁃ logical formations[J].Energy Procedia,2012,23(1):439-448.

    • [117] MYERS M,STALKER L,PEJCIC B,et al.Tracers-past,present and future applications in CO2 geosequestration[J].Applied Geo⁃ chemistry,2013,30:125-135.

    • [118] ZHANG Tian,ZHANG Wanchang,YANG Ruizhao,et al.CO2 cap⁃ ture and storage monitoring based on remote sensing techniques:a review[J].Journal of Cleaner Production,2020:124409.

    • [119] DEAN M,TUCKER O.A risk-based framework for Measurement,Monitoring and Verification(MMV)of the Goldeneye storage com⁃ plex for the Peterhead CCS project,UK[J].International Journal of Greenhouse Gas Control,2017,61:1-15.

    • [120] ROBERTS J J,GILFILLAN S M V,STALKER L,et al.Geochemi⁃ cal tracers for monitoring offshore CO2 stores[J].International Journal of Greenhouse Gas Control,2017,65:218-234.

    • [121] THIRUCHITTAMPALAM S,RAVAL S A,GLENN N F,et al.In⁃ direct remote sensing techniques for long term monitoring of CO2 leakage in geological carbon sequestration:a review[J].Journal of Natural Gas Science and Engineering,2022,100:104488.

    • [122] SAITO H,NOBUOKA D,AZUMA H,et al.Time-lapse crosswell seismic tomography for monitoring injected CO2 in an onshore aquifer,Nagaoka,Japan[J].Geophysical Exploration,2006,37(1):30-36.

    • [123] AJO-FRANKLIN J B,PETERSON J,DOETSCH J,et al.Highresolution characterization of a CO2 plume using crosswell seismic tomography:Cranfield,MS,USA[J].International Journal of Greenhouse Gas Control,2013,18:497-509.

    • [124] BÖHM G,CARCIONE J M,GEI D,et al.Cross-well seismic and electromagnetic tomography for CO2 detection and monitoring in a saline aquifer[J].Journal of Petroleum Science and Engineering,2015,133:245-257.

    • [125] RAJI W O,HARRIS J M,LU Shaoyu.Seismic velocity tomogra⁃ phy for CO2 monitor in subsurface geological structures[J].Jour⁃ nal of King Saud University-Science,2016,30(1):57-64.