en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

肖志朋(1975—),男,河南邓州人,高级工程师,从事油气田开发相关工作。E-mail:xiaozhipeng@petrochina.com.cn。

通讯作者:

李爱芬(1962—),女,山东潍坊人,教授,博士。E-mail:aifenli@upc.edu.cn。

中图分类号:TE341

文献标识码:A

文章编号:1009-9603(2023)02-0068-09

DOI:10.13673/j.cnki.cn37-1359/te.202211045

参考文献 1
敖文君,赵仁保,杨晓盈,等.轻质油藏注富气驱提高采收率室内研究[J].石油天然气学报,2014,36(9):163-166,170.AO Wenjun,ZHAO Renbao,YANG Xiaoying,et al.Laboratory study on enhanced oil recovery by enriched-gas flooding in light oil reservoir[J].Journal of Oil and Gas Technology,2014,36(9):163-166,170.
参考文献 2
凡玉梅.基于开发技术的低渗透油藏未动用储量分类评价[J].石油实验地质,2022,44(2):337-341.FAN Yumei.Classification and evaluation of undeveloped re⁃ serves in low-permeability reservoirs based on development tech⁃ nology[J].Petroleum Geology and Experiment,2022,44(2):337-341.
参考文献 3
王智林,林波,葛永涛,等.低渗油藏水驱后注 CO2补充能量机理及方式优化[J].断块油气田,2019,26(2):231-235.WANG Zhilin,LIN Bo,GE Yongtao,et al.Mechanisms and opti⁃ mization of supplementing in-situ energy by CO2 injection after water flooding in low permeability reservoirs[J].Fault-Block Oil and Gas Field,2019,26(2):231-235.
参考文献 4
陈晓军,史华,成伟,等.扎尔则油田注烃气混相驱机理研究 [J].油气地质与采收率,2012,19(3):74-77,116.CHEN Xiaojun,SHI Hua,CHENG Wei,et al.Mechanism study on hydrocarbon gas miscible flooding in Zarzaitine Oilfield[J].Pe⁃ troleum Geology and Recovery Efficiency,2012,19(3):74-77,116.
参考文献 5
邹存友,于立君.中国水驱砂岩油田含水与采出程度的量化关系[J].石油学报,2012,33(2):288-292.ZOU Cunyou,YU Lijun.A quantization relationship between wa⁃ ter cut and degree of reserve recovery for waterflooding sandstone reservoirs in China[J].Acta Petrolei Sinica,2012,33(2):288-292.
参考文献 6
李蕾,郑自刚,杨承伟,等.超低渗油藏超临界 CO2驱油特征及原油动用能力[J].科学技术与工程,2021,21(29):12 551-12 558.LI Lei,ZHENG Zigang,YANG Chengwei,et al.Displacement characteristics and capacity of supercritical CO2 flooding in ultra low permeability reservoirs[J].Science Technology and Engineer⁃ ing,2021,21(29):12 551-12 558.
参考文献 7
钱坤,杨胜来,董俊昌,等.高压注烃类气体过程中沥青质初始沉淀压力试验研究[J].石油钻探技术,2015,43(2):116-119.QIAN Kun,YANG Shenglai,DONG Junchang,et al.A study of as⁃ phaltene onset pressure during high-pressure gas injection[J].Pe⁃ troleum Drilling Techniques,2015,43(2):116-119.
参考文献 8
韩海水,周代余,王丽,等.超深巨厚油藏顶部注烃气提高采收率调控机制[J].中国石油大学学报:自然科学版,2021,45(2):104-110.HAN Haishui,ZHOU Daiyu,WANG Li,et al.Regulation mecha⁃ nism of EOR for natural gas crestal injection in super deep and thick reservoir[J].Journal of China University of Petroleum:Edi⁃ tion of Natural Science,2021,45(2):104-110.
参考文献 9
马铨峥,杨胜来,王敉邦,等.新疆吉木萨尔凹陷致密油藏最小混相压力实验研究[J].辽宁石油化工大学学报,2020,40(1):35-38.MA Quanzheng,YANG Shenglai,WANG Mibang,et al.Experi⁃ mental investigation on minimum miscible pressure of the tight oil reservoir in Jimsar Sag,Xinjiang[J].Journal of Liaoning Universi⁃ ty of Petroleum and Chemical Technology,2020,40(1):35-38.
参考文献 10
王玉霞,尚庆华.致密油藏气驱最小混相压力预测[J].非常规油气,2021,8(5):45-49.WANG Yuxia,SHANG Qinghua.Minimum miscibility pressure prediction of gas flooding in tight reservoirs[J].Unconventional Oil & Gas,2021,8(5):45-49.
参考文献 11
郑旭,雷源,丁文刚,等.低渗油藏二氧化碳驱最小混相压力预测方法研究[J].当代化工,2021,50(11):2 636-2 639,2 643.ZHENG Xu,LEI Yuan,DING Wengang,et al.Research on predic⁃ tion method of the minimum miscible pressure for carbon dioxide flooding in low permeability reservoirs[J].Contemporary Chemi⁃ cal Industry,2021,50(11):2 636-2 639,2 643.
参考文献 12
韩波,任韶然,李伟,等.CO2驱最小混相压力及其动态变化研究[J].非常规油气,2020,7(2):75-82.HAN Bo,REN Shaoran,LI Wei,et al.Study on minimum miscibil⁃ ity pressure and its dynamic variation in CO2 flooding[J].Uncon⁃ ventional Oil & Gas,2020,7(2):75-82.
参考文献 13
彭超,刘建仪,张广东,等.降低 CO2驱油最小混相压力新方法 [J].重庆科技学院学报:自然科学版,2012,14(1):48-51.PENG Chao,LIU Jianyi,ZHANG Guangdong,et al.A new method of reducing the miscible-phase pressure of CO2 flooding[J].Jour⁃ nal of Chongqing University of Science and Technology:Natural Science Edition,2012,14(1):48-51.
参考文献 14
董朝霞,崔波,李翼,等.超临界 CO2微乳液与烷烃的最小混相压力研究[J].石油化工高等学校学报,2013,26(1):40-44.DONG Zhaoxia,CUI Bo,LI Yi,et al.MMP of supercritical carbon dioxide microemulsion and alkanes[J].Journal of Petrochemical Universities,2013,26(1):40-44.
参考文献 15
赵跃军,宋考平,范广娟,等.酯类化合物降低原油与二氧化碳体系最小混相压力实验[J].石油学报,2017,38(9):1 066-1 072.ZHAO Yuejun,SONG Kaoping,FAN Guangjuan,et al.The experi⁃ ment for reducing the minimum miscible pressure of crude oil and carbon dioxide system with ester compounds[J].Acta Petrolei Si⁃ nica,2017,38(9):1 066-1 072.
参考文献 16
YANG Zihao,WU Wei,DONG Zhaoxia,et al.Reducing the mini⁃ mum miscibility pressure of CO2 and crude oil using alcohols[J].Colloids and Surfaces,A.Physicochemical and Engineering As⁃ pects,2019,568(1):105-112.
参考文献 17
曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.CO2-crude oil mixed-phase zone transport law and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.
参考文献 18
邹建栋,廖新维,张可,等.不同油藏压力下 CO2驱最小混相压力实验研究[J].油气地质与采收率,2020,27(1):137-143.ZOU Jiandong,LIAO Xinwei,ZHANG Ke,et al.Migration law of CO2-crude oil miscible zone and its influence on development ef⁃ fect[J].Petroleum Geology and Recovery Efficiency,2020,27(1):137-143.
参考文献 19
HOSSEINI S A,ALFI M,NICOT J P,et al.Analysis of CO2 storage mechanisms at a CO2-EOR site,Cranfield,Mississippi[J].Green⁃ house Gases:Science and Technology,2018,8(3):469-482.
参考文献 20
王业飞,高苗,谭龙,等.裂缝-基质模型 CO2混相注入提高原油采收率[J].油气地质与采收率,2018,25(5):87-92.WANG Yefei,GAO Miao,TAN Long,et al.Experimental investi⁃ gation of miscible CO2 injection for enhanced oil recovery in frac⁃ ture-matrix model[J].Petroleum Geology and Recovery Efficien⁃ cy,2018,25(5):87-92.
参考文献 21
张艳梅,万文胜,李琛,等.彩9井区西山窑组特高含水油藏 CO2混相驱先导试验[J].特种油气藏,2021,28(6):121-128.ZHANG Yanmei,WAN Wensheng,LI Chen,et al.Pilot test of CO2 miscible displacement for extra high water cut reservoir in Xishanyao Formation of Block Cai9[J].Special Oil & Gas Reser⁃ voirs,2021,28(6):121-128.
参考文献 22
张可,李实,伦增珉,等.油气藏流体物性分析方法:GB/T 26981—2020[S].北京:中国标准出版社,2020.ZHANG Ke,LI Shi,LUN Zengmin,et al.Analysis method for res⁃ ervoir fluid physical properties:GB/T 26981-2020[S].Beijing:Standards Press of China,2020.
参考文献 23
李实,俞宏伟,伦增珉,等.最低混相压力实验测定方法——细管法:SY/T 6573—2016[S].北京:中国标准出版社,2016.LI Shi,YU Hongwei,LUN Zengmin,et al.Measurement method for minimum miscibility pressure by slim tube test:SY/T 6573-2016[S].Beijing:Standards Press of China,2016.
参考文献 24
李中超,聂法健,杜利,等.特高含水期油藏CO2/水交替驱实验研究——以濮城沙一下油藏为例[J].断块油气田,2015,22(5):627-632.LI Zhongchao,NIE Fajian,DU Li,et al.Experiment of carbon di⁃ oxide and water alternating flooding in high temperature,high salt and high water cut reservoir:taking Es1 reservoir of Pucheng Oil⁃ field as an example[J].Fault-Block Oil and Gas Field,2015,22(5):627-632.
参考文献 25
李爱芬.油层物理学[M].北京:石油大学出版社,2011.LI Aifen.Physical properties of petroleum reservoir[M].Beijing:China University of Petroleum Press,2011.
目录contents

    摘要

    吐哈盆地丘陵油田地层油为轻质油,油藏的非均质性导致水驱采收率较低,目前已进入高含水期。针对油藏水驱后注气混相驱可行性问题,首先利用细管实验测试了一级分离器气与地层油的混相压力,并优选了能实现混相的混相助剂类型(液化石油气、甲苯、乙二醇丁醚、CO2、富化的天然气)及段塞注入量;其次用油田地层岩心组成的长岩心研究了高含水状态下混相助剂段塞驱+一级分离器气驱+后续水驱的驱油效果。细管实验结果表明,目前地层条件下一级分离器气驱替地层油要实现混相驱需要在注入气前方加入混相助剂段塞。长岩心混相驱油实验结果表明,水驱后气驱可以较大幅度地提高原油采收率,在注入气前方加入混相助剂段塞,驱油效果明显提高,随混相助剂段塞注入量的增加采收率增加;但在地层油中溶解能力稍弱的混相助剂(如CO2、富化的天然气)与溶解能力强的混相助剂(如LPG)的作用规律不同,且并不是注入量越大越好。

    Abstract

    The oil in place from Qiuling Oilfield in Tuha Basin is light. The heterogeneity of the reservoirs leads to low wa- ter flooding recovery,and the reservoir has entered the high water-cut stage. In view of the feasibility of gas miscible flood- ing after water flooding of the reservoir,the miscible pressure of the first-stage separator gas(PSN gas)and oil in place was tested by a slim tube experiment,and the type of miscible additives(liquefied petroleum gas(LPG),toluene,2-Butoxy etha- nol,CO2,and enriched natural gas)and the amount of slug injection were optimized. Then,the oil displacement effect of miscible additive slug flooding+PSN gas flooding+subsequent water flooding at the high water-cut stage was studied by us- ing a long core model composed of formation core in the oilfield. The results of the slim tube experiment show that miscible flooding cannot be achieved through the displacement of oil in place by PSN gas under current formation conditions,and it is necessary to add a miscible additive slug in front of injected gas. Long core experiments show that gas flooding after water flooding can greatly enhance the recovery of oil in place. The oil displacement effect is greatly improved by adding a misci- ble additive slug in front of the injected gas,and the recovery increases with the increment of the injection amount in the miscible additive slug. However,the effect of miscible additives(CO2 and enriched natural gas)with weak solubility in oil in place is different from that of miscible additives(LPG)with strong solubility,and higher injection volume may yield a worse effect.

  • 中国低渗透油藏资源储量丰富[1-3],注水开发是最普遍的开发方式,但注水开发采收率较低。低渗透油藏高含水期(60%≤含水率<90%)如何提高采收率是目前学术界关注的问题[4-5]。前人研究发现注气提高采收率技术能够有效动用微小孔喉[6],并有效提高采收率,在低渗透油藏中应用愈发广泛。与气体非混相驱相比,气体混相驱因其较高的采收率而备受关注[7-8],而最小混相压力是限制混相驱开发的一个重要参数[9-12]。为了降低注入气与原油的混相压力,彭超等发现加入一定比例的液化气可以降低 CO2与原油的混相压力[13];董朝霞等发现表面活性剂可以降低超临界CO2微乳体系与十二烷混相压力[14];赵跃军等利用细管实验发现醇类、酯类化合物也可以降低 CO2与原油最小混相压力[15-16]。目前研究多基于细管实验研究 CO2混相驱[17-20],针对降低烃气驱混相压力的研究、高含水期油藏混相驱室内实验及现场试验较少[21]

  • 吐哈盆地丘陵油田三间房组储层为低孔低渗透储层,原油为具有弱挥发性的轻质油,自 1995 年开始注水保持压力开发,但由于油藏厚度较大及重力分异作用致使其采收率较低,目前含水率约为 94.5%,采出程度仅为 31.7%。如何提高采收率,水驱后是否适于气体混相驱,如何降低气体的混相压力是亟待解决的关键问题。

  • 考虑到油田水驱的不均匀性(有高含水通道,也有大量没有被水波及的含水饱和度为束缚水的区域),通过细管实验,测试了一级分离器气与地层油的混相压力,研究了降低混相压力的方法,在此基础上通过长岩心混相驱油实验,研究束缚水及高含水状态下加入混相助剂段塞后再进行气驱、水驱的开发效果,并进行了混相助剂类型及段塞注入量的优选,研究成果为丘陵油田水驱后气驱提高采收率提供了重要的指导。

  • 1 一级分离器气混相压力及助剂对混相压力的影响

  • 1.1 实验器材

  • 细管实验流程如图1所示。实验装置主要包括细管模型(填有一定粒度石英砂的填砂管)、中间容器、驱替泵、回压泵、油气分离器等。细管模型内径为 7 mm、长度为 18 m,内部充填的石英砂目数为 120 目,气测渗透率为 4 660 mD,孔隙度为 33.45%,孔隙体积为692.37 cm3

  • 实验用原油根据陵 2 井原始 PVT 资料(一次脱气原始气油比、气体组成)脱气原油配制而成,按国家标准[22] 测试实验用油泡点压力为 23.2 MPa,与地层原油泡点压力 24.31 MPa 基本一致,可以代表地层油。地层油黏度为 1.71 mPa·s,密度为 0.683 g/ cm3;实验用天然气为丘陵油田一级分离器气,用于驱替地层油;实验用煤油主要用于测试细管模型及管线的孔隙体积;液化石油气主要用于气驱油的混相助剂,并用于配制富化的天然气;原始地层条件 (地层温度为 78℃,地层压力为 27 MPa)下的地层油、一级分离器气、液化石油气(LPG)的组成见表1。

  • 实验用水根据丘陵油田地层水的组成配制,总矿化度为 2 886 mg/L,地层条件下水的黏度为 0.34 mPa·s,密度为0.987 g/cm3。实验用的5种混相助剂分别为液化石油气(LPG)、CO2、甲苯、乙二醇丁醚和富化的天然气(一级分离器气中加入摩尔分数为 23%的 LPG)。实验在地层温度为 78℃下进行。驱替速度为0.08 mL/min,为防止产出油中轻质油组分挥发,收集油气的油气分离器放在盛有冰块及水的大烧杯中。

  • 图1 细管实验流程

  • Fig.1 Flow chart of thin tube experiment

  • 表1 实验用地层油、一级分离器气及LPG各组分的摩尔分数

  • Table1 Compositions of oil in place,PSN gas,and LPG and their mole fractions

  • 1.2 实验步骤

  • 一级分离器气与地层油的最小混相压力的测试 细管实验参照行业标准[23] 测定最小混相压力。主要步骤包括:①流体准备。将地层油、混相助剂、煤油分别保持压力不变转入中间容器,并增压至地层压力。②细管模型抽空饱和煤油,并用煤油标定各段管线体积及细管模型孔隙体积。③细管模型饱和地层油。模型出口回压阀压力(回压)设置为27.1 MPa,然后以恒定速度用地层油驱替煤油,当岩心出口端气油比恒定且为原始气油比时停止驱替。④气驱。以恒定速度进行气驱地层油,驱替过程中注入压力与回压间的压差小于0.5 MPa;每注入 0.1~0.15 PV 测量一次累积产油量、累积产气量、注入压力下累积注入气体量,当累积注入气体量超过 1.2 PV 或不再产油后,停止驱替,计算采收率(某时刻累积采出的脱气油体积/模型中地层油脱气后的体积×100%)。⑤增加模型出口回压,重复步骤③和 ④。

  • 不同类型混相助剂对混相压力的影响 主要步骤为:细管模型饱和地层油,恒温至地层温度,以恒定速度分别注入0.05 PV的混相助剂(LPG、甲苯、乙二醇丁醚、CO2、富化的天然气)段塞,注入压力下用一级分离器气驱替至 1.2 PV 或不出油,记录累积产油量,计算地层油采收率。

  • 混相助剂段塞注入量优选 主要步骤为:饱和地层油的细管模型分别注入不同体积的LPG、甲苯、乙二醇丁醚、CO2、富化的天然气,用一级分离器气驱替地层油,至不出油实验结束。记录累积产油量,计算地层油采收率。

  • 1.3 实验结果与讨论

  • 1.3.1 一级分离器气与地层油的最小混相压力测试

  • 通过细管实验得出在不同回压下采收率、气油比与累积注入气体量的关系(图2),进而可以得到采收率与回压的关系(图3)。由图2和图3可知,随着回压的增加,突破时累积注入气体量逐渐增加,即越接近活塞式驱替,越不容易突破,采收率增加;一级分离器气驱替地层油的最小混相压力(MMP) 为 32.6 MPa(采收率为 90% 对应的回压),高于目前地层压力。因此若矿场用一级分离器气驱替地层油,地层中达不到混相压力,需要加入混相助剂段塞才能降低混相压力。

  • 1.3.2 不同类型混相助剂对气驱采收率的影响

  • 由不同类型混相助剂对气驱采收率的影响(图4)可以看出,在地层温度压力条件下,在细管模型中一级分离器气驱替地层油的采收率仅为 78.6%; 分别注入0.05 PV的LPG、甲苯、乙二醇丁醚、CO2、富化的天然气后,地层油采收率分别升高到 97.47%, 96.79%,94.73%,90.95%,89.92%。4 种前置混相助剂段塞均使天然气驱的地层油采收率达到 90% 以上,即均可实现混相驱,其中注入 LPG 提高气驱采收率的效果最明显。

  • 1.3.3 混相助剂段塞注入量优选

  • 由地层油采收率随5种混相助剂段塞注入量的变化(图5)可以看出,助剂段塞注入量为0即一级分离器气驱地层油时的采收率为 78.6%,注入混相助剂段塞后采收率均有所提高。随液体混相助剂 (LPG、甲苯、乙二醇丁醚)段塞注入量增加,地层油采收率增加迅速,之后增速变缓;随气体混相助剂 (CO2和富化的天然气)段塞注入量增加,地层油采收率增加缓慢,但随段塞注入量的持续增加也能获得很高的地层油采收率。3种液体混相助剂达到混相压力的段塞注入量为0.004~0.014 PV,2种气体混相助剂的段塞注入量约为0.05 PV。

  • 2 长岩心混相驱油实验

  • 2.1 实验器材

  • 长岩心混相驱油实验流程如图6所示。实验装置主要包括长岩心夹持器、中间容器、驱替泵、围压泵、回压泵、油气分离器。恒温箱温度为地层温度,岩心出口端的回压为地层压力(27 MPa),岩心饱和含有溶解气的地层油,驱替速度为 0.08 mL/min,其他实验条件同细管实验。实验用岩心取自丘陵油田陵 2 井区主力生产层位,用平行岩样拼成 4 组长度为43~46 cm的长岩心,各组长岩心平均气体渗透率相近,为34~35 mD。

  • 2.2 实验步骤

  • 岩心准备 主要步骤为:①短岩心抽真空然后饱和地层水,称重测孔隙体积,组成长岩心放入长岩心夹持器。②用地层油驱至束缚水饱和度,老化24 h。③高含水状态下气驱时需要用水驱至出口端含水率为98%。

  • 图2 不同回压下采收率、气油比与累积注入气体量的关系

  • Fig.2 Relationship between recovery,gas-oil ratio,and cumulative injected gas volume under different back pressure

  • 图3 一级分离器气驱地层油的采收率与回压的关系

  • Fig.3 Relationship between recovery of oil in place with PSN gas and back pressure

  • 未加混相助剂段塞的气驱 分别在束缚水下和含水率为98%后,用一级分离器气驱替至0.7 PV,再进行后续水驱至完全产水。

  • CO2段塞驱 分别在束缚水下和含水率为 98% 后,进行 CO2段塞驱替(注入量分别为 0.05,0.1,0.2 PV),后续一级分离器气驱替 0.5 PV,最后水驱至完全产水。

  • 其他助剂段塞驱 分别在束缚水下和含水率为 98% 后,进行 LPG、乙二醇丁醚、CO2、富化的天然气段塞驱替(注入量分别为 0.05,0.1,0.2 PV),进行乙二醇丁醚+富化的天然气段塞驱替(其中乙二醇丁醚0.05 PV,富化的天然气0.05,0.1,0.2 PV),后续一级分离器气驱替0.5 PV,最后水驱至完全产水。

  • 图4 不同类型混相助剂驱地层油采收率与累积注入量的关系

  • Fig.4 Relationship between recoveries and cumulative injection volumes of oil in place with by different miscible additives

  • 图5 混相助剂段塞注入量对地层油采收率的影响

  • Fig.5 Effect of injection volumes of miscible additives on recoveries

  • 上述驱替过程中都要记录岩心出口端不同时间的累积注入量、累积产油量、累积产水量、累积产气量,然后计算地层油采收率,得到束缚水及高含水状态下不同混相助剂段塞驱替规律。

  • 2.3 实验结果与讨论

  • 2.3.1 未加混相助剂段塞的气驱

  • 未加混相助剂段塞的气驱采收率、含水率、气液比与累积注入量的关系见图7。由图7a 可见,在束缚水状态下,一级分离器气驱替至累积注入量约为 0.5 PV 后发生气窜,后续驱替过程基本不出油,最终采收率为 65.47%;由图7b可见,水驱至含水率为98%后,采收率仅为33.8%,后续注入一级分离器气采收率还能提高约 20%,但由于水的存在,一定程度上阻碍了后续注入气与油的接触,最终采收率仅为 57.24%。究其原因为,地层油为轻质油,气驱时气体向地层油中溶解渗透,使其黏度大幅度降低,因此气驱采收率高于水驱(一般油藏水驱采收率高于气驱)。

  • 2.3.2 CO2段塞驱替

  • 束缚水状态下 束缚水状态下 CO2段塞驱采收率、含水率、气液比与累积注入量的关系如图8 所示。可以看出,随着CO2注入量的增加,初期原油采收率快速增加。气体(CO2段塞+一级分离器气)驱替后(注入量为0.37~0.6 PV)及水驱基本不再出油。随CO2注入量的增加,气体突破时的注入量增加,即越接近活塞驱,原油采收率越高。

  • 高含水状态下 水驱至含水率为 98% 状态下 CO2段塞驱替采收率、含水率、气液比与累积注入量的关系如图9 所示。可以看出,水驱至含水率为 98%后进行CO2段塞驱、一级分离器气驱,当累积注入量约为 0.2 PV 后原油采收率开始快速增加,随 CO2段塞注入量的增加,持续出油的阶段变长,驱替后期采收率增加缓慢,后续水驱阶段采收率增加量极少。随CO2段塞注入量的增加,采收率增加,但不是段塞注入量越大越好,0.1 PV时采收率最高。

  • 2 种状态下效果对比 图10a 为束缚水状态及水驱至含水率为98%后进行CO2段塞驱的驱油效果对比。可以看出,束缚水状态下随着总注入量增加,采收率迅速增加,由于气体向前突破形成优势通道,因此最后水驱阶段采收率几乎不再上升;高含水状态下含水率达到 98% 后采收率曲线几乎不再上升,后续注入气体,当总注入量达到0.3~0.4 PV 时采收率曲线再次上升,气体在出口端突破后采收率曲线趋于平缓,因此形成了采收率曲线台阶状变化趋势。

  • 图6 长岩心混相驱油实验流程

  • Fig.6 Flow chart of long core miscible displacement experiment

  • 图7 束缚水和高含水状态下未加混相助剂段塞的气驱效果

  • Fig.7 Effect of gas flooding without additive slugs at irreducible water and high water-cut conditions

  • 图8 束缚水状态下CO2段塞驱采收率与累积注入量的关系

  • Fig.8 Relationship between CO2 slug flooding recoveries and cumulative injection volumes at irreducible water condition

  • 图10b为采收率与 CO2段塞注入量的关系。可以看出,束缚水状态下进行 CO2段塞驱,采收率随 CO2段塞注入量的增加而增加;但高含水状态下进行CO2段塞驱,采收率先增加后降低,即高含水状态下CO2段塞的注入量并不是越大越好。

  • 2.3.3 其他混相助剂段塞驱替

  • 不同混相助剂段塞注入量对采收率的影响如图11 所示。可以看出,在束缚水状态下,随着混相助剂段塞注入量的增加,原油采收率明显上升。在高含水状态下随混相助剂段塞注入量的增加,原油采收率也有明显的增加,但对于CO2、富化的天然气段塞,其段塞注入量不是越大越好,应有合理的混相助剂段塞注入量,实际地层进行混相助剂辅助气驱时亦存在类似的规律。

  • 长岩心混相驱油实验中水驱至含水率为 98% 时原油采收率为32%~34%,剩余油存在于岩石壁面及小孔隙中,后续注入的混相助剂段塞(均呈气相) 会优先进入优势渗流通道。不同混相助剂段塞+一级分离器气驱的规律不同,原因如下:①LPG 段塞驱。LPG密度较小,不溶于地层水,能与原油直接混相,进入高含水地层后与孔隙中的残余油接触;在油中溶解,使地层油膨胀,很容易在混相助剂前缘形成油带,且注入量越大,形成的富集油带越大,最终原油采收率越高。②乙二醇丁醚+富化气段塞驱。乙二醇丁醚也易溶于原油,与富化的天然气中的LPG协同驱替残余油,因此,前置乙二醇丁醚+富化的天然气注入量越大,原油采收率越高。③CO2段塞驱。CO2在原油中的溶解能力远小于 LPG,不能与原油直接混相,进入高含水地层后 CO2少量溶于水(CO2在油、水中溶解气量比为 6.5∶1)[24],遇到残余油会逐渐溶于其中,使残余油体积不断膨胀并参与流动,但不能形成大片的富集油带(图12a)。当 CO2段塞注入量低于 0.1 PV 时,孔隙中存在很多气水界面;当气水界面遇到溶有CO2、黏度很低的残余油时,油会在气水界面铺开(气水界面张力小于油水界面张力),被气体不断带出[25];随着 CO2段塞注入量的增加,原油中溶解的CO2量增加,原油的体积越大、性质越好,通过气水界面携带出的油量越大(图12b),原油采收率越高;但 CO2段塞注入量超过 0.1 PV 后(图12c),后续一级分离器气驱替过程中,未完全溶解于气水的 CO2与后续注入气体从岩心出口端突破,并快速流出,气水界面少,携带出的油量也减少,因此总采收率降低。④富化气段塞驱。富化的天然气与 CO2类似,段塞注入量过大也会使原油采收率降低。

  • 图9 高含水状态下CO2段塞驱采收率与累积注入量的关系

  • Fig.9 Relationship between CO2 slug flooding recoveries and cumulative injection volumes at high water-cut condition

  • 图10 2种状态下CO2段塞驱替效果对比

  • Fig.10 Effect of CO2 slug flooding at two conditions

  • 图11 不同混相助剂段塞注入量对采收率的影响

  • Fig.11 Effect of injection volumes of different miscible additive slugs on recoveries

  • 图12 高含水状态下气体助剂驱油机理

  • Fig.12 Oil displacement mechanism of gas additives at high water-cut condition

  • 综上所述,高含水状态下注气体助剂段塞能够较为显著的提高原油采收率,但由于水的存在,富化的天然气段塞及CO2段塞在驱替前缘不能形成较大范围的富集油带,容易造成气体突破,因此注入量不是越大越好。

  • 3 结论

  • 细管实验表明,丘陵油田的三间房组一级分离器气与地层油混相压力为 32.6 MPa,高于原始地层压力,需要加入混相助剂段塞才能降低混相压力; 地层条件下LPG和CO2等混相助剂段塞均能使一级分离器气与地层油混相,且采收率随混相助剂段塞注入量的增加而增加。一级分离器气驱前注入 0.004~0.014 PV的液体混相助剂(LPG、甲苯、乙二醇丁醚)或注入 0.05 PV 的气体混相助剂(CO2、富化的天然气)可以实现混相驱。

  • 长岩心混相驱油实验表明,长岩心混相驱获得的采收率远小于细管实验。在束缚水状态下,随着混相助剂段塞注入量的增加,原油采收率明显上升;在高含水状态下随混相助剂段塞注入量的增加,原油采收率也有明显的增加,但对于气体混相助剂(CO2、富化的天然气),并不是混相助剂段塞注入量越大越好,应有合理的混相助剂段塞注入量。

  • 参考文献

    • [1] 敖文君,赵仁保,杨晓盈,等.轻质油藏注富气驱提高采收率室内研究[J].石油天然气学报,2014,36(9):163-166,170.AO Wenjun,ZHAO Renbao,YANG Xiaoying,et al.Laboratory study on enhanced oil recovery by enriched-gas flooding in light oil reservoir[J].Journal of Oil and Gas Technology,2014,36(9):163-166,170.

    • [2] 凡玉梅.基于开发技术的低渗透油藏未动用储量分类评价[J].石油实验地质,2022,44(2):337-341.FAN Yumei.Classification and evaluation of undeveloped re⁃ serves in low-permeability reservoirs based on development tech⁃ nology[J].Petroleum Geology and Experiment,2022,44(2):337-341.

    • [3] 王智林,林波,葛永涛,等.低渗油藏水驱后注 CO2补充能量机理及方式优化[J].断块油气田,2019,26(2):231-235.WANG Zhilin,LIN Bo,GE Yongtao,et al.Mechanisms and opti⁃ mization of supplementing in-situ energy by CO2 injection after water flooding in low permeability reservoirs[J].Fault-Block Oil and Gas Field,2019,26(2):231-235.

    • [4] 陈晓军,史华,成伟,等.扎尔则油田注烃气混相驱机理研究 [J].油气地质与采收率,2012,19(3):74-77,116.CHEN Xiaojun,SHI Hua,CHENG Wei,et al.Mechanism study on hydrocarbon gas miscible flooding in Zarzaitine Oilfield[J].Pe⁃ troleum Geology and Recovery Efficiency,2012,19(3):74-77,116.

    • [5] 邹存友,于立君.中国水驱砂岩油田含水与采出程度的量化关系[J].石油学报,2012,33(2):288-292.ZOU Cunyou,YU Lijun.A quantization relationship between wa⁃ ter cut and degree of reserve recovery for waterflooding sandstone reservoirs in China[J].Acta Petrolei Sinica,2012,33(2):288-292.

    • [6] 李蕾,郑自刚,杨承伟,等.超低渗油藏超临界 CO2驱油特征及原油动用能力[J].科学技术与工程,2021,21(29):12 551-12 558.LI Lei,ZHENG Zigang,YANG Chengwei,et al.Displacement characteristics and capacity of supercritical CO2 flooding in ultra low permeability reservoirs[J].Science Technology and Engineer⁃ ing,2021,21(29):12 551-12 558.

    • [7] 钱坤,杨胜来,董俊昌,等.高压注烃类气体过程中沥青质初始沉淀压力试验研究[J].石油钻探技术,2015,43(2):116-119.QIAN Kun,YANG Shenglai,DONG Junchang,et al.A study of as⁃ phaltene onset pressure during high-pressure gas injection[J].Pe⁃ troleum Drilling Techniques,2015,43(2):116-119.

    • [8] 韩海水,周代余,王丽,等.超深巨厚油藏顶部注烃气提高采收率调控机制[J].中国石油大学学报:自然科学版,2021,45(2):104-110.HAN Haishui,ZHOU Daiyu,WANG Li,et al.Regulation mecha⁃ nism of EOR for natural gas crestal injection in super deep and thick reservoir[J].Journal of China University of Petroleum:Edi⁃ tion of Natural Science,2021,45(2):104-110.

    • [9] 马铨峥,杨胜来,王敉邦,等.新疆吉木萨尔凹陷致密油藏最小混相压力实验研究[J].辽宁石油化工大学学报,2020,40(1):35-38.MA Quanzheng,YANG Shenglai,WANG Mibang,et al.Experi⁃ mental investigation on minimum miscible pressure of the tight oil reservoir in Jimsar Sag,Xinjiang[J].Journal of Liaoning Universi⁃ ty of Petroleum and Chemical Technology,2020,40(1):35-38.

    • [10] 王玉霞,尚庆华.致密油藏气驱最小混相压力预测[J].非常规油气,2021,8(5):45-49.WANG Yuxia,SHANG Qinghua.Minimum miscibility pressure prediction of gas flooding in tight reservoirs[J].Unconventional Oil & Gas,2021,8(5):45-49.

    • [11] 郑旭,雷源,丁文刚,等.低渗油藏二氧化碳驱最小混相压力预测方法研究[J].当代化工,2021,50(11):2 636-2 639,2 643.ZHENG Xu,LEI Yuan,DING Wengang,et al.Research on predic⁃ tion method of the minimum miscible pressure for carbon dioxide flooding in low permeability reservoirs[J].Contemporary Chemi⁃ cal Industry,2021,50(11):2 636-2 639,2 643.

    • [12] 韩波,任韶然,李伟,等.CO2驱最小混相压力及其动态变化研究[J].非常规油气,2020,7(2):75-82.HAN Bo,REN Shaoran,LI Wei,et al.Study on minimum miscibil⁃ ity pressure and its dynamic variation in CO2 flooding[J].Uncon⁃ ventional Oil & Gas,2020,7(2):75-82.

    • [13] 彭超,刘建仪,张广东,等.降低 CO2驱油最小混相压力新方法 [J].重庆科技学院学报:自然科学版,2012,14(1):48-51.PENG Chao,LIU Jianyi,ZHANG Guangdong,et al.A new method of reducing the miscible-phase pressure of CO2 flooding[J].Jour⁃ nal of Chongqing University of Science and Technology:Natural Science Edition,2012,14(1):48-51.

    • [14] 董朝霞,崔波,李翼,等.超临界 CO2微乳液与烷烃的最小混相压力研究[J].石油化工高等学校学报,2013,26(1):40-44.DONG Zhaoxia,CUI Bo,LI Yi,et al.MMP of supercritical carbon dioxide microemulsion and alkanes[J].Journal of Petrochemical Universities,2013,26(1):40-44.

    • [15] 赵跃军,宋考平,范广娟,等.酯类化合物降低原油与二氧化碳体系最小混相压力实验[J].石油学报,2017,38(9):1 066-1 072.ZHAO Yuejun,SONG Kaoping,FAN Guangjuan,et al.The experi⁃ ment for reducing the minimum miscible pressure of crude oil and carbon dioxide system with ester compounds[J].Acta Petrolei Si⁃ nica,2017,38(9):1 066-1 072.

    • [16] YANG Zihao,WU Wei,DONG Zhaoxia,et al.Reducing the mini⁃ mum miscibility pressure of CO2 and crude oil using alcohols[J].Colloids and Surfaces,A.Physicochemical and Engineering As⁃ pects,2019,568(1):105-112.

    • [17] 曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.CO2-crude oil mixed-phase zone transport law and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.

    • [18] 邹建栋,廖新维,张可,等.不同油藏压力下 CO2驱最小混相压力实验研究[J].油气地质与采收率,2020,27(1):137-143.ZOU Jiandong,LIAO Xinwei,ZHANG Ke,et al.Migration law of CO2-crude oil miscible zone and its influence on development ef⁃ fect[J].Petroleum Geology and Recovery Efficiency,2020,27(1):137-143.

    • [19] HOSSEINI S A,ALFI M,NICOT J P,et al.Analysis of CO2 storage mechanisms at a CO2-EOR site,Cranfield,Mississippi[J].Green⁃ house Gases:Science and Technology,2018,8(3):469-482.

    • [20] 王业飞,高苗,谭龙,等.裂缝-基质模型 CO2混相注入提高原油采收率[J].油气地质与采收率,2018,25(5):87-92.WANG Yefei,GAO Miao,TAN Long,et al.Experimental investi⁃ gation of miscible CO2 injection for enhanced oil recovery in frac⁃ ture-matrix model[J].Petroleum Geology and Recovery Efficien⁃ cy,2018,25(5):87-92.

    • [21] 张艳梅,万文胜,李琛,等.彩9井区西山窑组特高含水油藏 CO2混相驱先导试验[J].特种油气藏,2021,28(6):121-128.ZHANG Yanmei,WAN Wensheng,LI Chen,et al.Pilot test of CO2 miscible displacement for extra high water cut reservoir in Xishanyao Formation of Block Cai9[J].Special Oil & Gas Reser⁃ voirs,2021,28(6):121-128.

    • [22] 张可,李实,伦增珉,等.油气藏流体物性分析方法:GB/T 26981—2020[S].北京:中国标准出版社,2020.ZHANG Ke,LI Shi,LUN Zengmin,et al.Analysis method for res⁃ ervoir fluid physical properties:GB/T 26981-2020[S].Beijing:Standards Press of China,2020.

    • [23] 李实,俞宏伟,伦增珉,等.最低混相压力实验测定方法——细管法:SY/T 6573—2016[S].北京:中国标准出版社,2016.LI Shi,YU Hongwei,LUN Zengmin,et al.Measurement method for minimum miscibility pressure by slim tube test:SY/T 6573-2016[S].Beijing:Standards Press of China,2016.

    • [24] 李中超,聂法健,杜利,等.特高含水期油藏CO2/水交替驱实验研究——以濮城沙一下油藏为例[J].断块油气田,2015,22(5):627-632.LI Zhongchao,NIE Fajian,DU Li,et al.Experiment of carbon di⁃ oxide and water alternating flooding in high temperature,high salt and high water cut reservoir:taking Es1 reservoir of Pucheng Oil⁃ field as an example[J].Fault-Block Oil and Gas Field,2015,22(5):627-632.

    • [25] 李爱芬.油层物理学[M].北京:石油大学出版社,2011.LI Aifen.Physical properties of petroleum reservoir[M].Beijing:China University of Petroleum Press,2011.

  • 参考文献

    • [1] 敖文君,赵仁保,杨晓盈,等.轻质油藏注富气驱提高采收率室内研究[J].石油天然气学报,2014,36(9):163-166,170.AO Wenjun,ZHAO Renbao,YANG Xiaoying,et al.Laboratory study on enhanced oil recovery by enriched-gas flooding in light oil reservoir[J].Journal of Oil and Gas Technology,2014,36(9):163-166,170.

    • [2] 凡玉梅.基于开发技术的低渗透油藏未动用储量分类评价[J].石油实验地质,2022,44(2):337-341.FAN Yumei.Classification and evaluation of undeveloped re⁃ serves in low-permeability reservoirs based on development tech⁃ nology[J].Petroleum Geology and Experiment,2022,44(2):337-341.

    • [3] 王智林,林波,葛永涛,等.低渗油藏水驱后注 CO2补充能量机理及方式优化[J].断块油气田,2019,26(2):231-235.WANG Zhilin,LIN Bo,GE Yongtao,et al.Mechanisms and opti⁃ mization of supplementing in-situ energy by CO2 injection after water flooding in low permeability reservoirs[J].Fault-Block Oil and Gas Field,2019,26(2):231-235.

    • [4] 陈晓军,史华,成伟,等.扎尔则油田注烃气混相驱机理研究 [J].油气地质与采收率,2012,19(3):74-77,116.CHEN Xiaojun,SHI Hua,CHENG Wei,et al.Mechanism study on hydrocarbon gas miscible flooding in Zarzaitine Oilfield[J].Pe⁃ troleum Geology and Recovery Efficiency,2012,19(3):74-77,116.

    • [5] 邹存友,于立君.中国水驱砂岩油田含水与采出程度的量化关系[J].石油学报,2012,33(2):288-292.ZOU Cunyou,YU Lijun.A quantization relationship between wa⁃ ter cut and degree of reserve recovery for waterflooding sandstone reservoirs in China[J].Acta Petrolei Sinica,2012,33(2):288-292.

    • [6] 李蕾,郑自刚,杨承伟,等.超低渗油藏超临界 CO2驱油特征及原油动用能力[J].科学技术与工程,2021,21(29):12 551-12 558.LI Lei,ZHENG Zigang,YANG Chengwei,et al.Displacement characteristics and capacity of supercritical CO2 flooding in ultra low permeability reservoirs[J].Science Technology and Engineer⁃ ing,2021,21(29):12 551-12 558.

    • [7] 钱坤,杨胜来,董俊昌,等.高压注烃类气体过程中沥青质初始沉淀压力试验研究[J].石油钻探技术,2015,43(2):116-119.QIAN Kun,YANG Shenglai,DONG Junchang,et al.A study of as⁃ phaltene onset pressure during high-pressure gas injection[J].Pe⁃ troleum Drilling Techniques,2015,43(2):116-119.

    • [8] 韩海水,周代余,王丽,等.超深巨厚油藏顶部注烃气提高采收率调控机制[J].中国石油大学学报:自然科学版,2021,45(2):104-110.HAN Haishui,ZHOU Daiyu,WANG Li,et al.Regulation mecha⁃ nism of EOR for natural gas crestal injection in super deep and thick reservoir[J].Journal of China University of Petroleum:Edi⁃ tion of Natural Science,2021,45(2):104-110.

    • [9] 马铨峥,杨胜来,王敉邦,等.新疆吉木萨尔凹陷致密油藏最小混相压力实验研究[J].辽宁石油化工大学学报,2020,40(1):35-38.MA Quanzheng,YANG Shenglai,WANG Mibang,et al.Experi⁃ mental investigation on minimum miscible pressure of the tight oil reservoir in Jimsar Sag,Xinjiang[J].Journal of Liaoning Universi⁃ ty of Petroleum and Chemical Technology,2020,40(1):35-38.

    • [10] 王玉霞,尚庆华.致密油藏气驱最小混相压力预测[J].非常规油气,2021,8(5):45-49.WANG Yuxia,SHANG Qinghua.Minimum miscibility pressure prediction of gas flooding in tight reservoirs[J].Unconventional Oil & Gas,2021,8(5):45-49.

    • [11] 郑旭,雷源,丁文刚,等.低渗油藏二氧化碳驱最小混相压力预测方法研究[J].当代化工,2021,50(11):2 636-2 639,2 643.ZHENG Xu,LEI Yuan,DING Wengang,et al.Research on predic⁃ tion method of the minimum miscible pressure for carbon dioxide flooding in low permeability reservoirs[J].Contemporary Chemi⁃ cal Industry,2021,50(11):2 636-2 639,2 643.

    • [12] 韩波,任韶然,李伟,等.CO2驱最小混相压力及其动态变化研究[J].非常规油气,2020,7(2):75-82.HAN Bo,REN Shaoran,LI Wei,et al.Study on minimum miscibil⁃ ity pressure and its dynamic variation in CO2 flooding[J].Uncon⁃ ventional Oil & Gas,2020,7(2):75-82.

    • [13] 彭超,刘建仪,张广东,等.降低 CO2驱油最小混相压力新方法 [J].重庆科技学院学报:自然科学版,2012,14(1):48-51.PENG Chao,LIU Jianyi,ZHANG Guangdong,et al.A new method of reducing the miscible-phase pressure of CO2 flooding[J].Jour⁃ nal of Chongqing University of Science and Technology:Natural Science Edition,2012,14(1):48-51.

    • [14] 董朝霞,崔波,李翼,等.超临界 CO2微乳液与烷烃的最小混相压力研究[J].石油化工高等学校学报,2013,26(1):40-44.DONG Zhaoxia,CUI Bo,LI Yi,et al.MMP of supercritical carbon dioxide microemulsion and alkanes[J].Journal of Petrochemical Universities,2013,26(1):40-44.

    • [15] 赵跃军,宋考平,范广娟,等.酯类化合物降低原油与二氧化碳体系最小混相压力实验[J].石油学报,2017,38(9):1 066-1 072.ZHAO Yuejun,SONG Kaoping,FAN Guangjuan,et al.The experi⁃ ment for reducing the minimum miscible pressure of crude oil and carbon dioxide system with ester compounds[J].Acta Petrolei Si⁃ nica,2017,38(9):1 066-1 072.

    • [16] YANG Zihao,WU Wei,DONG Zhaoxia,et al.Reducing the mini⁃ mum miscibility pressure of CO2 and crude oil using alcohols[J].Colloids and Surfaces,A.Physicochemical and Engineering As⁃ pects,2019,568(1):105-112.

    • [17] 曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.CO2-crude oil mixed-phase zone transport law and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.

    • [18] 邹建栋,廖新维,张可,等.不同油藏压力下 CO2驱最小混相压力实验研究[J].油气地质与采收率,2020,27(1):137-143.ZOU Jiandong,LIAO Xinwei,ZHANG Ke,et al.Migration law of CO2-crude oil miscible zone and its influence on development ef⁃ fect[J].Petroleum Geology and Recovery Efficiency,2020,27(1):137-143.

    • [19] HOSSEINI S A,ALFI M,NICOT J P,et al.Analysis of CO2 storage mechanisms at a CO2-EOR site,Cranfield,Mississippi[J].Green⁃ house Gases:Science and Technology,2018,8(3):469-482.

    • [20] 王业飞,高苗,谭龙,等.裂缝-基质模型 CO2混相注入提高原油采收率[J].油气地质与采收率,2018,25(5):87-92.WANG Yefei,GAO Miao,TAN Long,et al.Experimental investi⁃ gation of miscible CO2 injection for enhanced oil recovery in frac⁃ ture-matrix model[J].Petroleum Geology and Recovery Efficien⁃ cy,2018,25(5):87-92.

    • [21] 张艳梅,万文胜,李琛,等.彩9井区西山窑组特高含水油藏 CO2混相驱先导试验[J].特种油气藏,2021,28(6):121-128.ZHANG Yanmei,WAN Wensheng,LI Chen,et al.Pilot test of CO2 miscible displacement for extra high water cut reservoir in Xishanyao Formation of Block Cai9[J].Special Oil & Gas Reser⁃ voirs,2021,28(6):121-128.

    • [22] 张可,李实,伦增珉,等.油气藏流体物性分析方法:GB/T 26981—2020[S].北京:中国标准出版社,2020.ZHANG Ke,LI Shi,LUN Zengmin,et al.Analysis method for res⁃ ervoir fluid physical properties:GB/T 26981-2020[S].Beijing:Standards Press of China,2020.

    • [23] 李实,俞宏伟,伦增珉,等.最低混相压力实验测定方法——细管法:SY/T 6573—2016[S].北京:中国标准出版社,2016.LI Shi,YU Hongwei,LUN Zengmin,et al.Measurement method for minimum miscibility pressure by slim tube test:SY/T 6573-2016[S].Beijing:Standards Press of China,2016.

    • [24] 李中超,聂法健,杜利,等.特高含水期油藏CO2/水交替驱实验研究——以濮城沙一下油藏为例[J].断块油气田,2015,22(5):627-632.LI Zhongchao,NIE Fajian,DU Li,et al.Experiment of carbon di⁃ oxide and water alternating flooding in high temperature,high salt and high water cut reservoir:taking Es1 reservoir of Pucheng Oil⁃ field as an example[J].Fault-Block Oil and Gas Field,2015,22(5):627-632.

    • [25] 李爱芬.油层物理学[M].北京:石油大学出版社,2011.LI Aifen.Physical properties of petroleum reservoir[M].Beijing:China University of Petroleum Press,2011.