en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周晓梅(1998—),女,山东聊城人,在读硕士研究生,从事非常规油气藏开发研究工作。E-mail:zhouxiaomei_upc@163.com。

通讯作者:

李蕾(1988—),女,山东滨州人,副教授,博士。E-mail:lei.li@upc.edu.cn。

中图分类号:TE349

文献标识码:A

文章编号:1009-9603(2023)02-0077-09

DOI:10.13673/j.cnki.cn37-1359/te.202108008

参考文献 1
李国欣,朱如凯.中国石油非常规油气发展现状、挑战与关注问题[J].中国石油勘探,2020,25(2):1-13. LI Guoxin,ZHU Rukai.Progress,challenges and key issues of un⁃ conventional oil and gas development of CNPC[J].China Petro⁃ leum Exploration,2020,25(2):1-13.
参考文献 2
门相勇,王陆新,王越,等.新时代我国油气勘探开发战略格局与2035年展望[J].中国石油勘探,2021,26(3):1-8.MEN Xiangyong,WANG Luxin,WANG Yue,et al.Strategic pat⁃ tern of China’s oil and gas exploration and development in the new era and prospects for 2035[J].China Petroleum Exploration,2021,26(3):1-8.
参考文献 3
赵文智,胡素云,侯连华,等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发,2020,47(1):1-10.ZHAO Wenzhi,HU Suyun,HOU Lianhua,et al.Types and re⁃ source potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development,2020,47(1):1-10.
参考文献 4
杜金虎,胡素云,庞正炼,等.中国陆相页岩油类型、潜力及前景[J].中国石油勘探,2019,24(5):560-568.DU Jinhu,HU Suyun,PANG Zhenglian,et al.The types,poten⁃ tials and prospects of continental shale oil in China[J].China Pe⁃ troleum Exploration,2019,24(5):560-568.
参考文献 5
杨雷,金之钧.全球页岩油发展及展望[J].中国石油勘探,2019,24(5):553-559.YANG Lei,JIN Zhijun.Global shale oil development and pros⁃pects[J].China Petroleum Exploration,2019,24(5):553-559.
参考文献 6
孙焕泉,蔡勋育,周德华,等.中国石化页岩油勘探实践与展望 [J].中国石油勘探,2019,24(5):569-575.SUN Huanquan,CAI Xunyu,ZHOU Dehua,et al.Practice and prospect of Sinopec shale oil exploration[J].China Petroleum Ex⁃ ploration,2019,24(5):569-575.
参考文献 7
黎茂稳,金之钧,董明哲,等.陆相页岩形成演化与页岩油富集机理研究进展[J].石油实验地质,2020,42(4):489-505.LI Maowen,JIN Zhijun,DONG Mingzhe,et al.Advances in the ba⁃ sic study of lacustrine shale evolution and shale oil accumulation [J].Petroleum Geology & Experiment,2020,42(4):489-505.
参考文献 8
李志明,钱门辉,黎茂稳,等.盐间页岩油形成有利条件与地质甜点评价关键参数——以潜江凹陷潜江组潜 34-10 韵律为例 [J].石油实验地质,2020,42(4):513-523.LI Zhiming,QIAN Menhui,LI Maowen,et al.Favorable condi⁃ tions of inter-salt shale oil formation and key parameters for geo⁃ logical sweet spots evaluation:a case study of Eq3 4-10 rhythm of Qianjiang Formation in Qianjiang Sag,Jianghan Basin[J].Petro⁃ leum Geology & Experiment,2020,42(4):513-523.
参考文献 9
申浩冉,丁文龙,谷阳,等.黔北凤冈地区龙马溪组页岩孔隙结构特征[J].断块油气田,2019,26(4):480-485.SHEN Haoran,DING Wenlong,GU Yang,et al.Pore structure characteristics of Longmaxi Formation shale in Fenggang area,northern Guizhou[J].Fault-Block Oil and Gas Field,2019,26(4):480-485.
参考文献 10
林会喜,王圣柱,杨艳艳,等.博格达地区中二叠统芦草沟组页岩油储集特征[J].断块油气田,2020,27(4):418-423.LIN Huixi,WANG Shengzhu,YANG Yanyan,et al.Shale oil res⁃ ervoir characteristics of Middle Permian Lucaogou Formation in Bogda area[J].Fault-Block Oil and Gas Field,2020,27(4):418-423.
参考文献 11
宋海建.页岩油藏有效开发方式可行性研究[D].北京:中国石油大学(北京),2017.SONG Haijian.Feasibility study on effective development mode of shale oil reservoir[D].Beijing:China University of Petroleum(Beijing),2017.
参考文献 12
聂海宽,张培先,边瑞康,等.中国陆相页岩油富集特征[J].地学前缘,2016,23(2):55-62.NIE Haikuan,ZHANG Peixian,BIAN Ruikang,et al.Oil accumu⁃ lation characteristics of China continental shale[J].Earth Science Frontiers,2016,23(2):55-62.
参考文献 13
XU Tao,HOFFMAN Todd.Hydraulic fracture orientation for mis⁃ cible gas injection EOR in unconventional oil reservoirs[C].SPE 168774,2013.
参考文献 14
WAN Tao,SHENG James J,SOLIMAN M Y.Evaluate EOR poten⁃ tial in fractured shale oil reservoirs by cyclic gas injection[C].SPE 168880,2013.
参考文献 15
WAN T,SHENG J J,SOLIMAN M Y.Evaluation of the EOR po⁃ tential in shale oil reservoirs by cyclic gas injection[C].New Or⁃ leans:Paper Presented at the SPWLA 54th Annual Logging Sym⁃ posium,2013.
参考文献 16
张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.
参考文献 17
李士伦,汤勇,侯承希.注CO2提高采收率技术现状及发展趋势 [J].油气藏评价与开发,2019,9(3):1-8.LI Shilun,TANG Yong,HOU Chengxi.Present situation and de⁃ velopment trend of CO2 injection enhanced oil recovery technolo⁃ gy[J].Reservoir Evaluation and Development,2019,9(3):1-8.
参考文献 18
GAMADI T D,SHENG J J,SOLIMAN M Y.An experimental study of cyclic gas injection to improve shale oil recovery[C].New Orleans:Paper Presented at the SPE Annual Technical Confer⁃ ence and Exhibition,2013.
参考文献 19
GAMADI T D,SHENG J J,SOLIMAN M Y,et al.An experimental study of cyclic CO2 injection to improve shale oil recovery[C].Tul⁃ sa:Paper Presented at the SPE Improved Oil Recovery Sympo⁃ sium,2014.
参考文献 20
LI L,ZHANG Y,SHENG J J.Effect of the injection pressure on enhancing oil recovery in shale cores during the CO2 huff-n-puff process when it is above and below the minimum miscibility pres⁃ sure[J].Energy & Fuels,2017,31(4):3 856-3 867.
参考文献 21
YU Y,SHENG J J.An experimental investigation of the effect of pressure depletion rate on oil recovery from shale cores by cyclic N2 injection[C].San Antonio:Paper Presented at the SPE Uncon⁃ ventional Resources Technology Conference,2015.
参考文献 22
YU Y,LI L,SHENG J J.Further discuss the roles of soaking time and pressure depletion rate in gas huff-n-puff process in frac⁃ tured liquid-rich shale reservoirs[C].Dubai:Paper Presented at the SPE Annual Technical Conference and Exhibition,2016.
参考文献 23
曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.Migration law of CO2-crude oil miscible zone and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.
参考文献 24
苏玉亮,陈征,唐梅荣,等.致密储层不同驱替方式下超临界 CO2蓄能返排效果实验研究[J].油气地质与采收率,2020,27(5):79-85.SU Yuliang,CHEN Zheng,TANG Meirong,et al.Experimental study of supercritical CO2 storage and flowback under different displacement methods in tight reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(5):79-85.
参考文献 25
KOVSCEK A R,TANG G Q,VEGA B.Experimental investigation of oil recovery from siliceous shale by CO2 injection[C].Denver:Paper Presented at the SPE Annual Technical Conference and Ex⁃ hibition,2008.
参考文献 26
王强,李志明,钱门辉,等.超临界二氧化碳萃取泥页岩中可动油实验研究[J].石油实验地质,2020,42(4):646-652.WANG Qiang,LI Zhiming,QIAN Menhui,et al.Movable oil ex⁃ traction from shale with supercritical carbon dioxide[J].Petro⁃ leum Geology & Experiment,2020,42(4):646-652.
参考文献 27
尚胜祥.超临界CO2和助溶剂混相提高页岩油采收率研究[D].青岛:中国石油大学(华东),2018.SHANG Shengxiang.Study on the mixture of supercritical CO2 and cosolvent to improve shale oil recovery[D].Qingdao:China University of Petroleum(East China),2018.
参考文献 28
杨光璐,李迎环,何慧卓.特稠油油藏多元热流体吞吐技术研究与应用[J].特种油气藏,2020,27(2):103-107.YANG Guanglu,LI Yinghuan,HE Huizhuo.Research and appli⁃ cation of multi-component thermal fluid stimulation in the extraheavy oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):103-107.
参考文献 29
孟凡坤.低渗透油藏 CO2水气交替注入能力研究[D].青岛:中国石油大学(华东),2016.MENG Fankun.Study on injectivity of CO2 water-alternating-gas flooding in low permeability reservoirs[D].Qingdao:China Uni⁃ versity of Petroleum(East China),2016.
参考文献 30
ZHOU T,YAN W,SU J Z,et al.The influence of injected fluids on microscopic pore structures in the intersalt dolomitic shale oil res⁃ ervoirs[J].Geofluids,2019,(s1):1-13.
参考文献 31
LI Sihai,ZHANG Shicheng,MA Xinfang,et al.Coupled physicalchemical effects of CO2 on rock properties and breakdown during intermittent CO2-hybrid fracturing[J].Rock Mechanics and Rock Engineering,2020,53(4):1 665-1 683.
参考文献 32
LI S H,ZHANG S C,ZOU Y S,et al.Pore structure alteration in⁃ duced by CO2-brine-rock interaction during CO2 energetic frac⁃ turing in tight oil reservoirs[J].Journal of Petroleum Science and Engineering,2020,191(12):107147.
参考文献 33
袁舟,廖新维,赵晓亮,等.砂岩油藏 CO2驱替过程中溶蚀作用对储层物性的影响[J].油气地质与采收率,2020,27(5):97-104.YUAN Zhou,LIAO Xinwei,ZHAO Xiaoliang,et al.Effect of disso⁃ lution on physical properties of sandstone reservoirs during CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(5):97-104.
参考文献 34
李兆敏,赵艳玲,王海涛,等.注入水矿化度对盐间页岩油储层物性影响研究[J].特种油气藏,2020,27(2):131-137.LI Zhaomin,ZHAO Yanling,WANG Haitao,et al.Effects of injec⁃ tion water salinity on physical properties of inter-salt shale oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):131-137.
参考文献 35
孙龙德,刘合,何文渊,等.大庆古龙页岩油重大科学问题与研究路径探析[J].石油勘探与开发,2021,48(3):453-463.SUN Longde,LIU He,HE Wenyuan,et al.An analysis of major scientific problems and research paths of Gulong shale oil in Daq⁃ ing Oilfield,NE China[J].Petroleum Exploration and Develop⁃ ment,2021,48(3):453-463.
参考文献 36
何文渊,蒙启安,张金友.松辽盆地古龙页岩油富集主控因素及分类评价[J].大庆石油地质与开发,2021,40(5):1-12.HE Wenyuan,MENG Qi’an,ZHANG Jinyou.Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(5):1-12.
参考文献 37
张林晔,包友书,李钜源,等.湖相页岩油可动性——以渤海湾盆地济阳坳陷东营凹陷为例[J].石油勘探与开发,2014,41(6):641-649.ZHANG Linye,BAO Youshu,LI Juyuan,et al.Movability of lacus⁃ trine shale oil:A case study of Dongying Sag,Jiyang Depression,Bohai Bay Basin[J].Petroleum Exploration and Development,2014,41(6):641-649.
参考文献 38
曾维主.松辽盆地青山口组页岩孔隙结构与页岩油潜力研究 [D].广州:中国科学院大学(中国科学院广州地球化学研究所),2020.ZENG Weizhu.Pore structure and shale oil potential of Qing⁃ shankou Formation shale in Songliao Basin[D].Guangzhou:Guangzhou Institute of Geochemistry(Chinese Academy of Sci⁃ ences),2020.
参考文献 39
邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与发,2013,40(1):14-26.ZOU Caineng,YANG Zhi,CUI Jingwei,et al.Formation mecha⁃ nism,geological characteristics and development strategy of non⁃ marine shale oil in China[J].Petroleum Exploration and Develop⁃ ment,2013,40(1):14-26.
参考文献 40
赵文智,胡素云,侯连华,等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发,2020,47(1):1-10.ZHAO Wenzhi,HU Suyun,HOU Lianhua,et al.Types and re⁃ source potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development,2020,47(1):1-10.
参考文献 41
金之钧,王冠平,刘光祥,等.中国陆相页岩油研究进展与关键科学问题[J].石油学报,2021,42(7):821-835.JIN Zhijun,WANG Guanping,LIU Guangxiang,et al.Research progress and key scientific issues of continental shale oil in China [J].Acta Petrolei Sinica,2021,42(7):821-835.
参考文献 42
王民,石蕾,王文广,等.中美页岩油、致密油发育的地球化学特征对比[J].岩性油气藏,2014,26(3):67-73.WANG Min,SHI Lei,WANG Wenguang,et al.Comparative study on geochemical characteristics of shale oil between China and U.S.A[J].Lithologic Reservoirs,2014,26(3):67-73.
目录contents

    摘要

    针对页岩储层压裂后一次衰竭开发原油采收率低的问题,基于页岩储层的低孔、超低渗透特征,提出了超临界CO2/H2O混合流体吞吐提高页岩油采收率实验方法。通过自主设计的室内岩心实验评价超临界CO2/H2O混合流体吞吐页岩油的效果,并对实验过程中注入介质、焖井时间、注入压力、吞吐轮次对提高采收率的影响规律进行研究,同时通过核磁共振技术明确超临界 CO2/H2O 混合流体对不同孔隙类型中原油的动用程度。结果表明:超临界 CO2/H2O 混合流体吞吐可以有效提高页岩油采收率;对于物性较差的页岩岩心,焖井时间对提高采收率有较大影响;注入压力与超临界CO2/H2O混合流体的扩散速度和渗流能力密切相关,混相条件下提高采收率效果显著;增加吞吐轮次大孔隙中的原油动用效果较好,但无法通过增加吞吐轮次动用更多微小孔隙中的原油。

    Abstract

    Aiming at the problem of low oil recovery in shale reservoir with primary depletion development after fracturing, an experimental method of supercritical CO2 /H2O mixture huff and huff to enhance shale oil recovery was proposed based on the low porosity and ultra-low permeability of shale reservoir. In this paper,the effect of supercritical CO2/H2O mixture on huffing and puffing shale oil was evaluated by indoor self-designed core experiment,during which the influence of injec- tion medium,soaking time,injection pressure and huff and puff cycles on enhanced oil recovery(EOR)was studied. At the same time,the producing ratio of oil in different pores by supercritical CO2/H2O mixture was determined by nuclear magnet- ic resonance technology. The results show that the supercritical CO2 / H2O mixture huff and huff can effectively enhance shale oil recovery. The soaking time has a great influence on EOR in shale cores with poor porosity and permeability. The injection pressure is closely related to the diffusion rates and flow capacity of the supercritical CO2/H2O mixture,and the in- crement of enhancing oil recovery under miscible conditions is significant. The producing ratio of oil in large pores enhanc- es as the the huff and huff cycle increases,but it is not possible to produce more oil in small pores by increasing huff and puff cycles.

  • 中国页岩油储量规模巨大,位居世界前列[1],具有良好的开发前景。页岩储层的开发是中国非常规油气资源的又一个突破点,对于保障中国能源安全、有效缓解当前油气资源危机具有重要意义[2-6]。但页岩储层低孔、超低渗透且富含有机质及黏土矿物[7-10],导致其勘探开发困难、开发效果差。在现有技术水平井压裂开发条件下,页岩油可动储量一般小于 10%,存在单井采油效果差、产量递减较快、储层采收率低等问题[11-12]。常规注水开发注入难度大、波及系数小且易引起严重水敏,不适用于页岩油开发;与注水开发相比,注气开发具有改善原油物性、降低油气界面张力和改善流度比等优点,是提高页岩储层采收率的有效措施。对于注入介质,超临界CO2作为最广泛的气体驱油剂具备高效开发页岩油的潜力[13-16],但注气开发存在的黏性指进和密度差引起的重力分异会导致窜流和注入气体的利用率低[17]。而注气吞吐利用同一口井作为注入井和生产井,解决了常规气驱方法在压裂后页岩储层中的气窜问题,同时吞吐过程中焖井阶段的存在,使得油气接触更加充分,从而改善原油物性,提高页岩油采收率。

  • 目前,中外学者对超临界 CO2吞吐提高页岩油采收率开展了大量研究。GAMADI等通过室内岩心实验发现使用不同注入压力的氮气吞吐或者CO2吞吐可提高页岩岩心采收率约 10%~50%[18-19]。同时注入压力、吞吐轮次、岩心尺寸、焖井时间和采气速度对提高采收率效果也有不同程度的影响[20-22]。曹小朋等研究 CO2和原油间混相带对驱油效果的影响,认为采取焖井等措施来提高波及系数是影响开发效果的重要手段[23]。苏玉亮等研究超临界CO2注入和焖井阶段中的增能效果并分析了其对增产的作用[24]。KOVSCEK 等研究混相驱对页岩岩心采收率的影响,认为混相驱条件下对提高页岩油采收率效果更好[25]。王强等进行了超临界CO2在不同压力条件下吞吐页岩岩心实验,结果表明随着压力增加,可动油量增多,超临界CO2开发具有广阔的发展前景[26]。尚胜祥通过超临界CO2吞吐开采页岩油实验,研究了焖井时间、吞吐轮次等注采参数对开发效果的影响,结果表明超临界 CO2吞吐开采页岩油是一种行之有效的方法[27]。但气体黏度较低,注入介质的波及系数小,注气开发过程中气体的利用率较低。为了改善注气开发效果,众多学者也进行了大量研究。多元热流体吞吐改善了蒸汽吞吐后期低产低效的问题,在稠油油藏中取得了一定的效果,在页岩储层中还未见相关研究[28]。气水交替综合注水和注气可以提高波及系数,从而提高采收率,但页岩储层中易出现注入能力降低、注入压力大的问题[29]。注入碳化水可以改善重力差异和黏性指进的影响,形成较为稳定的驱替前缘,从而提高注入介质的波及系数[17]。但对于页岩储层,如何改善超临界CO2吞吐开发效果还少有研究。

  • 为此,笔者创新性地提出了超临界 CO2/H2O 混合流体吞吐开发页岩油实验方法,充分发挥 2 种流体的潜力。在超临界 CO2 /H2O 混合流体吞吐过程中,CO2溶解于水后呈弱酸性,可以溶解钙质碳酸盐从而提高多孔介质的孔隙度和渗透率,改善开发效果[30-34]。由于 H2O 的存在,注入介质密度增加使其与原油的流度比减少,有利于改善CO2快速气窜,提高注入介质的波及系数,进而实现页岩油较为均衡的开发。通过室内岩心实验并结合核磁共振技术对超临界 CO2吞吐及超临界 CO2/H2O 混合流体吞吐开采页岩油效果进行研究,以期为提高页岩油采收率提供新思路,对页岩油开发具有重要意义。

  • 1 实验器材与方法

  • 1.1 实验器材

  • 实验用原油为地层原油和煤油复配的模拟油, 56℃时原油密度为0.750 1 g/cm3,黏度为2.106 mPa· s,饱和压力为 8.834 MPa。所用模拟油的流体特征与鄂尔多斯盆地、江汉盆地的页岩油相似,其密度与四川盆地、柴达木盆地、吐哈盆地和北美地区的页岩油类似[35-40]

  • 实验用岩心取自美国德克萨斯州南部的 Eagle Ford 页岩地层露头,其基础参数见表1,研究表明 Eagle Ford页岩的地质、地球化学参数与济阳坳陷沙三段下亚段页岩较为接近[41-42]。实验用气体为纯度 99.99%的CO2

  • 表1 岩心基础参数

  • Table1 Basic parameters of cores

  • 实验仪器包括:纽迈MacroMR12-110H-Ⅰ型核磁共振仪、HW-3B型恒温箱、VindumVP-3K-C型驱替泵、岩心夹持器、手摇泵、增压泵、压力表、量筒、干燥管、盛液皿和气罐等。

  • 1.2 实验方法

  • 根据实验要求,按不同注入压力、焖井时间、吞吐轮次、注入介质等共设计 7 组超临界 CO2/H2O 混合流体吞吐实验方案(表2)。具体实验步骤包括: ①将饱和原油的岩心放入岩心夹持器内,岩心端面模拟水力压裂后的裂缝面。②利用恒温箱将岩心系统温度升至 70℃。③按照方案设定的不同压力下注入超临界 CO2或超临界 CO2/H2O 混合流体进入岩心(超临界 CO2/H2O 混合流体注入时,超临界 CO2 先通入水中对其进行加湿),驱替时间为1 h,分别记录进入岩心的超临界CO2、超临界CO2/H2O混合流体的体积。④关闭注入阀使岩心处于焖井状态。焖井时间依据表2,焖井过程中记录岩心系统压力的变化,之后打开出口阀,逐级降压至大气压力生产 (压力逐级递减5 MPa),直至岩心不出油为止,记录压力、产油(气)量,完成1轮次吞吐实验。⑤重复步骤①—④,完成方案设计的多轮次吞吐实验。吞吐实验装置如图1所示。

  • 每轮次吞吐实验前后,利用核磁共振仪对岩心进行测试,分析原油在岩心中的分布特征。

  • 表2 超临界CO2/H2O混合流体吞吐实验方案

  • Table2 Experiment of supercritical CO2/H2O mixture huff and puff

  • 图1 吞吐实验装置流程示意

  • Fig.1 Schematic diagram of huff and puff experimental device process

  • 2 页岩油动用特征及影响因素

  • 为了研究超临界CO2/H2O混合流体吞吐提高页岩油采收率过程中各因素对原油动用特征的影响,开展了不同注入介质、焖井时间、注入压力、吞吐轮次的吞吐实验。

  • 2.1 注入介质

  • 由不同注入介质下页岩油采收率和CO2埋存率变化(图2)可知,相较超临界 CO2注入,超临界 CO2/ H2O 混合流体注入的页岩油采收率较高,但 CO2埋存率较低。分析认为,由于H2O的存在,延缓了超临界 CO2的进入,使超临界 CO2/H2O 混合流体在岩心入口端聚集较多,返排时较易排出。而超临界 CO2 注入时,在岩心内部易形成气体通道并通过 CO2的扩散作用延伸较深导致CO2难以返排,CO2埋存率较高,返排气体携带出的原油较少,从而采收率较低。由此可知,混合流体中 H2O 的存在对注入介质的波及系数有一定影响。

  • 图2 不同注入介质下页岩油采收率和CO2埋存率变化

  • Fig.2 Variations of shale oil recoveries and CO2 storage rates with different injection media

  • 在实验温度下,不同注入介质下焖井过程中岩心系统压力变化(表3)表明:超临界 CO2注入结束后,焖井阶段的初始末端压力较超临界 CO2/H2O 混合流体注入高,这是由于超临界 CO2的扩散能力比 H2O 强,超临界 CO2注入结束后,岩心系统压力较高。超临界 CO2和超临界 CO2/H2O 混合流体吞吐焖井过程中,岩心系统入口端压力均呈现下降趋势,而末端压力均呈现上升趋势。这是因为入口端停注后,注入的超临界 CO2和 H2O 在毛管压力和扩散作用下重新分布,能量逐渐波及至末端,从而导致入口端压力下降,末端压力上升。超临界 CO2注入时,岩心的最终稳定压力较高,内部能量较大。

  • 表3 不同注入介质下焖井过程中岩心系统压力变化

  • Table3 Pressure variation of core system during soaking with different injection media

  • 由不同注入介质吞吐前后 T2谱分布(图3)可知,吞吐前岩心充分饱和原油状态下的 T2谱分布为典型的双峰形态,两峰清晰连续,原油大部分赋存于大孔隙中。根据 T2谱分布中孔隙大小划分方法,将岩心中的孔隙划分为微小孔隙(对应弛豫时间为 0.01~1 ms)和大孔隙(对应弛豫时间为1~1 000 ms)。超临界 CO2和超临界 CO2/H2O 混合流体吞吐后 T2谱分布表明,大孔隙对应的幅度下降明显,而微小孔隙对应的幅度变化较小,说明不同注入介质吞吐后均对大孔隙中的页岩油动用较多。由不同注入介质下不同孔隙类型吞吐动用程度(图4)可知,超临界CO2吞吐后,微小孔隙原油增多,这是因为超临界CO2注入后,与原油产生作用,超临界 CO2溶解在原油中,使其发生膨胀导致部分原油挤入微小孔隙中;而超临界CO2/H2O混合流体注入后,注入介质的溶解膨胀作用较弱避免了将原油挤入微小孔隙。其中,吞吐动用程度为吞吐前后孔隙内原油总量的差值与吞吐前孔隙内原油总量的百分比。

  • 图3 不同注入介质吞吐前后T2谱分布

  • Fig.3 Distribution of T2 profiles before and after huff and puff with different injection media

  • 图4 不同注入介质下不同孔隙类型吞吐动用程度

  • Fig.4 Huff and puff producing ratios in different pores with different injection media

  • 2.2 焖井时间

  • 进行超临界CO2/H2O混合流体在不同焖井时间下的吞吐实验,由不同焖井时间下页岩油采收率和 CO2埋存率(图5)可知,随着焖井时间的增加,页岩油采收率和 CO2埋存率逐渐增加。分析认为,焖井时间过短会导致混合流体中的超临界CO2与原油接触不足,影响溶解气驱效果;随着焖井时间的增加,超临界 CO2与原油接触充分,饱和 CO2的原油黏度降低从而流动性能变好,原油更易采出。返排时 CO2从原油中析出,溶解气驱作用下利用弹性能将部分原油带出,从而提高原油采收率。而焖井时间越长,混合流体中的气体越易进入岩心内部,埋存率越高。当焖井时间由 1 h增至 3 h时,页岩油采收率和 CO2埋存率分别增加 7.07%,15.61%;焖井时间由 3 h 增至 5 h 时,页岩油采收率和 CO2埋存率分别增加 1.58%,12.46%。焖井 3 h 后,页岩油采收率和 CO2埋存率增加幅度均降低,表明CO2在岩心中的扩散和渗透速度变慢。CO2与原油的接触是一个动态过程,随着焖井时间继续增加,原油中CO2达到最大溶解量时,增产效果不明显。

  • 图5 不同焖井时间下页岩油采收率和CO2埋存率变化

  • Fig.5 Variations of shale oil recoveries and CO2 storage rates under different soaking time

  • 在实验温度下,由不同焖井时间下焖井过程中岩心系统压力变化(表4)可知,3组实验的岩心系统入口端压力均呈现下降趋势,而末端压力均呈现上升趋势,这是超临界 CO2/H2O 混合流体扩散过程中能量传递的结果。其中焖井 5 h的岩心系统入口端压力降低幅度最大为10.18 MPa,且末端压力上升幅度也最大,为6.18 MPa。这是因为焖井时间越长,混合流体中的超临界 CO2扩散距离越远,能量波及范围越大,导致岩心系统入口端压力降低幅度和末端压力上升幅度均越大。随着焖井时间的增加,岩心系统的最终稳定压力越高,这是因为焖井时间越长,超临界CO2和原油接触越充分,原油中溶解的超临界CO2越多,原油的体积膨胀作用越强,从而岩心内部能量越大。

  • 表4 不同焖井时间下焖井过程中岩心系统压力变化

  • Table4 Pressure variation of core system under different soaking time

  • 由图6 可知,超临界 CO2/H2O 混合流体吞吐过程中能够动用部分大孔隙内的原油,大孔隙对应的幅度降低程度明显大于微小孔隙。这是因为不同孔隙中流体所受的毛管压力不同,对原油的束缚能力也不同,孔隙越小,毛管压力越大,原油越难被动用。由图7可知,随着焖井时间的增加,大孔隙中的原油动用程度提高。焖井 1 h 后,微小孔隙中的原油小幅度增加,这是因为当焖井时间较短时,混合流体中的超临界 CO2溶解不充分,游离超临界 CO2 较多,占据大孔隙空间,导致大孔隙中原油一部分进入微小孔隙中。焖井 5 h 后,微小孔隙中原油的动用程度增加至 1%,分析认为虽然微小孔隙中的原油在毛管压力作用下很难流动,但随着焖井时间的增加,混合流体中的超临界 CO2逐渐扩散至微小孔隙中,在溶于原油的同时与原油发生传质作用,将微小孔隙中的原油抽提和萃取出来,提高了微小孔隙中原油动用程度。

  • 图6 不同焖井时间下超临界CO2/H2O混合流体吞吐前后T2谱分布

  • Fig.6 Distribution of T2 profiles before and after huff and puff with supercritical CO2/H2O mixture under different soaking time

  • 图7 不同焖井时间下不同孔隙类型超临界CO2/H2O 混合流体吞吐动用程度

  • Fig.7 Huff and puff producing ratios of supercritical CO2/H2O mixture in different pores under different soaking time

  • 2.3 注入压力

  • 进行不同注入压力下超临界CO2/H2O混合流体吞吐实验,由不同注入压力下页岩油采收率和 CO2 埋存率变化(图8)可知:页岩油采收率和CO2埋存率随着注入压力的升高而增加。分析认为,提高注入压力后,在岩心中易形成超临界 CO2/H2O 混合流体流动的连续通道,在岩心基质中的波及范围增大,同时混合流体中的超临界 CO2溶解于原油中越多,混相程度就越高;生产过程中生产压差的提高会导致更多的 CO2析出,气体的膨胀作用将孔隙中的原油驱出,从而达到较好的开采效果。当注入压力越低时,超临界CO2在原油中的溶解度也越低,游离气体较多,且生产时易返排,导致CO2埋存率越低。

  • 图8 不同注入压力下页岩油采收率和CO2埋存率变化

  • Fig.8 Variations of shale oil recoveries and CO2 storage rates under different injection pressures

  • 在实验温度下,不同注入压力下焖井过程中岩心系统压力变化(表5)表明,焖井过程中,在超临界 CO2的扩散和溶解作用下,3组实验的岩心系统入口端压力均呈现下降趋势,而末端压力呈现上升趋势。随着注入压力的增加,岩心系统的初始末端压力和最终稳定压力也增加。分析认为,随着注入压力的增加,注入阶段注入能量增大,同时焖井阶段初始时岩心系统能量也增大;且焖井过程中超临界 CO2与原油更易混相,从而在原油中的溶解度提高,导致原油的体积膨胀作用越强,因此焖井结束时岩心系统内部能量越大。

  • 表5 不同注入压力下焖井过程中岩心系统压力变化

  • Table5 Pressure variation of core systems under different injection pressures

  • 由图9可知,大孔隙对应的幅度下降明显,而微小孔隙对应的幅度基本没有变化,说明大孔隙中原油对页岩油采收率的贡献程度较大,但其仍有很大的增产潜力,降低大孔隙内剩余油含量仍是主要的开发方向。由图10 可知,随着注入压力的增加,大孔隙中原油动用程度不断提高;注入压力为15 MPa 时,微小孔隙中原油有小幅度增加;注入压力为 20 和25 MPa时,微小孔隙中部分原油被动用。分析认为,大孔隙是超临界 CO2/H2O 混合流体的主要聚集和流动区域,随着注入压力的增加,生产压差增大,同时超临界 CO2与原油间的相互作用更加充分,从而大孔隙动用程度不断提高。而微小孔隙孔喉细小且具有较大的毛管压力,超临界 CO2主要依靠扩散作用进入微小孔隙,故微小孔隙中超临界 CO2含量少、原油膨胀作用较弱,导致原油流动需克服较大阻力。注入压力为 15 MPa时,超临界 CO2溶解度较低,较多的游离气体占据大孔隙使一部分原油进入微小孔隙,从而微小孔隙中的原油有小幅度增加。虽然增加注入压力能够提高超临界CO2在原油中的扩散和组分传质作用,但微小孔隙中原油赋存量小,且进入其中的超临界CO2量始终有限,故微小孔隙动用程度受注入压力的影响较小。

  • 图9 不同注入压力下超临界CO2/H2O混合流体吞吐前后T2谱分布

  • Fig.9 Distribution of T2 Profiles before and after huff and puff with supercritical CO2/H2O mixture under different injection pressures

  • 图10 不同注入压力下不同孔隙类型超临界CO2/H2O 混合流体吞吐动用程度

  • Fig.10 Huff and puff producing ratio of supercritical CO2/H2O mixture in different pores under different injection pressures

  • 2.4 吞吐轮次

  • 进行吞吐 5轮次的超临界 CO2/H2O 混合流体吞吐实验,由不同吞吐轮次下页岩油采收率和 CO2埋存率变化(图11)可知,随着吞吐轮次的增加,页岩油采收率逐渐升高,但幅度有所减小。这是由于初期超临界CO2的萃取作用使剩余油中的重质组分含量变高,从而导致新注入的超临界 CO2不易溶解在原油中,抽提作用减弱,吞吐后提高采收率效果不明显。随着吞吐轮次的增加,CO2埋存率逐渐降低,其原因为注入气体越多时,越易形成气体流动通道,则返排气体就越多。

  • 图11 不同吞吐轮次下页岩油采收率和CO2埋存率变化

  • Fig.11 Variations of shale oil recoveries and CO2 storage rates under different huff and puff cycles

  • 由不同吞吐轮次下焖井过程中岩心系统压力变化(表6)可知,随着吞吐轮次的增加,最终稳定压力增大,同时前期岩心内部能量增加较多,后期逐渐趋于稳定。这是因为随着吞吐轮次的增加,注入的混合流体增多,原油能量补充更多,岩心系统入口端压力降低幅度逐渐变小,最终稳定压力变大,但增加幅度逐渐减小。

  • 由图12 可知,随着吞吐轮次的增加,大孔隙对应的幅度下降明显,原油的动用量不断增多。这是因为超临界 CO2为非润湿相,在一定压差下会优先进入毛管压力较小的大孔隙。随着吞吐轮次的增加,新注入的超临界 CO2进入基质后仍能在膨胀作用下动用大孔隙内的原油,从而不断提高原油的动用量。由图13 可知,微小孔隙内原油基本未被动用。实验结果表明,当注入压力和温度一定时,无法通过增加吞吐轮次来提高微小孔隙中原油的动用程度,但可以通过增加吞吐轮次明显降低大孔隙的剩余油饱和度。

  • 表6 不同吞吐轮次下焖井过程中岩心系统压力变化

  • Table6 Pressure variation of core system during soaking under different huff and puff cycles

  • 图12 不同吞吐轮次下超临界CO2/H2O混合流体吞吐前后T2谱发布

  • Fig.12 Distribution of T2 profiles before and after huff and puff with supercritical CO2/H2O mixture under different huff and puff cycles

  • 图13 不同吞吐轮次下不同孔隙类型超临界CO2/H2O 混合流体吞吐动用程度

  • Fig.13 Huff and puff producing ratio of supercritical CO2/H2O mixture in different pore types under different huff and puff cycles

  • 3 结论

  • 对于页岩油储层超临界CO2/H2O混合流体吞吐开采的效果优于超临界 CO2吞吐。超临界 CO2注入时,由于扩散作用不利于能量在岩心内部的聚集,降压开采时能量较少。超临界CO2/H2O混合流体注入时,H2O 的存在可以延缓超临界 CO2向岩心内部扩散,在一定程度上有利于能量的聚集。

  • 超临界 CO2/H2O 混合流体吞吐实验结果表明,增加焖井时间和注入压力,有利于提高CO2埋存率。焖井时间对超临界CO2和原油之间的相互作用有着重要影响,但焖井时间过长时,时间成本增加且提高采收率效果较差。随着注入压力的增加,岩心系统内部能量增多,页岩油采收率升高,高注入压力下提高采收率效果显著。随着吞吐轮次的增加,页岩油采收率升高,但由于后期重质组分含量升高,增产效果不明显。超临界CO2/H2O混合流体吞吐对大孔隙中原油动用效果较好,微小孔隙较差。大孔隙的动用程度较大,但仍有很大的增产潜力,降低大孔隙内剩余油含量仍是主要的开发方向。

  • 参考文献

    • [1] 李国欣,朱如凯.中国石油非常规油气发展现状、挑战与关注问题[J].中国石油勘探,2020,25(2):1-13. LI Guoxin,ZHU Rukai.Progress,challenges and key issues of un⁃ conventional oil and gas development of CNPC[J].China Petro⁃ leum Exploration,2020,25(2):1-13.

    • [2] 门相勇,王陆新,王越,等.新时代我国油气勘探开发战略格局与2035年展望[J].中国石油勘探,2021,26(3):1-8.MEN Xiangyong,WANG Luxin,WANG Yue,et al.Strategic pat⁃ tern of China’s oil and gas exploration and development in the new era and prospects for 2035[J].China Petroleum Exploration,2021,26(3):1-8.

    • [3] 赵文智,胡素云,侯连华,等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发,2020,47(1):1-10.ZHAO Wenzhi,HU Suyun,HOU Lianhua,et al.Types and re⁃ source potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development,2020,47(1):1-10.

    • [4] 杜金虎,胡素云,庞正炼,等.中国陆相页岩油类型、潜力及前景[J].中国石油勘探,2019,24(5):560-568.DU Jinhu,HU Suyun,PANG Zhenglian,et al.The types,poten⁃ tials and prospects of continental shale oil in China[J].China Pe⁃ troleum Exploration,2019,24(5):560-568.

    • [5] 杨雷,金之钧.全球页岩油发展及展望[J].中国石油勘探,2019,24(5):553-559.YANG Lei,JIN Zhijun.Global shale oil development and pros⁃pects[J].China Petroleum Exploration,2019,24(5):553-559.

    • [6] 孙焕泉,蔡勋育,周德华,等.中国石化页岩油勘探实践与展望 [J].中国石油勘探,2019,24(5):569-575.SUN Huanquan,CAI Xunyu,ZHOU Dehua,et al.Practice and prospect of Sinopec shale oil exploration[J].China Petroleum Ex⁃ ploration,2019,24(5):569-575.

    • [7] 黎茂稳,金之钧,董明哲,等.陆相页岩形成演化与页岩油富集机理研究进展[J].石油实验地质,2020,42(4):489-505.LI Maowen,JIN Zhijun,DONG Mingzhe,et al.Advances in the ba⁃ sic study of lacustrine shale evolution and shale oil accumulation [J].Petroleum Geology & Experiment,2020,42(4):489-505.

    • [8] 李志明,钱门辉,黎茂稳,等.盐间页岩油形成有利条件与地质甜点评价关键参数——以潜江凹陷潜江组潜 34-10 韵律为例 [J].石油实验地质,2020,42(4):513-523.LI Zhiming,QIAN Menhui,LI Maowen,et al.Favorable condi⁃ tions of inter-salt shale oil formation and key parameters for geo⁃ logical sweet spots evaluation:a case study of Eq3 4-10 rhythm of Qianjiang Formation in Qianjiang Sag,Jianghan Basin[J].Petro⁃ leum Geology & Experiment,2020,42(4):513-523.

    • [9] 申浩冉,丁文龙,谷阳,等.黔北凤冈地区龙马溪组页岩孔隙结构特征[J].断块油气田,2019,26(4):480-485.SHEN Haoran,DING Wenlong,GU Yang,et al.Pore structure characteristics of Longmaxi Formation shale in Fenggang area,northern Guizhou[J].Fault-Block Oil and Gas Field,2019,26(4):480-485.

    • [10] 林会喜,王圣柱,杨艳艳,等.博格达地区中二叠统芦草沟组页岩油储集特征[J].断块油气田,2020,27(4):418-423.LIN Huixi,WANG Shengzhu,YANG Yanyan,et al.Shale oil res⁃ ervoir characteristics of Middle Permian Lucaogou Formation in Bogda area[J].Fault-Block Oil and Gas Field,2020,27(4):418-423.

    • [11] 宋海建.页岩油藏有效开发方式可行性研究[D].北京:中国石油大学(北京),2017.SONG Haijian.Feasibility study on effective development mode of shale oil reservoir[D].Beijing:China University of Petroleum(Beijing),2017.

    • [12] 聂海宽,张培先,边瑞康,等.中国陆相页岩油富集特征[J].地学前缘,2016,23(2):55-62.NIE Haikuan,ZHANG Peixian,BIAN Ruikang,et al.Oil accumu⁃ lation characteristics of China continental shale[J].Earth Science Frontiers,2016,23(2):55-62.

    • [13] XU Tao,HOFFMAN Todd.Hydraulic fracture orientation for mis⁃ cible gas injection EOR in unconventional oil reservoirs[C].SPE 168774,2013.

    • [14] WAN Tao,SHENG James J,SOLIMAN M Y.Evaluate EOR poten⁃ tial in fractured shale oil reservoirs by cyclic gas injection[C].SPE 168880,2013.

    • [15] WAN T,SHENG J J,SOLIMAN M Y.Evaluation of the EOR po⁃ tential in shale oil reservoirs by cyclic gas injection[C].New Or⁃ leans:Paper Presented at the SPWLA 54th Annual Logging Sym⁃ posium,2013.

    • [16] 张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.

    • [17] 李士伦,汤勇,侯承希.注CO2提高采收率技术现状及发展趋势 [J].油气藏评价与开发,2019,9(3):1-8.LI Shilun,TANG Yong,HOU Chengxi.Present situation and de⁃ velopment trend of CO2 injection enhanced oil recovery technolo⁃ gy[J].Reservoir Evaluation and Development,2019,9(3):1-8.

    • [18] GAMADI T D,SHENG J J,SOLIMAN M Y.An experimental study of cyclic gas injection to improve shale oil recovery[C].New Orleans:Paper Presented at the SPE Annual Technical Confer⁃ ence and Exhibition,2013.

    • [19] GAMADI T D,SHENG J J,SOLIMAN M Y,et al.An experimental study of cyclic CO2 injection to improve shale oil recovery[C].Tul⁃ sa:Paper Presented at the SPE Improved Oil Recovery Sympo⁃ sium,2014.

    • [20] LI L,ZHANG Y,SHENG J J.Effect of the injection pressure on enhancing oil recovery in shale cores during the CO2 huff-n-puff process when it is above and below the minimum miscibility pres⁃ sure[J].Energy & Fuels,2017,31(4):3 856-3 867.

    • [21] YU Y,SHENG J J.An experimental investigation of the effect of pressure depletion rate on oil recovery from shale cores by cyclic N2 injection[C].San Antonio:Paper Presented at the SPE Uncon⁃ ventional Resources Technology Conference,2015.

    • [22] YU Y,LI L,SHENG J J.Further discuss the roles of soaking time and pressure depletion rate in gas huff-n-puff process in frac⁃ tured liquid-rich shale reservoirs[C].Dubai:Paper Presented at the SPE Annual Technical Conference and Exhibition,2016.

    • [23] 曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.Migration law of CO2-crude oil miscible zone and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.

    • [24] 苏玉亮,陈征,唐梅荣,等.致密储层不同驱替方式下超临界 CO2蓄能返排效果实验研究[J].油气地质与采收率,2020,27(5):79-85.SU Yuliang,CHEN Zheng,TANG Meirong,et al.Experimental study of supercritical CO2 storage and flowback under different displacement methods in tight reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(5):79-85.

    • [25] KOVSCEK A R,TANG G Q,VEGA B.Experimental investigation of oil recovery from siliceous shale by CO2 injection[C].Denver:Paper Presented at the SPE Annual Technical Conference and Ex⁃ hibition,2008.

    • [26] 王强,李志明,钱门辉,等.超临界二氧化碳萃取泥页岩中可动油实验研究[J].石油实验地质,2020,42(4):646-652.WANG Qiang,LI Zhiming,QIAN Menhui,et al.Movable oil ex⁃ traction from shale with supercritical carbon dioxide[J].Petro⁃ leum Geology & Experiment,2020,42(4):646-652.

    • [27] 尚胜祥.超临界CO2和助溶剂混相提高页岩油采收率研究[D].青岛:中国石油大学(华东),2018.SHANG Shengxiang.Study on the mixture of supercritical CO2 and cosolvent to improve shale oil recovery[D].Qingdao:China University of Petroleum(East China),2018.

    • [28] 杨光璐,李迎环,何慧卓.特稠油油藏多元热流体吞吐技术研究与应用[J].特种油气藏,2020,27(2):103-107.YANG Guanglu,LI Yinghuan,HE Huizhuo.Research and appli⁃ cation of multi-component thermal fluid stimulation in the extraheavy oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):103-107.

    • [29] 孟凡坤.低渗透油藏 CO2水气交替注入能力研究[D].青岛:中国石油大学(华东),2016.MENG Fankun.Study on injectivity of CO2 water-alternating-gas flooding in low permeability reservoirs[D].Qingdao:China Uni⁃ versity of Petroleum(East China),2016.

    • [30] ZHOU T,YAN W,SU J Z,et al.The influence of injected fluids on microscopic pore structures in the intersalt dolomitic shale oil res⁃ ervoirs[J].Geofluids,2019,(s1):1-13.

    • [31] LI Sihai,ZHANG Shicheng,MA Xinfang,et al.Coupled physicalchemical effects of CO2 on rock properties and breakdown during intermittent CO2-hybrid fracturing[J].Rock Mechanics and Rock Engineering,2020,53(4):1 665-1 683.

    • [32] LI S H,ZHANG S C,ZOU Y S,et al.Pore structure alteration in⁃ duced by CO2-brine-rock interaction during CO2 energetic frac⁃ turing in tight oil reservoirs[J].Journal of Petroleum Science and Engineering,2020,191(12):107147.

    • [33] 袁舟,廖新维,赵晓亮,等.砂岩油藏 CO2驱替过程中溶蚀作用对储层物性的影响[J].油气地质与采收率,2020,27(5):97-104.YUAN Zhou,LIAO Xinwei,ZHAO Xiaoliang,et al.Effect of disso⁃ lution on physical properties of sandstone reservoirs during CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(5):97-104.

    • [34] 李兆敏,赵艳玲,王海涛,等.注入水矿化度对盐间页岩油储层物性影响研究[J].特种油气藏,2020,27(2):131-137.LI Zhaomin,ZHAO Yanling,WANG Haitao,et al.Effects of injec⁃ tion water salinity on physical properties of inter-salt shale oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):131-137.

    • [35] 孙龙德,刘合,何文渊,等.大庆古龙页岩油重大科学问题与研究路径探析[J].石油勘探与开发,2021,48(3):453-463.SUN Longde,LIU He,HE Wenyuan,et al.An analysis of major scientific problems and research paths of Gulong shale oil in Daq⁃ ing Oilfield,NE China[J].Petroleum Exploration and Develop⁃ ment,2021,48(3):453-463.

    • [36] 何文渊,蒙启安,张金友.松辽盆地古龙页岩油富集主控因素及分类评价[J].大庆石油地质与开发,2021,40(5):1-12.HE Wenyuan,MENG Qi’an,ZHANG Jinyou.Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(5):1-12.

    • [37] 张林晔,包友书,李钜源,等.湖相页岩油可动性——以渤海湾盆地济阳坳陷东营凹陷为例[J].石油勘探与开发,2014,41(6):641-649.ZHANG Linye,BAO Youshu,LI Juyuan,et al.Movability of lacus⁃ trine shale oil:A case study of Dongying Sag,Jiyang Depression,Bohai Bay Basin[J].Petroleum Exploration and Development,2014,41(6):641-649.

    • [38] 曾维主.松辽盆地青山口组页岩孔隙结构与页岩油潜力研究 [D].广州:中国科学院大学(中国科学院广州地球化学研究所),2020.ZENG Weizhu.Pore structure and shale oil potential of Qing⁃ shankou Formation shale in Songliao Basin[D].Guangzhou:Guangzhou Institute of Geochemistry(Chinese Academy of Sci⁃ ences),2020.

    • [39] 邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与发,2013,40(1):14-26.ZOU Caineng,YANG Zhi,CUI Jingwei,et al.Formation mecha⁃ nism,geological characteristics and development strategy of non⁃ marine shale oil in China[J].Petroleum Exploration and Develop⁃ ment,2013,40(1):14-26.

    • [40] 赵文智,胡素云,侯连华,等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发,2020,47(1):1-10.ZHAO Wenzhi,HU Suyun,HOU Lianhua,et al.Types and re⁃ source potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development,2020,47(1):1-10.

    • [41] 金之钧,王冠平,刘光祥,等.中国陆相页岩油研究进展与关键科学问题[J].石油学报,2021,42(7):821-835.JIN Zhijun,WANG Guanping,LIU Guangxiang,et al.Research progress and key scientific issues of continental shale oil in China [J].Acta Petrolei Sinica,2021,42(7):821-835.

    • [42] 王民,石蕾,王文广,等.中美页岩油、致密油发育的地球化学特征对比[J].岩性油气藏,2014,26(3):67-73.WANG Min,SHI Lei,WANG Wenguang,et al.Comparative study on geochemical characteristics of shale oil between China and U.S.A[J].Lithologic Reservoirs,2014,26(3):67-73.

  • 参考文献

    • [1] 李国欣,朱如凯.中国石油非常规油气发展现状、挑战与关注问题[J].中国石油勘探,2020,25(2):1-13. LI Guoxin,ZHU Rukai.Progress,challenges and key issues of un⁃ conventional oil and gas development of CNPC[J].China Petro⁃ leum Exploration,2020,25(2):1-13.

    • [2] 门相勇,王陆新,王越,等.新时代我国油气勘探开发战略格局与2035年展望[J].中国石油勘探,2021,26(3):1-8.MEN Xiangyong,WANG Luxin,WANG Yue,et al.Strategic pat⁃ tern of China’s oil and gas exploration and development in the new era and prospects for 2035[J].China Petroleum Exploration,2021,26(3):1-8.

    • [3] 赵文智,胡素云,侯连华,等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发,2020,47(1):1-10.ZHAO Wenzhi,HU Suyun,HOU Lianhua,et al.Types and re⁃ source potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development,2020,47(1):1-10.

    • [4] 杜金虎,胡素云,庞正炼,等.中国陆相页岩油类型、潜力及前景[J].中国石油勘探,2019,24(5):560-568.DU Jinhu,HU Suyun,PANG Zhenglian,et al.The types,poten⁃ tials and prospects of continental shale oil in China[J].China Pe⁃ troleum Exploration,2019,24(5):560-568.

    • [5] 杨雷,金之钧.全球页岩油发展及展望[J].中国石油勘探,2019,24(5):553-559.YANG Lei,JIN Zhijun.Global shale oil development and pros⁃pects[J].China Petroleum Exploration,2019,24(5):553-559.

    • [6] 孙焕泉,蔡勋育,周德华,等.中国石化页岩油勘探实践与展望 [J].中国石油勘探,2019,24(5):569-575.SUN Huanquan,CAI Xunyu,ZHOU Dehua,et al.Practice and prospect of Sinopec shale oil exploration[J].China Petroleum Ex⁃ ploration,2019,24(5):569-575.

    • [7] 黎茂稳,金之钧,董明哲,等.陆相页岩形成演化与页岩油富集机理研究进展[J].石油实验地质,2020,42(4):489-505.LI Maowen,JIN Zhijun,DONG Mingzhe,et al.Advances in the ba⁃ sic study of lacustrine shale evolution and shale oil accumulation [J].Petroleum Geology & Experiment,2020,42(4):489-505.

    • [8] 李志明,钱门辉,黎茂稳,等.盐间页岩油形成有利条件与地质甜点评价关键参数——以潜江凹陷潜江组潜 34-10 韵律为例 [J].石油实验地质,2020,42(4):513-523.LI Zhiming,QIAN Menhui,LI Maowen,et al.Favorable condi⁃ tions of inter-salt shale oil formation and key parameters for geo⁃ logical sweet spots evaluation:a case study of Eq3 4-10 rhythm of Qianjiang Formation in Qianjiang Sag,Jianghan Basin[J].Petro⁃ leum Geology & Experiment,2020,42(4):513-523.

    • [9] 申浩冉,丁文龙,谷阳,等.黔北凤冈地区龙马溪组页岩孔隙结构特征[J].断块油气田,2019,26(4):480-485.SHEN Haoran,DING Wenlong,GU Yang,et al.Pore structure characteristics of Longmaxi Formation shale in Fenggang area,northern Guizhou[J].Fault-Block Oil and Gas Field,2019,26(4):480-485.

    • [10] 林会喜,王圣柱,杨艳艳,等.博格达地区中二叠统芦草沟组页岩油储集特征[J].断块油气田,2020,27(4):418-423.LIN Huixi,WANG Shengzhu,YANG Yanyan,et al.Shale oil res⁃ ervoir characteristics of Middle Permian Lucaogou Formation in Bogda area[J].Fault-Block Oil and Gas Field,2020,27(4):418-423.

    • [11] 宋海建.页岩油藏有效开发方式可行性研究[D].北京:中国石油大学(北京),2017.SONG Haijian.Feasibility study on effective development mode of shale oil reservoir[D].Beijing:China University of Petroleum(Beijing),2017.

    • [12] 聂海宽,张培先,边瑞康,等.中国陆相页岩油富集特征[J].地学前缘,2016,23(2):55-62.NIE Haikuan,ZHANG Peixian,BIAN Ruikang,et al.Oil accumu⁃ lation characteristics of China continental shale[J].Earth Science Frontiers,2016,23(2):55-62.

    • [13] XU Tao,HOFFMAN Todd.Hydraulic fracture orientation for mis⁃ cible gas injection EOR in unconventional oil reservoirs[C].SPE 168774,2013.

    • [14] WAN Tao,SHENG James J,SOLIMAN M Y.Evaluate EOR poten⁃ tial in fractured shale oil reservoirs by cyclic gas injection[C].SPE 168880,2013.

    • [15] WAN T,SHENG J J,SOLIMAN M Y.Evaluation of the EOR po⁃ tential in shale oil reservoirs by cyclic gas injection[C].New Or⁃ leans:Paper Presented at the SPWLA 54th Annual Logging Sym⁃ posium,2013.

    • [16] 张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.

    • [17] 李士伦,汤勇,侯承希.注CO2提高采收率技术现状及发展趋势 [J].油气藏评价与开发,2019,9(3):1-8.LI Shilun,TANG Yong,HOU Chengxi.Present situation and de⁃ velopment trend of CO2 injection enhanced oil recovery technolo⁃ gy[J].Reservoir Evaluation and Development,2019,9(3):1-8.

    • [18] GAMADI T D,SHENG J J,SOLIMAN M Y.An experimental study of cyclic gas injection to improve shale oil recovery[C].New Orleans:Paper Presented at the SPE Annual Technical Confer⁃ ence and Exhibition,2013.

    • [19] GAMADI T D,SHENG J J,SOLIMAN M Y,et al.An experimental study of cyclic CO2 injection to improve shale oil recovery[C].Tul⁃ sa:Paper Presented at the SPE Improved Oil Recovery Sympo⁃ sium,2014.

    • [20] LI L,ZHANG Y,SHENG J J.Effect of the injection pressure on enhancing oil recovery in shale cores during the CO2 huff-n-puff process when it is above and below the minimum miscibility pres⁃ sure[J].Energy & Fuels,2017,31(4):3 856-3 867.

    • [21] YU Y,SHENG J J.An experimental investigation of the effect of pressure depletion rate on oil recovery from shale cores by cyclic N2 injection[C].San Antonio:Paper Presented at the SPE Uncon⁃ ventional Resources Technology Conference,2015.

    • [22] YU Y,LI L,SHENG J J.Further discuss the roles of soaking time and pressure depletion rate in gas huff-n-puff process in frac⁃ tured liquid-rich shale reservoirs[C].Dubai:Paper Presented at the SPE Annual Technical Conference and Exhibition,2016.

    • [23] 曹小朋,冯其红,杨勇,等.CO2-原油混相带运移规律及其对开发效果的影响[J].油气地质与采收率,2021,28(1):137-143.CAO Xiaopeng,FENG Qihong,YANG Yong,et al.Migration law of CO2-crude oil miscible zone and its influence on development effect[J].Petroleum Geology and Recovery Efficiency,2021,28(1):137-143.

    • [24] 苏玉亮,陈征,唐梅荣,等.致密储层不同驱替方式下超临界 CO2蓄能返排效果实验研究[J].油气地质与采收率,2020,27(5):79-85.SU Yuliang,CHEN Zheng,TANG Meirong,et al.Experimental study of supercritical CO2 storage and flowback under different displacement methods in tight reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(5):79-85.

    • [25] KOVSCEK A R,TANG G Q,VEGA B.Experimental investigation of oil recovery from siliceous shale by CO2 injection[C].Denver:Paper Presented at the SPE Annual Technical Conference and Ex⁃ hibition,2008.

    • [26] 王强,李志明,钱门辉,等.超临界二氧化碳萃取泥页岩中可动油实验研究[J].石油实验地质,2020,42(4):646-652.WANG Qiang,LI Zhiming,QIAN Menhui,et al.Movable oil ex⁃ traction from shale with supercritical carbon dioxide[J].Petro⁃ leum Geology & Experiment,2020,42(4):646-652.

    • [27] 尚胜祥.超临界CO2和助溶剂混相提高页岩油采收率研究[D].青岛:中国石油大学(华东),2018.SHANG Shengxiang.Study on the mixture of supercritical CO2 and cosolvent to improve shale oil recovery[D].Qingdao:China University of Petroleum(East China),2018.

    • [28] 杨光璐,李迎环,何慧卓.特稠油油藏多元热流体吞吐技术研究与应用[J].特种油气藏,2020,27(2):103-107.YANG Guanglu,LI Yinghuan,HE Huizhuo.Research and appli⁃ cation of multi-component thermal fluid stimulation in the extraheavy oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):103-107.

    • [29] 孟凡坤.低渗透油藏 CO2水气交替注入能力研究[D].青岛:中国石油大学(华东),2016.MENG Fankun.Study on injectivity of CO2 water-alternating-gas flooding in low permeability reservoirs[D].Qingdao:China Uni⁃ versity of Petroleum(East China),2016.

    • [30] ZHOU T,YAN W,SU J Z,et al.The influence of injected fluids on microscopic pore structures in the intersalt dolomitic shale oil res⁃ ervoirs[J].Geofluids,2019,(s1):1-13.

    • [31] LI Sihai,ZHANG Shicheng,MA Xinfang,et al.Coupled physicalchemical effects of CO2 on rock properties and breakdown during intermittent CO2-hybrid fracturing[J].Rock Mechanics and Rock Engineering,2020,53(4):1 665-1 683.

    • [32] LI S H,ZHANG S C,ZOU Y S,et al.Pore structure alteration in⁃ duced by CO2-brine-rock interaction during CO2 energetic frac⁃ turing in tight oil reservoirs[J].Journal of Petroleum Science and Engineering,2020,191(12):107147.

    • [33] 袁舟,廖新维,赵晓亮,等.砂岩油藏 CO2驱替过程中溶蚀作用对储层物性的影响[J].油气地质与采收率,2020,27(5):97-104.YUAN Zhou,LIAO Xinwei,ZHAO Xiaoliang,et al.Effect of disso⁃ lution on physical properties of sandstone reservoirs during CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(5):97-104.

    • [34] 李兆敏,赵艳玲,王海涛,等.注入水矿化度对盐间页岩油储层物性影响研究[J].特种油气藏,2020,27(2):131-137.LI Zhaomin,ZHAO Yanling,WANG Haitao,et al.Effects of injec⁃ tion water salinity on physical properties of inter-salt shale oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):131-137.

    • [35] 孙龙德,刘合,何文渊,等.大庆古龙页岩油重大科学问题与研究路径探析[J].石油勘探与开发,2021,48(3):453-463.SUN Longde,LIU He,HE Wenyuan,et al.An analysis of major scientific problems and research paths of Gulong shale oil in Daq⁃ ing Oilfield,NE China[J].Petroleum Exploration and Develop⁃ ment,2021,48(3):453-463.

    • [36] 何文渊,蒙启安,张金友.松辽盆地古龙页岩油富集主控因素及分类评价[J].大庆石油地质与开发,2021,40(5):1-12.HE Wenyuan,MENG Qi’an,ZHANG Jinyou.Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(5):1-12.

    • [37] 张林晔,包友书,李钜源,等.湖相页岩油可动性——以渤海湾盆地济阳坳陷东营凹陷为例[J].石油勘探与开发,2014,41(6):641-649.ZHANG Linye,BAO Youshu,LI Juyuan,et al.Movability of lacus⁃ trine shale oil:A case study of Dongying Sag,Jiyang Depression,Bohai Bay Basin[J].Petroleum Exploration and Development,2014,41(6):641-649.

    • [38] 曾维主.松辽盆地青山口组页岩孔隙结构与页岩油潜力研究 [D].广州:中国科学院大学(中国科学院广州地球化学研究所),2020.ZENG Weizhu.Pore structure and shale oil potential of Qing⁃ shankou Formation shale in Songliao Basin[D].Guangzhou:Guangzhou Institute of Geochemistry(Chinese Academy of Sci⁃ ences),2020.

    • [39] 邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与发,2013,40(1):14-26.ZOU Caineng,YANG Zhi,CUI Jingwei,et al.Formation mecha⁃ nism,geological characteristics and development strategy of non⁃ marine shale oil in China[J].Petroleum Exploration and Develop⁃ ment,2013,40(1):14-26.

    • [40] 赵文智,胡素云,侯连华,等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发,2020,47(1):1-10.ZHAO Wenzhi,HU Suyun,HOU Lianhua,et al.Types and re⁃ source potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development,2020,47(1):1-10.

    • [41] 金之钧,王冠平,刘光祥,等.中国陆相页岩油研究进展与关键科学问题[J].石油学报,2021,42(7):821-835.JIN Zhijun,WANG Guanping,LIU Guangxiang,et al.Research progress and key scientific issues of continental shale oil in China [J].Acta Petrolei Sinica,2021,42(7):821-835.

    • [42] 王民,石蕾,王文广,等.中美页岩油、致密油发育的地球化学特征对比[J].岩性油气藏,2014,26(3):67-73.WANG Min,SHI Lei,WANG Wenguang,et al.Comparative study on geochemical characteristics of shale oil between China and U.S.A[J].Lithologic Reservoirs,2014,26(3):67-73.