en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

彭东宇(1995—),男,山东东营人,助理工程师,硕士,从事油气田开发地质及储层保护方面的研究。E-mail:1030243223@qq.com。

中图分类号:TE341

文献标识码:A

文章编号:1009-9603(2023)02-0094-10

DOI:10.13673/j.cnki.cn37-1359/te.202106020

参考文献 1
唐杰.致密油注二氧化碳数值模拟研究[D].成都:成都理工大学,2016.TANG Jie.Numerical simulation research of CO2 injection for tight oil[D].Chengdu:Chengdu University of Technology,2016.
参考文献 2
江怀友,沈平平,卢颖,等.CO2提高世界油气资源采收率现状研究[J].特种油气藏,2010,17(2):5-10.JIANG Huaiyou,SHEN Pingping,LU Ying,et al.Present situation of enhancing hydrocarbon recovery factor by CO2 [J].Special Oil & Gas Reservoirs,2010,17(2):5-10.
参考文献 3
施雷庭,张玉龙,叶仲斌,等.玛湖砂砾岩致密油藏水平井 CO2 吞吐现场试验效果分析[J].油气藏评价与开发,2021,11(6):871-877,883.SHI Leiting,ZHANG Yulong,YE Zhongbin,et al.Field test effect analysis of CO2 huff and puff for EOR of horizontal wells in tight glutenite reservoir of Mahu Oilfield[J].Reservoir Evaluation and Development,2021,11(6):871-877,883.
参考文献 4
GILFILLAN S M V,LOLLAR B S,HOLLAND G,et al.Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J].Nature,2009,458:614-618.
参考文献 5
张翔.陆相致密储层超临界 CO2-地层流体-岩石矿物的作用机理研究[D].成都:西南石油大学,2019.ZHANG Xiang.Mechanism investigation on the interactions of su⁃ percritical CO2-brine-rock of continental tight reservoir[D].Chengdu:Southwest Petroleum University,2019.
参考文献 6
胡龙朝.WS低渗透砂砾岩油藏注 CO2驱渗流机理研究[D].成都:西南石油大学,2019.HU Longchao.Percolation mechanism of CO2 flooding in WS low permeability glutenite reservoir[D].Chengdu:Southwest Petro⁃ leum University,2019.
参考文献 7
施雷庭,户海胜,张玉龙,等.致密砂砾岩矿物与超临界 CO2和地层水相互作用[J].油田化学,2019,36(4):640-645.SHI Leiting,HU Haisheng,ZHANG Yulong,et al.Interaction of tight glutenite mineral with supercritical CO2 and formation water [J].Oilfield Chemistry,2019,36(4):640-645.
参考文献 8
蔡冬梅.致密砂砾岩油藏注 CO2与水/岩石矿物相互作用研究 [D].成都:西南石油大学,2018.CAI Dongmei.Study on interaction between CO2 and water/rock minerals in tight glutenite reservoirs[D].Chengdu:Southwest Pe⁃ troleum University,2018.
参考文献 9
李海波,朱巨义,郭和坤.核磁共振 T2谱换算孔隙半径分布方法研究[J].波谱学杂志,2008,25(2):273-280.LI Haibo,ZHU Juyi,GUO Hekun.Methods for calculating pore ra⁃ dius distribution in rock from NMR T2 spectra[J].Chinese Jour⁃ nal of Magnetic Resonance,2008,25(2):273-280.
参考文献 10
江苏省环境监测中心.水质32种元素的测定电感耦合等离子体发射光谱法:HJ 776—2015[S].北京:中国环境科学出版社,2015.Jianghsu Environmental Monitoring.Water quality-Determination of 32 elements-Inductively coupled plasma optical emission spec⁃ trometry:HJ 776-2015[S].Beijing:China Environmental Science Press,2015.
参考文献 11
ELGAGHAH S,ZEKRI A Y,ALMEHAIDEB R,et al.Laboratory investigation of influences of initial oil saturation and oil viscosity on oil recovery by CO2 miscible flooding[C].SPE 106958-MS,2007.
参考文献 12
高歌,蒋景阳.在 CO2-H2O 体系中估算pH值及其应用[J].计算机与应用化学,2011,28(3):359-362.GAO Ge,JIANG Jingyang.Estimation of pH values in CO2-H2O system and its application[J].Computers and Applied Chemistry,2011,28(3):359-362.
参考文献 13
LIU B,ZHAO F Y,XU J P,et al.Experimental investigation and numerical simulation of CO2-brine-rock interactions during CO2 sequestration in a deep saline aquifer[J].Sustainability,2019,11(2):317.
参考文献 14
汤勇,杜志敏,孙雷,等.CO2在地层水中溶解对驱油过程的影响[J].石油学报,2011,32(2):311-314.TANG Yong,DU Zhimin,SUN Lei,et al.Influence of CO2 dissolv⁃ ing in formation water on CO2 flooding process[J].Acta Petrolei Sinica,2011,32(2):311-314.
参考文献 15
MACKAY E J,JORDAN M M,TORABI F.Predicting brine mix⁃ ing deep within the reservoir and its impact on scale control in marginal and deepwater developments[J].SPE Production & Fa⁃ cilities,2003,18(3):210-220.
参考文献 16
胡勇有,李宗峰,宁寻安,等.Al(Ⅲ)-Fe(Ⅲ)共存体系的水溶液化学特征[J].华南理工大学学报:自然科学版,1999,27(7):20-26. HU Yongyou,LI Zongfeng,NING Xunan,et al.Aquatic chemical characteristics of Aluminum-Ferric solutions[J].Journal of South China University of Technology:Natural Science Edition,1999,27(7):20-26.
参考文献 17
曹冲,张京伦,朱鸿昊,等.CO2-岩石-地层水相互作用实验[J].成都工业学院学报,2016,19(4):3-8.CAO Chong,ZHANG Jinglun,ZHU Honghao,et al.Experimental research on the interaction process between CO2-saturated rocks and formation water[J].Journal of Chengdu Technological Univer⁃ sity,2016,19(4):3-8.
参考文献 18
FAROKHPOOR R,LINDEBERG E G B,TORSÆTER O,et al.Permeability and relative permeability measurements for CO2-brine system at reservoir conditions in low permeable sandstones in Svalbard[J].Greenhouse Gases Science and Technology,2014,4(1):36-52.
参考文献 19
TAYLOR K C,NASR-EL-DIN H A,AL-ALAWI M J,et al.Sys⁃ tematic study of iron control chemicals used during well stimula⁃ tion[J].SPE Journal,1999,4(1):19-24.
参考文献 20
曾理,王兰生,许怀先,等.沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法:SY/T 5163—2010[S].北京:石油工业出版社,2010.ZENG Li,WANG Lansheng,XU Huaixian,et al.Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction:SY/T 5163-2010[S].Beijing:Pe⁃ troleum Industry Press,2010.
参考文献 21
ROCHELLE C A,CZERNICHOWSKI-LAURIOL I,MILODOWS⁃ KI A E.The impact of chemical reactions on CO2 storage in geolog⁃ ical formations:a brief review[J].Geological Society,2004,233(1):87-106.
参考文献 22
BERTIER P,SWENNEN R,LAENEN B,et al.Experimental iden⁃ tification of CO2-water-rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Camp⁃ ine Basin(NE-Belgium)[J].Journal of Geochemical Exploration,2006,89(1):10-14.
参考文献 23
OGAYA X,LEDO J,QUERALT P,et al.An approach for monitor⁃ ing resistivity variations using surface magnetotelluric data and its application to CO2 storage site[C].San Francisco:AGU Fall Meet⁃ ing,2014.
参考文献 24
张文博,操应长,远光辉.不同升温速率下方解石与二氧化碳水溶液作用实验[J].油气地质与采收率,2017,24(3):57-65.ZHANG Wenbo,CAO Yingchang,YUAN Guanghui.Experiment of interaction between calcite and fluid saturated with CO2 under different heating rates[J].Petroleum Geology and Recovery Effi⁃ ciency,2017,24(3):57-65.
参考文献 25
韩旭,冯福平,丛子渊,等.CO2封存后地层岩石微观结构变化机理研究进展[J].科学技术与工程,2020,20(7):2 537-2 545.HAN Xu,FENG Fuping,CONG Ziyuan,et al.Research status on change mechanism of formation rock microstructure after CO2 se⁃ questration[J].Science Technology and Engineering,2020,20(7):2 537-2 545.
参考文献 26
张阳阳.地质封存条件下 CO(2 SO2)-水-矿物相互作用实验研究[D].北京:中国地质大学(北京),2015.ZHANG Yangyang.Experimental studies on CO2(SO2)-saline-minerals interaction under geological storage condition[D].Bei⁃ jing:China University of Geosciences(Beijing),2015.
参考文献 27
YANG Y F,LI Y W,YAO J,et al.Dynamic pore-scale dissolution by CO2-saturated brine in carbonates:Impact of homogeneous ver⁃ sus fractured versus vuggy pore structure[J].Water Resources Re⁃ search,2020,56(4):e2019WR026112.
参考文献 28
罗燕颖,吴迪,杜环虹,等.岩样核磁共振参数实验室测量规范:SY/T 6490—2014[S].北京:石油工业出版社,2014.LUO Yanying,WU Di,DU Huanhong,et al.Specification for mea⁃ surement of rock NMR parameter in laboratory:SY/T 6490-2014 [S].Beijing:Petroleum Industry Press,2014.
参考文献 29
MARBLER H,ERICKSON K P,SCHMIDT M,et al.Geomechani⁃ cal and geochemical effects on sandstones caused by the reaction with supercritical CO2:an experimental approach to in situ condi⁃ tions in deep geological reservoirs[J].Environmental Earth Sci⁃ ences,2013,69(6):1 981-1 998.
参考文献 30
WANG L,TIAN Y,YU X Y,et al.Advances in improved/en⁃ hanced oil recovery technologies for tight and shale reservoirs[J].Fuel,2017,210(15):425-445.
参考文献 31
RATHNAWEERA T D,RANJITH P G,PERERA M S A,et al.Ex⁃ perimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers[J].Nature,2016,6:19362.
参考文献 32
VANORIO T,NUR A,EBERT Y.Rock physics analysis and timelapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks[J].Geophysics,2011,76(5):23-33.
参考文献 33
郭冀隆.二氧化碳地质封存过程中CO2—水—岩相互作用实验研究[D].北京:中国地质大学(北京),2017.GUO Jilong.Experimental studies on CO2-water-rock interactions under geological CO2 storage conditions[D].Beijing:China Uni⁃ versity of Geosciences(Beijing),2017.
参考文献 34
范明,蒋小琼,刘伟新,等.不同温度条件下 CO2水溶液对碳酸盐岩的溶蚀作用[J].沉积学报,2007,25(6):825-830.FAN Ming,JIANG Xiaoqiong,LIU Weixin,et al.Dissolution of carbonate rocks in CO2 solution under the different temperatures [J].Acta Sedimentologica Sinica,2007,25(6):825-830.
参考文献 35
唐梅荣,张同伍,白晓虎,等.孔喉结构对 CO2驱储层伤害程度的影响[J].岩性油气藏,2019,31(3):113-119.TANG Meirong,ZHANG Tongwu,BAI Xiaohu,et al.Influence of pore throat structure on reservoir damage with CO2 flooding[J].Lithologic Reservoirs,2019,31(3):113-119.
参考文献 36
喻英,李义连,杨国栋,等.储层物性参数对 CO2长期封存能力的影响研究[J].安全与环境工程,2017,24(5):75-83,89.YU Ying,LI Yilian,YANG Guodong,et al.Influence of reservoir physical parameters on the long-term CO2 storage capacity[J].Safety and Environmental Engineering,2017,24(5):75-83,89.
参考文献 37
DAVAL D,SISSMANN O,MENGUY N,et al.Influence of amor⁃ phous silica layer formation on the dissolution rate of olivine at 90 ℃ and elevated pCO2 [J].Chemical Geology,2011,284(1):193-209.
参考文献 38
袁舟,廖新维,赵晓亮,等.砂岩油藏 CO2驱替过程中溶蚀作用对储层物性的影响[J].油气地质与采收率,2020,27(5):97-104.YUAN Zhou,LIAO Xinwei,ZHAO Xiaoliang,et al.Effect of disso⁃ lution on physical properties of sandstone reservoirs during CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(5):97-104.
目录contents

    摘要

    新疆油田530井区克下组致密砾岩储层具有复杂的复模态孔隙结构,富含火山凝灰岩,铁质含量高,目前CO2 驱矿场试验效果难预测。以该储层为研究对象,利用铸体薄片、矿物组分、元素分析、离子浓度分析、核磁共振等手段,通过室内实验,对比了岩石碎块、岩石粉末、岩心段塞与CO2反应前后矿物组分、孔隙结构、流体离子浓度等参数的变化,并从岩石矿物组分、粒径、物性及孔隙结构和反应时间等方面对反应控制因素进行探讨。研究结果表明: CO2的注入对储层的影响整体较小。矿物组分的变化表现为石英、黏土矿物相对含量增加,长石、碳酸盐矿物相对含量减少,以及铁质矿物溶解后再次沉淀;元素和孔隙结构变化较小,孔隙度平均变化小于 0.5%;液相中 Ca2+ 和 Mg2+ 质量浓度变化相对较大,新增的 Al3+ ,Fe3+ ,Si4+ 等质量浓度变化较小。CO2与储层岩石间相互作用机理为长石、方解石的溶蚀以及铁质矿物的先溶蚀后沉淀。储层岩石方解石含量越高,反应后孔隙结构变化越大;反应后Ⅱ类储层孔隙结构变化大于Ⅲ类储层;岩石粉末反应速率强于岩石碎块;随时间的推移,反应在0~7 d内达到平衡,期间以溶蚀作用为主,反应在7~30 d内各组分变化较小,存在Al(OH)3和Fe(OH)3的沉淀作用。

    Abstract

    As the conglomerate reservoir of Lower Karamay Formation in Well530 Area of Xinjiang Oilfield has a complex multi-modal pore structure,rich volcanic tuff,and high iron content,it is difficult to predict the effect of CO2 flooding field test. With the Lower Karamay Formation reservoir as the research object,the changes in mineral composition,pore struc- ture,fluid ion concentration,and other parameters before and after the reaction of rock fragments,rock powder,core slugs with CO2 were compared through cast thin section,XRD,XRF,ICP ion concentration analysis,NMR,etc. The controlling factors of the reaction were discussed from the aspects of mineral composition,grain size,physical properties,pore struc- ture,and reaction time. The results show that the impact of CO2 injection on the reservoir is small. The change in mineral composition shows that the relative content of quartz and clay increases while feldspar and carbonate minerals decrease, and iron minerals precipitate again after dissolution. Elements and pore structure change little,and the average change of porosity is less than 0.5%. The concentration of Ca2+ and Mg2+ in the liquid phase changes relatively greatly,and the newly added Al3+ ,Fe3+ ,Si4+ changes slightly. The interaction mechanism between CO2 and reservoir rocks is the dissolution of feld- spar and calcite as well as the first dissolution and then precipitation of iron minerals. As the calcite content of reservoir rock is higher,the variation of pore structure after the reaction is greater. After the reaction,the change in the pore structure of classⅡreservoir is greater than that of classⅢreservoir. The reaction rate of rock powder is stronger than that of rock frag-ments. The reaction reaches equilibrium within 0-7 days,during which the main action is dissolution. The components of the reaction change little within 7-30 days,and there is the precipitation of Al(OH)3 and Fe(OH)3.

  • 在致密油藏的开发过程中,即使采用水平井压裂、渗吸注水等手段,一次采收率仍然低于 10%[1]。而 CO2驱具有成本低、污染小、适用广、提高采收率效果显著等优势,矿场实践中 CO2驱可提高采收率 8%~20%[2],已成为中外研究的热点。CO2在油气领域的应用对实现 2030年碳达峰和 2060年碳中和的 “双碳”目标也具有重要意义。部分矿场实践已证明CO2吞吐在致密砂砾岩油藏中具有较好的适应性及推广应用前景[3]

  • CO2超临界压力为7.1 MPa,在10 MPa,60℃下,黏度约为 0.04 mPa·s,密度为 0.3 g/ cm3。根据 Le Chatelier 原理,碳酸的形成会显著增加质子(H+)浓度,从而降低体系的 pH 值[4]。中外学者针对 CO2与岩石矿物的反应已开展大量研究,而对于 CO2与砾岩反应的研究多集中于中国。张翔针对吉木萨尔芦草沟组致密砂砾岩的实验认为,反应以长石溶蚀作用为主,产生的沉淀主要以黏土和含铁矿物为主,并解释了铁质矿物复杂的沉淀机制[5];胡龙朝根据饱和水样CO2驱动态实验发现反应后以溶蚀作用为主,CO2驱后岩心物性变好[6];施雷庭等发现干燥纯CO2与岩石矿物仅发生物理变化,在地层水中CO2 与岩石矿物均发生明显的物理化学变化,反应强弱关系为方解石>伊利石>长石>高岭石[7];蔡冬梅在CO2与致密砂砾岩作用中发现反应前后各元素含量变化不大,且原始地层水溶液中较高浓度的Ca2+, K+ 以及 Na+ 阻碍反应的正向进行,从而影响溶蚀速率,而绿泥石、高岭石及伊利石等黏土矿物在原始的高矿化度地层水溶液中更易溶解[8]

  • 新疆油田 530 井区克下组储层低渗透且致密,该区块尚未开展 CO2驱,注 CO2效果及对储层的影响尚不清晰,同时,砾岩储层富含火山碎屑物质,铁质含量高,孔隙结构复杂,非均质性强,CO2与储层中所含矿物作用机理有待进一步明确。笔者在综合储层地质特征的基础上,通过室内实验系统对比 CO2与储层岩石反应前后组分、微结构变化以及对储层孔隙结构参数的影响,以期为矿场试验开展气/ 水交替驱的可行性提供参考,同时对储层成岩作用与孔隙演化机理认识具有一定指导性作用,为页岩气开发中二氧化碳置换提供依据。

  • 1 储层特征

  • 新疆油田530井区克下组油藏位于准噶尔盆地西北缘克-乌逆掩断裂下盘,构造为断裂遮挡的向东倾的单斜带,沉积相为扇三角洲相,主要含油层系为中三叠统克下组,主力砂层为 S7 2 —S7 5,埋深大于 2 200 m,油层分布主要受构造控制,油藏类型主要为岩性-构造油藏。储层物性属中-特低孔、低-特低渗透。岩石类型以砂质砾岩和砂砾岩为主(图1),分选差,棱角-次棱角状,成分、结构成熟度均低,砾质成分以凝灰岩、花岗岩、泥岩为主,砂质成分以石英、长石为主,胶结物主要为方解石,平均含量为9.2%;杂基主要为黏土矿物,平均含量为11%。黏土矿物类型以伊/蒙混层、高岭石为主,层内、层间非均质性较强,润湿性弱亲水-强亲水。

  • 2 实验器材与方法

  • 为研究不同参数的变化,在保证样品混合均匀、反应充分的前提下,实验分别设置CO2与岩石粉末、岩石碎块、岩心段塞 3 种不同岩石尺寸的反应。为探究和对比反应速率变化,分别设置岩石粉末和岩石碎块2组实验;同时,开展岩石粉末的反应可明确矿物组分、元素含量及反应液浓度变化;而开展岩石碎块的反应可明确质量变化、矿物溶蚀特征、沉淀物特征及反应液浓度变化,为分析反应机理奠定基础。为定量研究反应前后孔隙结构的变化,开展岩心段塞反应实验。

  • 2.1 实验仪器及材料

  • 实验所用材料包括模拟地层水、新疆油田 530 井区天然岩心和岩石碎块,岩心长度为 5~7 cm,平均孔隙度为 12.41%,平均渗透率为 4.32 mD。流体介质为模拟地层水,矿化度为 24 076 mg/L,水型为 NaHCO3 型,K+ + Na+,Ca2+,Mg2+,Cl-,SO4 2-,HCO3-, CO3 2-质量浓度分别为 9 302,214.3,39.13,13 507, 630.99,1 209.79,178.52 mg / L,CO2 气源纯度为 99.9%。

  • 2.2 实验方法

  • 将新疆油田 530 井区 71146 井 1#—6#(其中 1#与4#、2#与5#、3#与6#分别对应取自同一岩样)、8#、 34#样品(表1)饱和地层水后,装入 CO2反应釜并浸泡在克下组地层水中,岩石粉末(岩石碎块)与地层水质量比为 1∶3,岩心段塞与地层水质量比为 2∶1,实验温度采用储层温度为 65℃,为使 CO2达到超临界状态,压力取10 MPa,充分反应,一周(7 d)后和一个月(30 d)后分别取出,并将碎块与流体分离(图2)。利用矿物组分(XRD)、元素分析(XRF)、离子浓度(ICP)和核磁共振 T2谱等手段测试反应前后样品质量、矿物组分、元素组成、地层水离子成分、微观形貌及孔隙结构变化。据前人研究成果,核磁共振测试所采用的转换系数为0.1 [9]

  • 图1 新疆油田530井区71146井克下组储层岩性及孔隙结构特征

  • Fig.1 Reservoir lithology and pore structure characteristics of Lower Karamay Formation of Well71146 in Well530 Area of Xinjiang Oilfield

  • 3 实验结果与讨论

  • 3.1 液相离子成分变化特征

  • 依据水质中32种元素测定标准[10],对岩石粉末反应液离子成分进行测试,反应后溶液中新增Al3+, Si4+,Fe3+,但总体增幅较小。反应后溶液中Ca2+ 质量浓度呈下降趋势,这是由于原地层水中 Ca2+ 质量浓度较高,压力下降导致 Ca2+ 沉淀。Na+,K+,Mg2+,Si4+ 质量浓度呈先上升后趋于平缓趋势,其中反应 30 d 后 Mg2+ 质量浓度由 39.1 mg/L 增加到 108.33 mg/L, Si4+ 质量浓度由 0 增加到 29.33 mg/L。Al3+,Fe3+ 质量浓度呈先上升后下降趋势,其中 Al3+ 质量浓度在 0~7 d 内为 0.87 mg/L,在 7~30 d 内降至 0.53 mg/L;Fe3+ 质量浓度在 0~7 d 内为 0.57 mg/ L,7~30 d 内降至0.17 mg/L(图3)。离子成分的变化幅度可间接反映岩石粉末反应速率和岩石碎块表面溶蚀速率[11], Mg2+ 来源于伊/蒙混层及少量绿泥石溶解,Al3+ 和 Si4+ 质量浓度的增加表示硅酸盐矿物(如长石、部分黏土矿物)发生溶蚀作用,Fe3+ 质量浓度增减则代表富铁矿物(如菱铁矿)溶蚀与沉淀。Ca2+ 质量浓度变化幅度大于Mg2+,Al3+ 和Si4+,表明碳酸盐矿物反应程度强于硅酸盐矿物。

  • 表1 储层岩石静态反应实验样品参数

  • Table1 Parameters of reservoir rock samples in static reaction test

  • 图2 静态反应实验装置

  • Fig.2 Device diagram of static reaction test

  • 由于 Fe3+ 和 Al3+ 在反应后的水溶液中以沉淀或胶体的形式存在,而Ca2+ 在压力降低后迅速自结垢,对离子检测的结果造成干扰,因此需要对岩石碎块反应液中固相成分经过滤后进行形貌及能谱分析。电镜能谱分析表明,沉淀产物主要为钙质和铁质沉淀,含少量剥落的碎屑颗粒(图4)。其中铁质主要为 Fe(OH)3,钙质以 CaCO3为主。在 10 MPa和 65℃下,纯水中饱和 CO2时的 pH 值约为 3.1~3.2,但在饱和 NaCl 盐水中 CO2 溶解度降低,pH 值可达 6.14[12-13],此时Fe3+ 和Al3+ 已开始沉淀(图4d,4e,4f),因此反应过程中必定存在 Fe(OH)3和 Al(OH)3沉淀,而 CaCO3的沉淀是由于 CO2的脱气。汤勇等总结了 CO2反应后因压力降低导致钙质沉淀的机理:首先压力降低使 Ca2+ 的溶解度本身会减小;其次压力降低导致 CO2 逸出,水的 pH 值会有所增加[14]。 MACKAY 等认为地层中压力降低导致 Ca(HCO32 溶解平衡的正向移动,从而导致碳酸盐沉淀,而硫酸盐的沉淀则由于Ca2+,Mg2+ 与SO4 2- 不配伍产生[15]。胡勇有等发现 Fe盐和 Al盐共存时会产生无定型结构的沉淀[16]。曹冲等认为 pH=6时铁质矿物即发生溶解反应[17]。FAROKHPOOR 等发现铁绿泥石和菱铁矿反应生成氢氧化铁,从而改变岩石的渗透性[18]。TAYLOR 等认为较高 NaCl 浓度下,Fe3+ 溶解度更低[19]

  • 图3 克下组岩石粉末反应前后离子质量浓度变化

  • Fig.3 Ion concentration changes of rock powder in Lower Karamay Formation before and after reaction

  • 图4 克下组岩石碎块反应30 d后液相中悬浮物成分分析

  • Fig.4 Component analysis of suspended solids after 30 days(rock fragments of Lower Karamay Formation)

  • 结合本次实验中反应沉淀物能谱分析,铁质沉淀的产生机理分为2部分。矿物中的Fe(Ⅲ)在溶出后直接可转化为 Fe(OH)3;而 Fe(Ⅱ)的反应分为 3 步:矿物中的Fe(Ⅱ)溶出后先以Fe2+ 的形式存在,后遇空气氧化为Fe3+,产生Fe(OH)3胶体或沉淀。

  • 3.2 固相成分变化特征

  • 依据沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法[20],在反应前后对同一岩石粉末进行XRD与XRF测试,结果显示,反应0~7 d石英和黏土矿物相对含量呈增加趋势,长石和碳酸盐矿物呈下降趋势,在 7~30 d各矿物相对含量趋于平稳。此外 1#样品中出现菱铁矿的溶解,在反应 7 d 后有新矿物石膏生成,反应 30 d 后消失。反应 7 d 后石英相对含量增加 4.41%~35.83%,平均为 22.89%,黏土矿物相对含量增加 0.1%~4.31%,平均为 1.84%,长石相对含量下降 5.26%~33.77%,平均为 23.92%;反应 0~30 d 石英相对含量增加 10.81%~38.77%,平均为 28.74%,黏土矿物相对含量增加 0.2%~6.1%,平均为 3.41%,长石相对含量下降 10.55%~45.88%,平均为30.66%(图5a)。电镜能谱分析表明,岩石碎块反应前后可观察到方解石和长石的局部溶蚀,未发现新矿物生成(图6)。对岩石粉末中Ca,Mg,Al,Si, Fe等元素分析结果表明,反应0~30 d元素总体变化较小。岩石粉末在与 CO2反应 0~7 d,Mg,Fe,Al 元素相对含量略呈减小趋势,固相元素下降幅度 Mg (2.15%)>Fe(1.48%)>Al(0.80%)>Si(0.25%),而在 7~30 d 又略有增加,但并未达到初始水平(图5b)。ROCHELLE 等发现在常温储层下 CO2反应后产生方解石、高岭石、石膏/硬石膏、氢氧化铁、二氧化硅等沉淀[21-22]。OGAYA 等认为硅酸盐矿物在碳酸溶液中溶解的同时生成高岭石、片钠铝石(Na+ 充足时)、铁/镁白云石等矿物[23]。有实验结果表明,封闭体系下方解石溶解一段时间后,当溶液中的离子浓度过高时,将抑制方解石的溶解[24]。在反应 30 d 后4#—6#样品质量总体变化不大,其中4#样品质量损失率最大,为-2.16%(图5c)。岩石碎块与 CO2反应后部分矿物含量的变化差异主要与其初始矿物中方解石和长石含量有关,6#样品中方解石和长石含量较低,石英及黏土矿物(高岭石为主)含量高,反应后各矿物组分变化较小。4#和 5#样品方解石和长石含量较高,反应后各矿物组分变化较大。4# 样品中方解石含量为 2.14%,故反应后出现方解石含量下降,质量损失率最大。

  • 图5 克下组岩石粉末/碎块反应前后固相成分变化

  • Fig.5 Changes of solid phase composition before and after reaction(rock powder/fragments of Lower Karamay Formation)

  • 许多研究表明,虽然白云石和方解石都是碳酸盐矿物,但反应趋势却有所差异:白云石的溶蚀较为持续,而方解石则表现为早期溶解、晚期再沉淀的特征[25-26]。而本次实验岩石粉末中方解石的沉淀溶解平衡依然存在:

  • 图6 克下组岩石碎块反应前后矿物微观形貌变化

  • Fig.6 Changes of mineral morphology before and after reaction(rock fragments of Lower Karamay Formation)

  • CaCO3+CO2+H2OCa2++2HCO3-
    (1)
  • 岩石粉末中菱铁矿的溶解作用机理为[5]

  • FeCO3+CO2+H2O2FeHCO32
    (2)
  • 岩石粉末中石膏的产生机理为:

  • 2CaSO4+HCO3-+Mg2+=3H++2SO42++CaCO3+CaMgCO32
    (3)
  • (3)式不符合强酸制弱酸的化学反应原理,但是具备较难溶解向更难溶解的沉淀转化的反应条件。YANG 等的碳酸盐与 CO2反应结果表明,持续注入 CO2后岩石组分中石膏消失,石膏在 50℃时微溶于水,而方解石与酸反应生成 Ca2+ 抑制硬石膏的溶解[27]

  • 3.3 孔隙结构变化特征

  • 依据岩样核磁共振参数实验室测量规范[28],岩心段塞测试结果表明,反应前后孔隙体积变化较小,8#样品反应 0~30 d 孔隙体积总体呈减小趋势,其中在反应 7 d 后主峰向右移动,孔径由 0.01~0.1 μm向0.1~1 μm变化,主峰面积总体变化较小,说明主峰对应孔隙体积变化较小;在7~30 d,主峰略向左移动,移动幅度较小,但主峰面积有所减小,此时孔径为 0.1~1 μm 的孔隙体积减小。34#样品反应 0~30 d孔隙结构整体变化较小,反应7 d后主峰移动不明显且主峰面积基本不变,而在 7~30 d 总面积增加,孔径为0.18~2.75 μm的孔隙体积增加(图7)。

  • 电镜观察发现,8#样品反应 7 d 后孔隙周围有溶蚀现象,而反应 30 d后有沉淀覆盖岩心表面并充填孔隙(图8),表明 8#岩心孔隙经历先溶蚀后沉淀的过程,而34#岩心孔隙边缘的溶蚀不明显,仅在颗粒表面有溶蚀作用。二者存在差异的原因有 2 点:一方面是原始物性和孔隙结构存在差异,34#岩心相对致密,CO2不易进入孔径小于 0.01 μm 的孔隙; 另一方面是原始矿物组分存在差异,8#岩心与 34#岩心分别取自 S7 5 和 S7 4 小层,填隙物含量相当,而方解石含量存在差异(表2),S7 5 小层方解石胶结物含量较高(4.0%),而 S7 4 小层方解石含量较低(1.3%)。可溶蚀矿物较多使得 8#岩心在反应过程中呈现先溶蚀后沉淀,而34#岩心孔隙结构变化较小。

  • 图7 克下组岩心段塞反应后孔径分布变化 (71146井,2 407.72 m)

  • Fig.7 Changes in pore size distribution of core slugs of Lower Karamay Formation before and after reaction (Well71146,2 407.72 m)

  • 3.4 二氧化碳与岩石反应控制因素

  • 影响酸岩反应的因素包括内因和外因,其中内因指反应物自身性质(岩石矿物组分、粒度、物性及孔隙结构等),外因包括温度、压力、反应介质pH值、矿化度等。主要从岩石矿物组分、粒度、物性及孔隙结构、反应时间等方面对反应控制因素进行探讨。

  • 图8 克下组岩心段塞与CO2反应前后岩石孔隙结构(SEM)

  • Fig.8 Pore structure of rock of Lower Karamay Formation before and after CO2 reaction(Well71146,SEM)

  • 表2 克下组岩心段塞与CO2反应前后核磁峰面积变化(1号峰为主峰,2号峰为次峰)

  • Table2 Changes of NMR peak area before and after CO2 reaction(No.1 is the main peak and No.2 is the secondary peak)

  • 3.4.1 岩石矿物组分

  • 储层岩石中既富含长石、高岭石、伊/蒙混层等硅酸盐矿物,也有方解石等碳酸盐矿物。反应前后液相及固相中 Si,Al 的变化远小于 Ca,Mg 的变化,表明碳酸盐矿物在酸中的溶蚀程度强于硅酸盐矿物。方解石和长石含量越高,岩石碎块质量和岩石粉末矿物组分变化越大(图3a—3b)。方解石含量越高,孔隙结构变化越大。碳酸盐矿物在酸性富含 CO2的流体中溶解相对较快,并且可以在数月甚至数周内达到反应平衡[29],标志为 CO2反应后 Ca2+, Mg2+ 和 Fe2+ 的质量浓度有所增加[30]。而长石等硅酸盐矿物比碳酸盐矿物需要更多的时间才能达到反应平衡[31]。因此碳酸盐矿物的含量对反应进程的影响较大。结合矿物组分及孔隙结构的变化,岩石中方解石含量是反应进程的主控因素。

  • 3.4.2 岩石尺寸/粒径

  • 岩石粉末与岩石碎块溶蚀机制相同但溶蚀速率不同。岩石粉末与 CO2接触面积大,反应均匀且充分并在较短时间内达到平衡。而岩石碎块受表面粗糙度等较多因素影响,整体反应速率慢于岩石粉末,到达反应平衡所需时间较长(图9a)。VANO⁃ RIO 等认为溶质(即岩石矿物)和溶剂(即富含 CO2的水溶液)之间的化学相互作用取决于反应表面积 (即实际在与流体接触并容易发生反应)[32]。郭冀隆探讨了不同状态下岩石与CO2反应对实验结果的影响,结果表明岩石粉末反应受粒度影响较小,而受外因(温度和压力等)影响较大[33]。岩石碎块反应前后粗糙度、接触角等均发生了不同程度的不均匀变化。岩石粉末中矿物组分的变化主要表现为方解石的溶蚀,而岩石碎块中矿物组分的变化则不明显。范明等认为硅酸盐反应速率很大程度上受反应接触面积控制,反应液中离子成分几乎不起作用[34]

  • 图9 不同尺寸/粒径、物性的样品对反应的影响

  • Fig.9 Influence of rock with different sizes/particle sizes, physical properties,and pore structures on reaction

  • 3.4.3 物性

  • 由物性测试结果可知,8#岩心段塞孔隙度为 14.89%,渗透率为 6.88 mD,对应研究区Ⅱ类储层; 34#岩心段塞孔隙度为9.92%,渗透率为1.75 mD,对应研究区Ⅲ类储层。8#岩心段塞孔隙度先增加后减小,反应 30 d 后由 13.84% 下降为 13.08%,34#岩心段塞孔隙度略有增加但总体变化较小。岩心初始物性越好,孔径越大,CO2越易进入储集空间中,反应后孔隙结构变化越大(图9b)。唐梅荣等在对西峰油田实验研究中发现,酸化作用对储层的孔隙度影响较小,且孔喉结构越差,中值半径越小,岩心孔喉在CO2驱过程中的堵塞程度越严重[35]。喻英等认为较大孔隙度不利于CO2与矿物反应[36]。这是由于孔隙度越大,孔隙中赋存的地层水多,虽有利于溶解,但 CO2波及范围越小,减少了 CO2与水和矿物大范围接触的机会。渗透率则取决于垂向渗透率和水平渗透率比值,当储层水平渗透率相同时,垂向渗透率越小,越有利于CO2与矿物反应。此外,孔隙度对反应的影响大于渗透率。岩石物性普遍较差,溶蚀作用整体较小,因此岩石碎块质量以及岩心段塞孔隙结构变化幅度整体不大。

  • 3.4.4 时间

  • 实验设置的反应时间为7和30 d,反应0~7 d内主要离子浓度(Al3+,Si4+,Mg2+,Fe3+)呈上升趋势。反应 7~30 d内各矿物组分变化较小,且主要离子浓度趋于平缓或出现下降,说明在此期间反应已到达平衡状态,反应速率减慢。DAVAL等认为硅酸盐反应后产生的石英等矿物覆盖于颗粒表面,使颗粒“钝化”,阻止反应进一步进行[37]。袁舟等发现CO2浸泡过程中的溶蚀作用随温度、压力的升高,孔隙度和渗透率呈指数型增长,16 MPa,80℃时反应仅1 d即开始出现溶蚀现象[38]。此外,随着时间的推移,CO2 溶解达到平衡,溶解量的减少使 pH 值下降速率减慢。结合液相离子浓度变化以及矿物组分变化可知,反应 0~7 d 内以长石和方解石等矿物的溶蚀作用为主,7~30 d内反应达到平衡,同时在溶液中伴有 Al(OH)3和Fe(OH)3的沉淀作用(图4d—4f)。

  • 4 结论

  • CO2的注入对储层的影响整体较小。矿物组分的变化表现为石英、黏土矿物相对含量增加,长石、碳酸盐矿物相对含量减少,以及铁质矿物溶解后再次沉淀;元素和孔隙结构变化较小,孔隙度平均变化小于 0.5%;液相中 Ca2+ 和 Mg2+ 质量浓度变化相对较大,新增的Al3+,Fe3+ 和Si4+ 等质量浓度变化较小。

  • CO2注入过程中主要发生长石和方解石的溶蚀作用,其中Al3+,Si4+,Mg2+ 来自长石和部分黏土矿物, Ca2+ 来自于方解石;Fe3+ 及铁质沉淀来源于凝灰岩中的铁质矿物以及沉积岩中菱铁矿,其溶解后产生的 Fe2+ 转化为Fe3+,再转化为Fe(OH)3沉淀。

  • 方解石含量越高,反应前后样品孔隙结构变化越大;反应后Ⅱ类储层孔隙结构变化大于Ⅲ类储层;岩石粉末反应速率强于岩石碎块;随时间的推移,反应在 0~7 d 内到达平衡,期间以溶蚀作用为主,反应在7~30 d内各组分变化较小,存在Al(OH)3 和Fe(OH)3的沉淀作用。

  • 参考文献

    • [1] 唐杰.致密油注二氧化碳数值模拟研究[D].成都:成都理工大学,2016.TANG Jie.Numerical simulation research of CO2 injection for tight oil[D].Chengdu:Chengdu University of Technology,2016.

    • [2] 江怀友,沈平平,卢颖,等.CO2提高世界油气资源采收率现状研究[J].特种油气藏,2010,17(2):5-10.JIANG Huaiyou,SHEN Pingping,LU Ying,et al.Present situation of enhancing hydrocarbon recovery factor by CO2 [J].Special Oil & Gas Reservoirs,2010,17(2):5-10.

    • [3] 施雷庭,张玉龙,叶仲斌,等.玛湖砂砾岩致密油藏水平井 CO2 吞吐现场试验效果分析[J].油气藏评价与开发,2021,11(6):871-877,883.SHI Leiting,ZHANG Yulong,YE Zhongbin,et al.Field test effect analysis of CO2 huff and puff for EOR of horizontal wells in tight glutenite reservoir of Mahu Oilfield[J].Reservoir Evaluation and Development,2021,11(6):871-877,883.

    • [4] GILFILLAN S M V,LOLLAR B S,HOLLAND G,et al.Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J].Nature,2009,458:614-618.

    • [5] 张翔.陆相致密储层超临界 CO2-地层流体-岩石矿物的作用机理研究[D].成都:西南石油大学,2019.ZHANG Xiang.Mechanism investigation on the interactions of su⁃ percritical CO2-brine-rock of continental tight reservoir[D].Chengdu:Southwest Petroleum University,2019.

    • [6] 胡龙朝.WS低渗透砂砾岩油藏注 CO2驱渗流机理研究[D].成都:西南石油大学,2019.HU Longchao.Percolation mechanism of CO2 flooding in WS low permeability glutenite reservoir[D].Chengdu:Southwest Petro⁃ leum University,2019.

    • [7] 施雷庭,户海胜,张玉龙,等.致密砂砾岩矿物与超临界 CO2和地层水相互作用[J].油田化学,2019,36(4):640-645.SHI Leiting,HU Haisheng,ZHANG Yulong,et al.Interaction of tight glutenite mineral with supercritical CO2 and formation water [J].Oilfield Chemistry,2019,36(4):640-645.

    • [8] 蔡冬梅.致密砂砾岩油藏注 CO2与水/岩石矿物相互作用研究 [D].成都:西南石油大学,2018.CAI Dongmei.Study on interaction between CO2 and water/rock minerals in tight glutenite reservoirs[D].Chengdu:Southwest Pe⁃ troleum University,2018.

    • [9] 李海波,朱巨义,郭和坤.核磁共振 T2谱换算孔隙半径分布方法研究[J].波谱学杂志,2008,25(2):273-280.LI Haibo,ZHU Juyi,GUO Hekun.Methods for calculating pore ra⁃ dius distribution in rock from NMR T2 spectra[J].Chinese Jour⁃ nal of Magnetic Resonance,2008,25(2):273-280.

    • [10] 江苏省环境监测中心.水质32种元素的测定电感耦合等离子体发射光谱法:HJ 776—2015[S].北京:中国环境科学出版社,2015.Jianghsu Environmental Monitoring.Water quality-Determination of 32 elements-Inductively coupled plasma optical emission spec⁃ trometry:HJ 776-2015[S].Beijing:China Environmental Science Press,2015.

    • [11] ELGAGHAH S,ZEKRI A Y,ALMEHAIDEB R,et al.Laboratory investigation of influences of initial oil saturation and oil viscosity on oil recovery by CO2 miscible flooding[C].SPE 106958-MS,2007.

    • [12] 高歌,蒋景阳.在 CO2-H2O 体系中估算pH值及其应用[J].计算机与应用化学,2011,28(3):359-362.GAO Ge,JIANG Jingyang.Estimation of pH values in CO2-H2O system and its application[J].Computers and Applied Chemistry,2011,28(3):359-362.

    • [13] LIU B,ZHAO F Y,XU J P,et al.Experimental investigation and numerical simulation of CO2-brine-rock interactions during CO2 sequestration in a deep saline aquifer[J].Sustainability,2019,11(2):317.

    • [14] 汤勇,杜志敏,孙雷,等.CO2在地层水中溶解对驱油过程的影响[J].石油学报,2011,32(2):311-314.TANG Yong,DU Zhimin,SUN Lei,et al.Influence of CO2 dissolv⁃ ing in formation water on CO2 flooding process[J].Acta Petrolei Sinica,2011,32(2):311-314.

    • [15] MACKAY E J,JORDAN M M,TORABI F.Predicting brine mix⁃ ing deep within the reservoir and its impact on scale control in marginal and deepwater developments[J].SPE Production & Fa⁃ cilities,2003,18(3):210-220.

    • [16] 胡勇有,李宗峰,宁寻安,等.Al(Ⅲ)-Fe(Ⅲ)共存体系的水溶液化学特征[J].华南理工大学学报:自然科学版,1999,27(7):20-26. HU Yongyou,LI Zongfeng,NING Xunan,et al.Aquatic chemical characteristics of Aluminum-Ferric solutions[J].Journal of South China University of Technology:Natural Science Edition,1999,27(7):20-26.

    • [17] 曹冲,张京伦,朱鸿昊,等.CO2-岩石-地层水相互作用实验[J].成都工业学院学报,2016,19(4):3-8.CAO Chong,ZHANG Jinglun,ZHU Honghao,et al.Experimental research on the interaction process between CO2-saturated rocks and formation water[J].Journal of Chengdu Technological Univer⁃ sity,2016,19(4):3-8.

    • [18] FAROKHPOOR R,LINDEBERG E G B,TORSÆTER O,et al.Permeability and relative permeability measurements for CO2-brine system at reservoir conditions in low permeable sandstones in Svalbard[J].Greenhouse Gases Science and Technology,2014,4(1):36-52.

    • [19] TAYLOR K C,NASR-EL-DIN H A,AL-ALAWI M J,et al.Sys⁃ tematic study of iron control chemicals used during well stimula⁃ tion[J].SPE Journal,1999,4(1):19-24.

    • [20] 曾理,王兰生,许怀先,等.沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法:SY/T 5163—2010[S].北京:石油工业出版社,2010.ZENG Li,WANG Lansheng,XU Huaixian,et al.Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction:SY/T 5163-2010[S].Beijing:Pe⁃ troleum Industry Press,2010.

    • [21] ROCHELLE C A,CZERNICHOWSKI-LAURIOL I,MILODOWS⁃ KI A E.The impact of chemical reactions on CO2 storage in geolog⁃ ical formations:a brief review[J].Geological Society,2004,233(1):87-106.

    • [22] BERTIER P,SWENNEN R,LAENEN B,et al.Experimental iden⁃ tification of CO2-water-rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Camp⁃ ine Basin(NE-Belgium)[J].Journal of Geochemical Exploration,2006,89(1):10-14.

    • [23] OGAYA X,LEDO J,QUERALT P,et al.An approach for monitor⁃ ing resistivity variations using surface magnetotelluric data and its application to CO2 storage site[C].San Francisco:AGU Fall Meet⁃ ing,2014.

    • [24] 张文博,操应长,远光辉.不同升温速率下方解石与二氧化碳水溶液作用实验[J].油气地质与采收率,2017,24(3):57-65.ZHANG Wenbo,CAO Yingchang,YUAN Guanghui.Experiment of interaction between calcite and fluid saturated with CO2 under different heating rates[J].Petroleum Geology and Recovery Effi⁃ ciency,2017,24(3):57-65.

    • [25] 韩旭,冯福平,丛子渊,等.CO2封存后地层岩石微观结构变化机理研究进展[J].科学技术与工程,2020,20(7):2 537-2 545.HAN Xu,FENG Fuping,CONG Ziyuan,et al.Research status on change mechanism of formation rock microstructure after CO2 se⁃ questration[J].Science Technology and Engineering,2020,20(7):2 537-2 545.

    • [26] 张阳阳.地质封存条件下 CO(2 SO2)-水-矿物相互作用实验研究[D].北京:中国地质大学(北京),2015.ZHANG Yangyang.Experimental studies on CO2(SO2)-saline-minerals interaction under geological storage condition[D].Bei⁃ jing:China University of Geosciences(Beijing),2015.

    • [27] YANG Y F,LI Y W,YAO J,et al.Dynamic pore-scale dissolution by CO2-saturated brine in carbonates:Impact of homogeneous ver⁃ sus fractured versus vuggy pore structure[J].Water Resources Re⁃ search,2020,56(4):e2019WR026112.

    • [28] 罗燕颖,吴迪,杜环虹,等.岩样核磁共振参数实验室测量规范:SY/T 6490—2014[S].北京:石油工业出版社,2014.LUO Yanying,WU Di,DU Huanhong,et al.Specification for mea⁃ surement of rock NMR parameter in laboratory:SY/T 6490-2014 [S].Beijing:Petroleum Industry Press,2014.

    • [29] MARBLER H,ERICKSON K P,SCHMIDT M,et al.Geomechani⁃ cal and geochemical effects on sandstones caused by the reaction with supercritical CO2:an experimental approach to in situ condi⁃ tions in deep geological reservoirs[J].Environmental Earth Sci⁃ ences,2013,69(6):1 981-1 998.

    • [30] WANG L,TIAN Y,YU X Y,et al.Advances in improved/en⁃ hanced oil recovery technologies for tight and shale reservoirs[J].Fuel,2017,210(15):425-445.

    • [31] RATHNAWEERA T D,RANJITH P G,PERERA M S A,et al.Ex⁃ perimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers[J].Nature,2016,6:19362.

    • [32] VANORIO T,NUR A,EBERT Y.Rock physics analysis and timelapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks[J].Geophysics,2011,76(5):23-33.

    • [33] 郭冀隆.二氧化碳地质封存过程中CO2—水—岩相互作用实验研究[D].北京:中国地质大学(北京),2017.GUO Jilong.Experimental studies on CO2-water-rock interactions under geological CO2 storage conditions[D].Beijing:China Uni⁃ versity of Geosciences(Beijing),2017.

    • [34] 范明,蒋小琼,刘伟新,等.不同温度条件下 CO2水溶液对碳酸盐岩的溶蚀作用[J].沉积学报,2007,25(6):825-830.FAN Ming,JIANG Xiaoqiong,LIU Weixin,et al.Dissolution of carbonate rocks in CO2 solution under the different temperatures [J].Acta Sedimentologica Sinica,2007,25(6):825-830.

    • [35] 唐梅荣,张同伍,白晓虎,等.孔喉结构对 CO2驱储层伤害程度的影响[J].岩性油气藏,2019,31(3):113-119.TANG Meirong,ZHANG Tongwu,BAI Xiaohu,et al.Influence of pore throat structure on reservoir damage with CO2 flooding[J].Lithologic Reservoirs,2019,31(3):113-119.

    • [36] 喻英,李义连,杨国栋,等.储层物性参数对 CO2长期封存能力的影响研究[J].安全与环境工程,2017,24(5):75-83,89.YU Ying,LI Yilian,YANG Guodong,et al.Influence of reservoir physical parameters on the long-term CO2 storage capacity[J].Safety and Environmental Engineering,2017,24(5):75-83,89.

    • [37] DAVAL D,SISSMANN O,MENGUY N,et al.Influence of amor⁃ phous silica layer formation on the dissolution rate of olivine at 90 ℃ and elevated pCO2 [J].Chemical Geology,2011,284(1):193-209.

    • [38] 袁舟,廖新维,赵晓亮,等.砂岩油藏 CO2驱替过程中溶蚀作用对储层物性的影响[J].油气地质与采收率,2020,27(5):97-104.YUAN Zhou,LIAO Xinwei,ZHAO Xiaoliang,et al.Effect of disso⁃ lution on physical properties of sandstone reservoirs during CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(5):97-104.

  • 参考文献

    • [1] 唐杰.致密油注二氧化碳数值模拟研究[D].成都:成都理工大学,2016.TANG Jie.Numerical simulation research of CO2 injection for tight oil[D].Chengdu:Chengdu University of Technology,2016.

    • [2] 江怀友,沈平平,卢颖,等.CO2提高世界油气资源采收率现状研究[J].特种油气藏,2010,17(2):5-10.JIANG Huaiyou,SHEN Pingping,LU Ying,et al.Present situation of enhancing hydrocarbon recovery factor by CO2 [J].Special Oil & Gas Reservoirs,2010,17(2):5-10.

    • [3] 施雷庭,张玉龙,叶仲斌,等.玛湖砂砾岩致密油藏水平井 CO2 吞吐现场试验效果分析[J].油气藏评价与开发,2021,11(6):871-877,883.SHI Leiting,ZHANG Yulong,YE Zhongbin,et al.Field test effect analysis of CO2 huff and puff for EOR of horizontal wells in tight glutenite reservoir of Mahu Oilfield[J].Reservoir Evaluation and Development,2021,11(6):871-877,883.

    • [4] GILFILLAN S M V,LOLLAR B S,HOLLAND G,et al.Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J].Nature,2009,458:614-618.

    • [5] 张翔.陆相致密储层超临界 CO2-地层流体-岩石矿物的作用机理研究[D].成都:西南石油大学,2019.ZHANG Xiang.Mechanism investigation on the interactions of su⁃ percritical CO2-brine-rock of continental tight reservoir[D].Chengdu:Southwest Petroleum University,2019.

    • [6] 胡龙朝.WS低渗透砂砾岩油藏注 CO2驱渗流机理研究[D].成都:西南石油大学,2019.HU Longchao.Percolation mechanism of CO2 flooding in WS low permeability glutenite reservoir[D].Chengdu:Southwest Petro⁃ leum University,2019.

    • [7] 施雷庭,户海胜,张玉龙,等.致密砂砾岩矿物与超临界 CO2和地层水相互作用[J].油田化学,2019,36(4):640-645.SHI Leiting,HU Haisheng,ZHANG Yulong,et al.Interaction of tight glutenite mineral with supercritical CO2 and formation water [J].Oilfield Chemistry,2019,36(4):640-645.

    • [8] 蔡冬梅.致密砂砾岩油藏注 CO2与水/岩石矿物相互作用研究 [D].成都:西南石油大学,2018.CAI Dongmei.Study on interaction between CO2 and water/rock minerals in tight glutenite reservoirs[D].Chengdu:Southwest Pe⁃ troleum University,2018.

    • [9] 李海波,朱巨义,郭和坤.核磁共振 T2谱换算孔隙半径分布方法研究[J].波谱学杂志,2008,25(2):273-280.LI Haibo,ZHU Juyi,GUO Hekun.Methods for calculating pore ra⁃ dius distribution in rock from NMR T2 spectra[J].Chinese Jour⁃ nal of Magnetic Resonance,2008,25(2):273-280.

    • [10] 江苏省环境监测中心.水质32种元素的测定电感耦合等离子体发射光谱法:HJ 776—2015[S].北京:中国环境科学出版社,2015.Jianghsu Environmental Monitoring.Water quality-Determination of 32 elements-Inductively coupled plasma optical emission spec⁃ trometry:HJ 776-2015[S].Beijing:China Environmental Science Press,2015.

    • [11] ELGAGHAH S,ZEKRI A Y,ALMEHAIDEB R,et al.Laboratory investigation of influences of initial oil saturation and oil viscosity on oil recovery by CO2 miscible flooding[C].SPE 106958-MS,2007.

    • [12] 高歌,蒋景阳.在 CO2-H2O 体系中估算pH值及其应用[J].计算机与应用化学,2011,28(3):359-362.GAO Ge,JIANG Jingyang.Estimation of pH values in CO2-H2O system and its application[J].Computers and Applied Chemistry,2011,28(3):359-362.

    • [13] LIU B,ZHAO F Y,XU J P,et al.Experimental investigation and numerical simulation of CO2-brine-rock interactions during CO2 sequestration in a deep saline aquifer[J].Sustainability,2019,11(2):317.

    • [14] 汤勇,杜志敏,孙雷,等.CO2在地层水中溶解对驱油过程的影响[J].石油学报,2011,32(2):311-314.TANG Yong,DU Zhimin,SUN Lei,et al.Influence of CO2 dissolv⁃ ing in formation water on CO2 flooding process[J].Acta Petrolei Sinica,2011,32(2):311-314.

    • [15] MACKAY E J,JORDAN M M,TORABI F.Predicting brine mix⁃ ing deep within the reservoir and its impact on scale control in marginal and deepwater developments[J].SPE Production & Fa⁃ cilities,2003,18(3):210-220.

    • [16] 胡勇有,李宗峰,宁寻安,等.Al(Ⅲ)-Fe(Ⅲ)共存体系的水溶液化学特征[J].华南理工大学学报:自然科学版,1999,27(7):20-26. HU Yongyou,LI Zongfeng,NING Xunan,et al.Aquatic chemical characteristics of Aluminum-Ferric solutions[J].Journal of South China University of Technology:Natural Science Edition,1999,27(7):20-26.

    • [17] 曹冲,张京伦,朱鸿昊,等.CO2-岩石-地层水相互作用实验[J].成都工业学院学报,2016,19(4):3-8.CAO Chong,ZHANG Jinglun,ZHU Honghao,et al.Experimental research on the interaction process between CO2-saturated rocks and formation water[J].Journal of Chengdu Technological Univer⁃ sity,2016,19(4):3-8.

    • [18] FAROKHPOOR R,LINDEBERG E G B,TORSÆTER O,et al.Permeability and relative permeability measurements for CO2-brine system at reservoir conditions in low permeable sandstones in Svalbard[J].Greenhouse Gases Science and Technology,2014,4(1):36-52.

    • [19] TAYLOR K C,NASR-EL-DIN H A,AL-ALAWI M J,et al.Sys⁃ tematic study of iron control chemicals used during well stimula⁃ tion[J].SPE Journal,1999,4(1):19-24.

    • [20] 曾理,王兰生,许怀先,等.沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法:SY/T 5163—2010[S].北京:石油工业出版社,2010.ZENG Li,WANG Lansheng,XU Huaixian,et al.Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction:SY/T 5163-2010[S].Beijing:Pe⁃ troleum Industry Press,2010.

    • [21] ROCHELLE C A,CZERNICHOWSKI-LAURIOL I,MILODOWS⁃ KI A E.The impact of chemical reactions on CO2 storage in geolog⁃ ical formations:a brief review[J].Geological Society,2004,233(1):87-106.

    • [22] BERTIER P,SWENNEN R,LAENEN B,et al.Experimental iden⁃ tification of CO2-water-rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Camp⁃ ine Basin(NE-Belgium)[J].Journal of Geochemical Exploration,2006,89(1):10-14.

    • [23] OGAYA X,LEDO J,QUERALT P,et al.An approach for monitor⁃ ing resistivity variations using surface magnetotelluric data and its application to CO2 storage site[C].San Francisco:AGU Fall Meet⁃ ing,2014.

    • [24] 张文博,操应长,远光辉.不同升温速率下方解石与二氧化碳水溶液作用实验[J].油气地质与采收率,2017,24(3):57-65.ZHANG Wenbo,CAO Yingchang,YUAN Guanghui.Experiment of interaction between calcite and fluid saturated with CO2 under different heating rates[J].Petroleum Geology and Recovery Effi⁃ ciency,2017,24(3):57-65.

    • [25] 韩旭,冯福平,丛子渊,等.CO2封存后地层岩石微观结构变化机理研究进展[J].科学技术与工程,2020,20(7):2 537-2 545.HAN Xu,FENG Fuping,CONG Ziyuan,et al.Research status on change mechanism of formation rock microstructure after CO2 se⁃ questration[J].Science Technology and Engineering,2020,20(7):2 537-2 545.

    • [26] 张阳阳.地质封存条件下 CO(2 SO2)-水-矿物相互作用实验研究[D].北京:中国地质大学(北京),2015.ZHANG Yangyang.Experimental studies on CO2(SO2)-saline-minerals interaction under geological storage condition[D].Bei⁃ jing:China University of Geosciences(Beijing),2015.

    • [27] YANG Y F,LI Y W,YAO J,et al.Dynamic pore-scale dissolution by CO2-saturated brine in carbonates:Impact of homogeneous ver⁃ sus fractured versus vuggy pore structure[J].Water Resources Re⁃ search,2020,56(4):e2019WR026112.

    • [28] 罗燕颖,吴迪,杜环虹,等.岩样核磁共振参数实验室测量规范:SY/T 6490—2014[S].北京:石油工业出版社,2014.LUO Yanying,WU Di,DU Huanhong,et al.Specification for mea⁃ surement of rock NMR parameter in laboratory:SY/T 6490-2014 [S].Beijing:Petroleum Industry Press,2014.

    • [29] MARBLER H,ERICKSON K P,SCHMIDT M,et al.Geomechani⁃ cal and geochemical effects on sandstones caused by the reaction with supercritical CO2:an experimental approach to in situ condi⁃ tions in deep geological reservoirs[J].Environmental Earth Sci⁃ ences,2013,69(6):1 981-1 998.

    • [30] WANG L,TIAN Y,YU X Y,et al.Advances in improved/en⁃ hanced oil recovery technologies for tight and shale reservoirs[J].Fuel,2017,210(15):425-445.

    • [31] RATHNAWEERA T D,RANJITH P G,PERERA M S A,et al.Ex⁃ perimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers[J].Nature,2016,6:19362.

    • [32] VANORIO T,NUR A,EBERT Y.Rock physics analysis and timelapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks[J].Geophysics,2011,76(5):23-33.

    • [33] 郭冀隆.二氧化碳地质封存过程中CO2—水—岩相互作用实验研究[D].北京:中国地质大学(北京),2017.GUO Jilong.Experimental studies on CO2-water-rock interactions under geological CO2 storage conditions[D].Beijing:China Uni⁃ versity of Geosciences(Beijing),2017.

    • [34] 范明,蒋小琼,刘伟新,等.不同温度条件下 CO2水溶液对碳酸盐岩的溶蚀作用[J].沉积学报,2007,25(6):825-830.FAN Ming,JIANG Xiaoqiong,LIU Weixin,et al.Dissolution of carbonate rocks in CO2 solution under the different temperatures [J].Acta Sedimentologica Sinica,2007,25(6):825-830.

    • [35] 唐梅荣,张同伍,白晓虎,等.孔喉结构对 CO2驱储层伤害程度的影响[J].岩性油气藏,2019,31(3):113-119.TANG Meirong,ZHANG Tongwu,BAI Xiaohu,et al.Influence of pore throat structure on reservoir damage with CO2 flooding[J].Lithologic Reservoirs,2019,31(3):113-119.

    • [36] 喻英,李义连,杨国栋,等.储层物性参数对 CO2长期封存能力的影响研究[J].安全与环境工程,2017,24(5):75-83,89.YU Ying,LI Yilian,YANG Guodong,et al.Influence of reservoir physical parameters on the long-term CO2 storage capacity[J].Safety and Environmental Engineering,2017,24(5):75-83,89.

    • [37] DAVAL D,SISSMANN O,MENGUY N,et al.Influence of amor⁃ phous silica layer formation on the dissolution rate of olivine at 90 ℃ and elevated pCO2 [J].Chemical Geology,2011,284(1):193-209.

    • [38] 袁舟,廖新维,赵晓亮,等.砂岩油藏 CO2驱替过程中溶蚀作用对储层物性的影响[J].油气地质与采收率,2020,27(5):97-104.YUAN Zhou,LIAO Xinwei,ZHAO Xiaoliang,et al.Effect of disso⁃ lution on physical properties of sandstone reservoirs during CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2020,27(5):97-104.