-
通常储层渗透率为1~10 mD的油藏属于低渗透油藏,储层渗透率为0.1~1 mD的油藏属于超低渗透油藏[1-3]。低渗透和超低渗透油藏资源占总油气资源的比例较大,全球约38%的石油和天然气资源储存在低渗透油藏中。在中国,约46%的油气藏属于低渗透油气藏[4-6]。根据中国石油天然气集团公司的数据,2017年超低渗透油藏年产油量占中国总产量的 36.8%[7]。与常规油藏相比,低渗透/超低渗透储层具有复杂的孔隙空间结构,通常具有纳米孔喉且非均质性较强,常规的水驱开发往往存在注水困难和采收率低的问题。
-
注气开发能较好地解决低渗透油藏水驱面临的渗流阻力大、储层水敏等问题。低渗透油藏注气开发通常有 CO2驱、烃气驱、氮气驱和减氧空气驱等[8-10]。烃气驱主要是指以甲烷为主的天然气作为注入介质进行的驱油方式,通常适用于凝析气藏、海上油气藏等能产出大量伴生天然气的油气藏。氮气驱是将空气提纯后得到氮气并注入油藏的开发方式。氮气属于惰性气体,不易燃烧且无毒无腐蚀性,但由于氮气、减氧空气的制备所需成本较大,因此氮气驱在中国未能广泛使用。CO2驱具有多种驱油机理。油藏注入 CO2使得原油膨胀降黏,补充地层能量,通过多种流动方式驱替原油。CO2发生 “分子聚集”现象,可以萃取轻烃组分,溶解部分重质成分。CO2与原油间存在混合层,在边界层内形成流向涡,驱替壁面原油[11-12]。随着“双碳”政策的大力推行,围绕着碳捕集、碳利用和碳埋存的相关产业飞速发展,长远来看 CO2驱具有较广阔的应用前景。
-
前人在进行 CO2驱开发方案设计时,大多依靠油藏数值模拟进行开发方案注采参数的优化。对于CO2驱注气速度的设计并没有一个明确的选取范围。为此,笔者以胜利油田 A 区块这类水驱难以开发的低孔低渗透/超低渗透油藏为例,构建了相对完整的 CO2驱注采参数优化流程,同时提出了以气窜条件为限制条件的 CO2驱注气速度计算经验公式。确定了CO2驱注气速度的合理设计范围。
-
基于多个 CO2驱案例数据对 A 区块进行了 CO2 驱适应性对比分析,通过原油组分信息及恒组成膨胀实验数据进行了 PVT 拟合和组分劈分,得到 CO2 驱关键参数。结合基础油藏物性参数,最终建立了具有7个拟组分的组分模型。
-
基于均质组分模型,针对 A 区块进行了 CO2驱油藏工程参数优化,确定了井网、井距、注气速度和生产压力的最佳注采参数;同时,对 CO2吞吐、连续注 CO2、气水交替(WAG)等不同开发方式进行了注采参数优化,将优化后的 CO2驱结果与衰竭式开发和水驱开发进行了对比分析,结果表明对于此类低孔低渗透/超低渗透油藏,连续注气具有一定优势。
-
最后,选取 A 区块东南方向优势物性区作为开发区,利用 CMG 油藏数值模拟软件的 GEM 模块进行CO2驱方案效果的模拟预测。对开发区井组进行了连续注气的开发方案效果预测,结果表明 CO2驱对此类低渗透/超低渗透油藏具有较好的开发效果。
-
1 油藏概况及CO2驱适应性评价
-
1.1 油藏概况
-
胜利油田 A 区块位于鼻状构造带中部,含油层位于S4段。区块具有西南高东北低的构造特征,地层倾角约为 5°~8°。储层无天然裂缝,但区块断层发育,走向基本一致,断层封闭性较差。储层岩性主要为含灰质长石粉砂岩,岩石成分以石英、长石为主,填隙物以泥质、方解石、白云石为主,反映其成分成熟度较低。储层埋深为 2 800~3 200 m,储层平均孔隙度约为10.8%,平均渗透率约为2.7 mD,属于低孔低渗透薄互层,储层非均质性较强。地面脱气原油密度为 0.86 g/cm3。在地层压力为 29.0 MPa 条件下,地层原油密度为 0.79 g/cm3,地层原油体积系数为 1.14,地层原油黏度为 1.98 mPa·s,具有低黏度、低含硫、凝固点高等特点。
-
A 区块温压测试地温梯度为 3.7℃/hm,压力系数为 1.44,表明油藏为正常温度系统、异常高压油藏。原始地层压力约为 33.0 MPa,油藏饱和压力为 11.3 MPa。异常高压油藏在开采初期因注水困难,所以一般进行弹性开采。其开采特征为初期产量高、地层压力下降快、产量递减快[13-14]。A 区块自 2006 年投产,投产初期产量较髙,平均单井初期日产油量约为20 t/d,无边底水,天然能量不足,弹性开采的年递减率高达 35%。此外储层物性接近超低渗透,压力传导较困难,导致注水压力升高和注水量低,整体注水开发效果较差。
-
1.2 CO2驱适应性评价
-
从中外低渗透油田 CO2驱项目[15-18] 统计(表1)可以发现:中国CO2驱的油藏深度为1 500~3 065 m,渗透率为0.4~690 mD,孔隙度为10.0%~22.0%,地层原油密度为 0.74~0.83 g/cm3,地层原油黏度为 1.6~7.0 mPa·s,油藏温度为 70~110℃;美国 CO2混相驱的渗透率为 2~44 mD,油藏深度为 914~2 987 m,油藏温度为32.2~118.3℃。
-
根据何应付等对中外 CO2驱项目的研究,提出了针对 CO2混相驱、近混相驱、非混相驱的筛选标准[19]。根据CO2驱油藏潜力筛选标准(表2),A区块基本符合CO2驱的条件,除了油藏温度稍高,其油藏物性具有实施混相驱与近混相驱的潜力。
-
2 油藏组分模型的建立
-
2.1 PVT拟合及组分劈分
-
CO2驱根据不同的驱油机理可以分为混相驱和非混相驱2种类型。CO2混相驱是在地层条件下,原油中的轻烃被 CO2萃取并形成油气互溶的混相状态,此时油气相界面张力消失。混相驱的驱油效率比非混相驱的高,达到混相的最低压力称为最小混相压力,最小混相压力取决于原油组分和油藏温度等。因此最小混相压力是确定油藏注气开发适应性评价以及CO2驱开发方式选择的重要指标之一。
-
最小混相压力可以通过细管实验测定,也可以利用 CMG 公司的 WinProp 相态模拟软件包计算获得,通常利用包括恒组成膨胀实验、多级脱气实验、注气膨胀实验以及原油全组分分析实验等进行PVT 拟合、组分合并,完成混相压力计算(表3)。
-
利用 WinProp 软件在已有的原油组分、恒组成膨胀实验数据的基础上进行了 PVT拟合,并确定模型组分。最后通过软件计算 CO2驱最小混相压力。如表4 所示,本次模型设置将组分劈分为 7 个拟组分:CO2,N2/CH4,C2-C4,C5-C7,C8-C12,C13-C20和 C21-C30。混相压力计算结果表明:A 区块 CO2驱初次混相压力为30.1 MPa,多次接触混相压力为26.6 MPa。
-
2.2 相对渗透率曲线特征及油藏物性参数
-
理论上,储层和流体的相对渗透率、孔隙结构、原油黏度和油水黏度相对变化、表面湿润性、水驱油效率、束缚水及残余油饱和度等油藏物性在相对渗透率曲线中皆可获取[20-21]。同时,相对渗透率曲线也是注采参数优化和数值模拟的基础。从A区块的油水相相对渗透率以及油气相相对渗透率曲线 (图1)可以看出:束缚水饱和度高达45%,表明注水开发注水量较高时才能驱动原油;两相流动区的范围较窄;理论水驱油效率低,仅为 51%;油水相相对渗透率曲线中油相相对渗透率下降较快,水相相对渗透率上升慢且最终值较低;而油气相相对渗透率曲线的两相流动区明显加宽,气相相对渗透率最终值较高,这反映了注气开发较注水具有优势。
-
图1 A区块相对渗透率曲线
-
Fig.1 Relative permeability curves of Block A
-
2.3 均质模型网格设置
-
采用均质模型对 A 区块的注采参数进行优化。 CO2驱流体相态变化复杂,因此采用油藏数值模拟软件(CMG)的 GEM 模块,网格个数设置为 51×51×11 =28 611,油藏物性参数如下:油藏深度为 3 000 m,油藏温度为126℃,初始油藏压力为33.0 MPa,储层孔隙度为10.8%,储层渗透率为2.7 mD,油藏含油饱和度为60%,地层原油黏度为1.98 mPa·s。
-
3 油藏工程参数优化
-
3.1 井网类型优化
-
当其他注采参数相同时,注采井网的选择对于整个区块开发的影响是最大的,因此首先进行井网类型的优选。通过之前建立的均质模型对CO2驱井网类型进行优化,分别考虑五点法井网、反七点法井网、反九点法井网和线性井网等 4 种常见规则井网条件,并对比不同井网形式下的采收率。通过油藏数值模拟软件(CMG)中的 GEM 组分模块进行模拟开发,模型采用定 CO2注入量和生产压力的生产制度。井网优化中给定单井 CO2注入量为 10 000 m3 /d(20 t/d),生产压力设为 30.0 MPa。CO2驱井网形式如图2 所示,不同井网下采收率曲线如图3 所示。
-
从图3可以看出:其他条件不变的前提下,五点法井网下 CO2驱采收率最高。同时,线性井网前期的日产油量最高,但快速下降。五点法井网日产油量较低,但稳产期较长,因此整体采收率较高。由此,A区块优化后的CO2驱井网为五点法井网。
-
3.2 注采井距优化
-
理论上,注采井距越小见效越快,但也容易产生气窜,而井距过大则容易出现波及不足和采油速度较慢的情况,因此需要综合考虑采收率和采油速度进行注采井距优选。
-
在一注四采的五点法井网下,通过机理模型对 CO2 驱注采井距进行优化。给定单井注气量为 10 000 m3 /d(20 t/d),且油藏厚度为 10 m 时,设置注采井距分别为100,200,300,400,500和600 m,并对比不同注采井距下的采收率(图4)。从图4可以看出:当注采井距为 100~300 m 时采收率较高,为 93.9%~95.4%;当注采井距为 100 m 时,10 a 即可达到最大采出程度;当注采井距为 400 m 时,100 a 才可达到最大采出程度。兼顾采油速度和采收率得到最优注采井距为200~300 m。
-
图2 CO2驱井网形式
-
Fig.2 Well patterns for CO2 flooding
-
图3 不同井网形式下的CO2驱采收率和日产油量
-
Fig.3 Oil recoveries and daily oil productions of CO2 flooding under different well patterns
-
图4 不同注采井距下的CO2驱采收率
-
Fig.4 Oil recoveries of CO2 flooding under different injection-production well spacings
-
3.3 注气速度优化
-
诸多学者对于CO2驱的注气量并未给出明确的计算方式[22-25]。因此,通过总结 CO2驱矿场开发规律和开发特点分析并得出较为简单的CO2驱注气速度计算经验公式以便于快速确定注气范围。
-
CO2驱开发常常面临气窜的影响,发生气窜后注气即为无效注气。因此,可以将气窜时的累积注入量作为注气速度的限制条件。多种室内实验和矿场试验表明,CO2气窜具有一定规律。气窜时的注 CO2体积占油藏烃类孔隙体积(HCPV)的 60%~120%[26-28]。这与大量 CO2驱油田现场表现相符合,表明气窜时注 CO2体积可用来计算注气速度。因此,首次提出了以气窜条件为限制条件的 CO2驱注气速度计算经验公式为:
-
按照 d 取值为 200~300 m,α 取值为 60%~120%,γ 取值为 10~20 a。利用经验公式计算,得出 A 区块注气速度为 4 455~17 820 m3 /d。此时通过机理模型设置注气速度分别为 5 000,10 000,15 000 和20 000 m3 /d,并分析采收率状况(图5)。从图5可以看出:注气速度越大采油速度越快,而综合采油速度和采收率优选注气速度为10 000 m3 /d(20 t/d)。
-
图5 不同注气速度下的CO2驱采收率
-
Fig.5 Oil recoveris of CO2 flooding under different gas injection rates
-
3.4 生产压力优化
-
CO2驱生产压力主要有初次混相压力、多次接触混相压力、地层饱和压力等 3 个界限。当生产压力控制在混相压力以上时,可视为混相驱/近混相驱,而CO2混相驱的采收率相比非混相驱明显更高。此外,当生产压力低于饱和压力时,原油溶解气析出,不利于开发。实验表明 A 区块饱和压力为 11.3 MPa,且经过 PVT 拟合,得出初次混相压力为 30.1 MPa,多次接触混相压力为26.6 MPa。因此,对生产压力进行优化,设置生产压力分别为 30.0,26.0, 22.0,18.0,14.0和10.0 MPa。
-
从不同生产压力下的 CO2驱采收率(图6)可以看出:生产压力越接近混相压力,采收率越高;生产压力较低时,采油速度也相应提高;当生产压力介于初次混相压力和多次接触混相压力之间时,采收率最大。因此,合理的生产压力应为 22.0~30.0 MPa。考虑到生产压力较高时,注入压力也较高,因此优选的生产压力为26.0 MPa。
-
图6 不同生产压力下的CO2驱采收率
-
Fig.6 Oil recoveries of CO2 flooding under different production pressures
-
3.5 CO2驱油开发方式
-
CO2驱油开发方式有连续注气、吞吐注气、气水交替(WAG)等 3种形式。设计多组吞吐注气、气水交替方案进行 10,20 和 30 a 采出程度的对比,并与衰竭式开发、水驱开发和连续注气方案进行对比。CO2吞吐设计参数主要包括生产压力、注入时间和焖井时间等,CO2吞吐方案设置的操作参数为单井定压注入吞吐,注入压力为 45 MPa。CO2气水交替的注入速度按照连续注气优化的结果设置为 10 000 m3 /d(20 t/d),同时为了简化过程,通过机理模型优化了气水交替的生产压力为15 MPa,因此气水交替方案考虑参数主要包括段塞体积、水气比等,CO2吞吐设计参数及阶段采出程度如表5所示,气水交替参数优化及阶段采出程度如表6所示。
-
综合分析表5和表6的结果可知:①CO2吞吐对生产压力较为敏感,同时适当地加长焖井时间有利于在注气量更少的情况下获得更大的采出程度。 CO2吞吐优点是开发受限较少,且换油率高,即注入少量 CO2即可获得相对较多的采出油。将 CO2吞吐开发与衰竭式开发进行对比可以发现两者采出程度相似,其原因为单井吞吐对于整个井网的控制程度较差,而衰竭式开发在初期地层压力较高时,五点法井网 4 口生产井同时产出,因此具有更大的油藏动用程度。因此,CO2吞吐不适合用于投产不久的油藏。优化后的 CO2吞吐参数包括:生产压力为10 MPa,注入 5 d,焖井 60 d。②气水交替开发效果建立在水驱开发效果的基础上,水驱开发效果好,则气水交替开发效果好。当段塞体积为 0.1 HCPV 时,气水交替开发效果最佳。当水气比较低时,开发效果较好。因此,水气比为1∶2时,阶段采出程度较高。对比水驱开发效果,气水交替开发往往能够提高采出程度约为13%~23%,这表明气水交替相对于水驱具有较大的优势。③连续注气开发的阶段采出程度最高。相关数据表明,对于低渗透/超低渗透油藏在相同条件下地层吸气能力是吸水能力的 4~18 倍(换算成吸气质量和吸水质量时)。需要注意的是,连续注气开发的阶段采出程度明显大于其他开发方式,其原因为机理模型无法模拟真实地层复杂的非均质性,而油藏非均质性会造成气窜,严重影响注气开发效果。对于机理模型来说,其开发表现十分接近细长管实验,当实验条件达到混相/非混相条件时,采收率能达到 95% 以上,说明组分模型具有一定的模拟价值。④对比衰竭式开发、水驱、CO2吞吐、CO2气水交替、CO2连续注气等开发方式,综合认为类似于研究区块这样的低孔低渗透/超低渗透、异常高压油藏,水驱效果较差,因此气水交替开发效果不佳,若CO2气源充足的情况下,可以考虑连续注CO2进行开发。
-
3.6 试验区开发效果预测
-
选取A区块构造位置较高且物性条件较好的西南角作为开发试验区,试验区油藏地质模型如图7 所示。通过建立地质模型并核对地质储量,模型埋藏深度为2 700~3 100 m,油藏厚度为10~20 m,孔隙度为 7%~16%,渗透率为 0~14 mD,含油饱和度为 40%~80%。
-
图7 试验区油藏地质模型
-
Fig.7 Geological reservoir model of pilot development area
-
基于A区块地质模型进行五点法井网下井距为250 m、注气速度为20.0 t/d、生产压力为26.0 MPa的开发动态预测。同时将该五点井网作为试验井组。从试验区CO2驱开发动态预测数据(表7)可以看出,试验井组 10 a 采出程度为 15.1%,18 a 采出程度为 22.4%,符合CO2驱开发规律。
-
4 结论
-
结合中外矿场CO2驱案例对胜利油田A区块进行 CO2驱适应性对比分析,认为 A 区块油藏温度稍高,总体适合CO2驱。基于原油组分、恒组成膨胀实验数据对 A 区块原油组分进行 PVT 拟合,并将原油合理劈分为 7 个拟组分:CO2,N2/CH4,C2-C4,C5-C7, C8-C12,C13-C20,C21-C30,得出 A 区块 CO2初次混相压力为 30.1 MPa,多次接触混相压力为 26.6 MPa。此外分析 A 区块低孔低渗透相对渗透率曲线特征,结合油藏物性参数建立组分模型。
-
首次提出基于气窜条件限制下的注气速度计算经验公式,能较为合理和便捷地计算出注气速度范围。通过之前建立的均质模型对CO2驱的油藏工程参数进行优化,得到最佳井网形式为五点法井网、井距为 250 m、注气速度为 20.0 t/d,多次接触混相压力界限为 26.0 MPa,优选并对比分析了多种开发方式,明确了气水交替开发较水驱能够提高采出程度约为 13%~23%。但是由于区块吸水能力远低于吸气能力,因此该区块最佳 CO2驱开发方式为连续注气。
-
通过机理模型的注采参数优化研究,采用 A 区块 CO2驱最佳的井网井距类型和注采参数,最终选取 A 区块的西南角作为开发试验区,通过构造高部位注气开发,并进行基于精细地质模型的 1 个井组的开发方案效果预测。预测井组10 a开发采出程度为15.1%,18 a采出程度为22.4%。通过结合大量中外油田 CO2驱油的成功案例,基于实验数据合理建立拟组分模型,并通过油藏工程参数优化选取合理注采参数,进行多种开发方式的模拟对比,最终确认最佳开发模式,通过开发试验区的选取和基于实际地质模型进行了完整的CO2驱开发方案参数优化及效果预测,对于同类型低渗透油藏的高效开发具有一定的参考意义。
-
符号解释
-
d——注采井距,m;
-
h——油藏厚度,m;
-
MMP——CO2最小混相压力,MPa;
-
Sw——含水饱和度,%;
-
Vi ——注气强度,m3 /(h·d);
-
Vr ——注气速度,m3 /d或t/d;
-
α——注气体积系数,代表了注入的 CO2与油藏烃类体积的比值,%;
-
β——相对密度系数,代表 CO2在地层条件下与地面条件下密度的比值,无量纲;
-
ϕ——储层孔隙度,%;
-
γ——开发年限,a。
-
参考文献
-
[1] 武毅,肖红林.辽河油田低渗油藏水驱开发潜力评价标准建立 [J].特种油气藏,2012,19(6):91-94.WU Yi,XIAO Honglin.The establishment of evaluation criteria of water flooding development potential in low permeability reser⁃ voirs of Liaohe Oilfield[J].Special Oil & Gas Reservoirs,2012,19(6):91-94.
-
[2] 李楠,潘志坚,苏婷,等.超低渗油藏 CO2驱正交试验设计与数值模拟优化[J].新疆石油地质,2017,38(1):62-65.LI Nan,PAN Zhijian,SU Ting,et al.Orthogonal test design and numerical simulation optimization of CO2 flooding in extra-low permeability reservoirs[J].Xinjiang Petroleum Geology,2017,38(1):62-65.
-
[3] LI Ying,CUI Xiaojiang,LI Haitao,et al.Application of supercriti⁃ cal water conditions to improve the flowback of fracturing fluid in ultra-low-permeability sandstone formations[J].Experimental Thermal and Fluid Science:International Journal of Experimental Heat Transfer,Thermodynamics,and Fluid Mechanics,2021,121:110273.
-
[4] SHANLEY K W,CLUFF R M.The evolution of pore-scale fluidsaturation in low-permeability sandstone reservoirs[J].AAPG Bulletin,2015,99(10):1 957-1 990.
-
[5] XU Derong,BAI Baojun,WU Hairong,et al.Mechanisms of imbi⁃ bition enhanced oil recovery in low permeability reservoirs:effect of IFT reduction and wettability alteration[J].Fuel,2019,244:110-119.
-
[6] LIANG Can,XIAO Lizhi,ZHOU Cancan,et al.Wettability charac⁃ terization of low-permeability reservoirs using nuclear magnetic resonance:an experimental study[J].Journal of Petroleum Sci⁃ ence and Engineering,2019,178:121-132.
-
[7] XIE Linglu,YOU Qing,WANG Enze,et al.Quantitative character⁃ ization of pore size and structural features in ultra-low permeabili⁃ ty reservoirs based on X-ray computed tomography[J].Journal of Petroleum Science and Engineering,2022,208,Part E:109733.
-
[8] 苏玉亮,吴春新,吴晓东.特低渗油藏不同开发方式室内实验研究[J].实验力学,2011,26(4):442-446.SU Yuliang,WU Chunxin,WU Xiaodong.Laboratory investigation on different development methods for ultra-low permeability oil reservoir[J].Journal of Experimental Mechanics,2011,26(4):442-446.
-
[9] 王文环.特低渗透油藏驱替及开采特征的影响因素[J].油气地质与采收率,2006,13(6):73-75.WANG Wenhuan.Influencing factors of displacement and devel⁃ opment characteristics in ultra-low permeability oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2006,13(6):73-75.
-
[10] 袁士义,王强,李军诗,等.注气提高采收率技术进展及前景展望[J].石油学报,2020,41(12):1 623-1 632.YUAN Shiyi,WANG Qiang,LI Junshi,et al.Technology progress and prospects of enhanced oil recovery by gas injection[J].Acta Petrolei Sinica,2020,41(12):1 623-1 632.
-
[11] 李岩,张菂,樊晓伊,等.低渗透砂砾岩油藏二氧化碳驱提高采收率[J].新疆石油地质,2022,43(1):59-65.LI Yan,ZHANG Di,FAN Xiaoyi,et al.EOR of CO2 flooding in low-permeability sandy conglomerate reservoirs[J].Xinjiang Pe⁃ troleum Geology,2022,43(1):59-65.
-
[12] 秦积舜,张可,陈兴隆.高含水后CO2驱油机理的探讨[J].石油学报,2010,31(5):797-800.QIN Jishun,ZHANG Ke,CHEN Xinglong.Mechanism of the CO2 flooding as reservoirs containing high water[J].Acta Petrolei Sini⁃ ca,2010,31(5):797-800.
-
[13] 郭晶晶,张烈辉,涂中.异常高压气藏应力敏感性及其对产能的影响[J].特种油气藏,2010,17(2):79-81.GUO Jingjing,ZHANG Liehui,TU Zhong.Stress sensibility and its influence on productivity in gas reservoirs with abnormally high pressure[J].Special Oil & Gas Reservoirs,2010,17(2):79-81.
-
[14] 张兴焰,闫志军,李淑梅,等.压敏效应对文东异常高压低渗油田开发的影响[J].大庆石油地质与开发,2005,24(2):55-56.ZHANG Xingyan,YAN Zhijun,LI Shumei,et al.Influence of pres⁃ sure-sensitive effects upon development of Wendong low-perme⁃ ability oilfield with abnormal high pressure[J].Petroleum Geology & Oilfield Development in Daqing,2005,24(2):55-56.
-
[15] CARCOANA A N.Enhanced oil recovery in Rumania[C].Tulsa:SPE Enhanced Oil Recovery Symposium,1982.
-
[16] GEFFEN T M.Improved oil recovery could help ease energy short⁃age[J].World Oil,1973,177:84-88.
-
[17] 秦积舜,韩海水,刘晓蕾.美国CO2驱油技术应用及启示[J].石油勘探与开发,2015,42(2):209-216.QIN Jishun,HAN Haishui,LIU Xiaolei.Application and enlight⁃ enment of carbon dioxide flooding in the United States of America [J].Petroleum Exploration and Development,2015,42(2):209-216.
-
[18] 李阳,黄文欢,金勇,等.双碳愿景下中国石化不同油藏类型 CO2驱提高采收率技术发展与应用[J].油气藏评价与开发,2021,11(6):793-804.LI Yang,HUANG Wenhuan,JIN Yong,et al.Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under“dual carbon”vision[J].Reservoir Evalua⁃ tion and Development,2021,11(6):793-804.
-
[19] 何应付,赵淑霞,计秉玉,等.砂岩油藏 CO2驱提高采收率油藏筛选与潜力评价[J].油气地质与采收率,2020,27(1):140-145.HE Yingfu,ZHAO Shuxia,JI Bingyu,et al.Screening method and potential evaluation for EOR by CO2 flooding in sandstone reser⁃ voirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):140-145.
-
[20] 郭沫贞,肖林鹏,张生兵,等.低渗透砂岩油层相对渗透率曲线特征、影响因素及其对开发的影响[J].沉积学报,2008,26(3):445-451.GUO Mozhen,XIAO Linpeng,ZHANG Shengbing,et al.Features,controls and influence for petroleum development of relative per⁃ meability curve in low permeable sandstone reservoirs[J].Acta Sedimentologica Sinica,2008,26(3):445-451.
-
[21] 方建龙,郭平,肖香姣,等.高温高压致密砂岩储集层气水相渗曲线测试方法[J].石油勘探与开发,2015,42(1):84-87.FANG Jianlong,GUO Ping,XIAO Xiangjiao,et al.Gas-water rela⁃ tive permeability measurement of high temperature and high pres⁃ sure tight gas reservoirs[J].Petroleum Exploration and Develop⁃ ment,2015,42(1):84-87.
-
[22] 李敏,关华,胡世勇,等.特低渗透油藏 CO2混相驱和非混相驱水气交替注采参数优化[J].非常规油气,2021,8(1):60-66.LI Min,GUAN Hua,HU Shiyong,et al.Optimization of water gas alternate injection production parameters for miscible and immis⁃ cible CO2 flooding in ultra-low permeability reservoir[J].Uncon⁃ ventional Oil & Gas,2021,8(1):60-66.
-
[23] 王高峰,廖广志,李宏斌,等.CO2驱气机理与提高采收率评价模型[J].油气藏评价与开发,2022,12(5):734-740.WANG Gaofeng,LIAO Guangzhi,LI Hongbin,et al.Mechanism and calculation model of EOR by CO2 flooding[J].Reservoir Eval⁃ uation and Development,2022,12(5):734-740.
-
[24] 喻鹏,杨付林,ORODU O D,等.低渗油藏中高含水期CO2驱替封注参数优化——以大民屯凹陷S-95块为例[J].科学技术与工程,2020,20(8):3 029-3 034.YU Peng,YANG Fulin,ORODU O D,et al.Storage and injection parameter optimization of CO2 flooding of low permeability reser⁃ voir under medium and high water cut period:A case study of S95 Block,Damintun Sag[J].Science Technology and Engineer⁃ ing,2020,20(8):3 029-3 034.
-
[25] 刘华,李相方,李朋,等.腰英台特低渗油田 CO2驱油参数优化研究[J].油气井测试,2016,25(3):7-11.LIU Hua,LI Xiangfang,LI Peng,et al.Parameters optimization of CO2 flooding in Yaoyingtai ultra-low permeability oilfield[J].Well Testing,2016,25(3):7-11.
-
[26] 崔传智,闫大伟,姚同玉,等.CO2驱前缘运移规律及气窜时机预测方法——以胜利油田 G89-1区块为例[J].油气藏评价与开发,2022,12(5):741-747,763.CUI Chuanzhi,YAN Dawei,YAO Tongyu,et al.Prediction meth⁃ od of migration law and gas channeling time of CO2 flooding front:A case study of G89-1 Block in Shengli Oilfield[J].Reservoir Evaluation and Development,2022,12(5):741-747,763.
-
[27] WANG Rui,LÜ Chengyuan,LUN Zengmin,et al.Study on gas channeling characteristics and suppression methods in CO2 flood⁃ ing for low permeability reservoirs[C].Jakarta:SPE Asia Pacific Oil and Gas Conference and Exhibition,2011,SPE-142306-MS.
-
[28] 王维波,师庆三,余华贵,等.二氧化碳驱油注入方式优选实验 [J].断块油气田,2015,22(4):497-500,504.WANG Weibo,SHI Qingsan,YU Huagui,et al.Optimization ex⁃ periment for carbon dioxide flooding injection mode[J].FaultBlock Oil & Gas Field,2015,22(4):497-500,504.
-
摘要
随着“双碳”政策的大力推行,围绕着碳捕集、碳利用和碳埋存的相关产业飞速发展,长远来看CO2驱具有较广阔的应用前景。低渗透/超低渗透油藏储层具有复杂的孔隙空间结构,常规水驱开发均面临注水困难和采收率低的问题,而CO2驱具有多种驱油机理,能较好地解决水驱开发困难的问题。针对胜利油田A区块的低孔低渗透油藏条件,基于原油组分信息和恒组成膨胀实验数据进行了PVT拟合并建立了具有7个拟组分的组分模型,得出初次混相压力为30.1 MPa,多次接触混相压力为26.6 MPa。首次提出了以气窜为限制条件的CO2驱注气速度计算经验公式。基于均质组分模型针对 A 区块进行了 CO2驱油藏工程参数优化,确定了以五点法井网、井距为 250 m、注气速度为 20.0 t/d、生产压力为26.0 MPa的最佳注采参数;同时,以衰竭式开发、水驱、CO2吞吐、连续注CO2、气水交替(WAG) 等不同开发方式进行了注采参数优化,将优化后不同开发方式的结果进行了对比分析,结果表明连续注气具有一定优势;最后,选取A区块的西南方向优势物性区作为开发试验区,进行了基于优化结果的1个井组的连续注气开发方案预测,结果表明井组10 a采出程度为15.1%,20 a采出程度为22.4%。
Abstract
CO2 flooding has broad application prospects in the long term owing to the booming of industries involving car- bon capture,utilization,and storage amid the vigorous implementation of the“carbon peaking and carbon neutrality”policy. As low- and ultralow-permeability reservoirs have complex pore spaces and structures,the conventional water flooding de- velopment is invariably faced with difficult water injection and low oil recovery. In contrast,CO2 flooding offers a variety of oil displacement mechanisms and can well solve the problem of difficult water flooding development.In this paper,PVT fit-ting was carried out based on information on crude oil composition and experimental data on constant composition expan- sion and a component model with seven pseudo-components was constructed according to the conditions of the low-porosi- ty and low-permeability reservoirs in Block A,Shengli Oilfield. The initial miscibility pressure obtained was 30.1 MPa,and the multi-contact miscibility pressure was 26.6 MPa. This paper proposed an empirical formula for calculating the gas in- jection rate of CO2 flooding with gas channeling as the constraint for the first time. The engineering parameters of CO2 flood- ing reservoirs in Block A were optimized with the homogeneous component model. The optimal injection-production param- eters were thereby determined as a five-spot well pattern,a well spacing of 250 m,a gas injection rate of 20 t/d,and a pro- duction pressure of 26.0 MPa. Furthermore,the injection-production parameters of different development modes were opti- mized,and the development modes were respectively depletion development,water flooding,CO2 huff and puff,continuous CO2 injection,and water-alternating-gas(WAG). The optimization results of different development modes were compara- tively analyzed. The results showed that continuous gas injection had certain advantages. Finally,the dominant physical property area in the southwest of Block A was selected as a pilot development area to predict the effect of a continuous gas injection development scheme for a well group according to the optimization results. The results revealed that the recovery of the well group was 15.1% in 10 a and 22.4% in 20 a.