-
近几十年来,全球气候逐渐变暖,其主要原因是人类社会和生产活动向大气过度排放 CO2 [1-2]。据国际能源署(IEA)统计,2019 年全球 CO2排放量已突破 330亿吨[3]。中国是世界上最大的能源消耗国,同时也是最大的 CO2排放国[4]。2020 年 9 月,习近平在第 75 届联合国大会上提出中国将在应对气候变化上采取更加有利的措施,即2030年前实现碳达峰,2060年前实现碳中和[5]。作为目前唯一能够实现化石能源大规模低碳化利用的减排技术,CO2 捕集、利用与封存(CCUS)是中国实现 2060 年碳中和目标技术组合的重要构成部分[6]。
-
目前,中国石油供应无法满足国民经济的发展要求,对外依存度已高达 70%[7]。如果能够有效地提高中国油田的原油采收率,就能缓解石油过度依赖进口的局面。CO2驱油是 CCUS 技术中 CO2地质利用环节的重要组成部分之一,同时也是提高采收率的重要技术之一,相较于传统化学驱,CO2驱增大波及效率,驱出残余油的效果更加显著,并且能对大量 CO2实现有效利用与封存。但油藏的非均质性,与气驱相关的体积波及系数低、黏性指进和重力超覆等因素导致CO2驱油过程中存在着早期突破和气窜等问题,从而降低了波及效率[8]。因此,解决 CO2气窜问题对提高CO2驱采收率至关重要。当前,水与气交替注入法、CO2泡沫法、注入聚合物凝胶等方法被广泛用于应对 CO2的早期突破问题,在这些方法中,注入聚合物凝胶是最为经济、有效,且应用范围广泛的方法之一[9]。
-
笔者主要讨论了CO2驱油过程中由于油藏非均质性导致的气窜,详细论述了凝胶的封窜机理,总结了用于封窜的主要凝胶类型,即延缓交联聚丙烯酰胺(PAM)凝胶、预交联凝胶颗粒、两级封窜凝胶体系和泡沫凝胶,同时对用于 CO2封窜的凝胶体系的未来发展方向进行了展望。
-
1 导致CO2驱气窜的因素
-
CO2气体流动性强,并具有降黏、体积膨胀、降低界面张力的作用,因而与水驱相比,气驱能更好地降低孔隙中的残余油饱和度。然而,气驱存在着波及效率低等缺点,这主要是气体在非均质储层的高渗透区域窜流、油气之间黏度差异而导致的黏性指进以及油气之间密度差导致的重力超覆造成的[10]。总的来说,导致 CO2驱气窜的原因主要有 2种:一是CO2的黏度远远小于地层水和原油,不利的流度比导致的黏性指进,使注入的 CO2绕过原油而发生窜流,波及效率下降;二是由于油藏的非均质性,注入的CO2会沿高渗透区形成窜流通道,影响波及效率。此外,油藏的垂向非均质性对气水交替驱也有极大的影响,具有较高垂向渗透率的油藏将会受到垂向窜流的影响,可能会增加垂向波及效率,但是由于重力分异和驱替速度降低,整体上会减弱驱替效果。因此,储层的非均质性越强,气窜越严重[11-14]。
-
气窜区域可分为近井区和远井区,近井区的气窜处理成本更低、操作更为简单,一般使用机械封隔器、水泥塞、桥塞和强凝胶进行封堵;远井区的气窜可分为基质和裂缝 2 大类,其中基质气窜主要包括黏性指进、定向高渗透区域裂纹和储层错流,裂缝气窜包括人造裂缝、天然裂缝和虫洞或导管[15] (图1)。由CO2发生气窜的原因来看,黏性指进和油藏非均质性是引起气窜的主要因素,其中裂缝对储层非均质性的影响较大,尤其对于天然裂缝发育油藏,天然裂缝的存在会加剧储层的非均质性[16],由此可知,基质中的黏性指进和裂缝中的天然裂缝是对CO2驱替效率影响较大的2个因素。
-
松辽盆地南部腰英台油田于 2010 年 4 月开展 CO2驱先导试验,一年后CO2前缘突破到井口的油井达到 60%,伴随着产油量下降和产水率的上升,部分井因气窜严重甚至停产或转注[17]。长庆油田黄3 区油藏,2017年7月进行CO2驱先导试验,由于优势通道的存在,部分井存在严重气窜现象,数值模拟发现优势通道会使 CO2驱原油采收率下降 7%[18]。可见气窜对原油采收率影响很大。研究人员对位于苏北盆地的某油藏进行气窜控制,现场结果表明,油藏整体气油比从注气前的 2 733.1 m3 /m3 下降到注气后的 63.84 m3 / m3,日产油量从注气前的 30.72 t/d 上升到注气后的 81.68 t/d,产油量显著提升[19],说明做好气窜控制是 CO2驱提高原油采收率的必要方法。
-
水气交替注入不适用于严重非均质油藏,且注气过程中流度的不稳定性可能会导致装置腐蚀及注入亏空[20];对于CO2泡沫封窜技术来说,泡沫的稳定性至关重要,然而影响泡沫稳定性的因素较多,如温度、表面活性剂浓度、pH值等,在实际应用中要获得稳定的泡沫就要综合考虑上述因素,而且水基泡沫不能水气同时注入,只能通过水气交替注入,否则会导致 CO2腐蚀井筒,但水气交替注入又会影响泡沫体系的连续性[21-22],可见泡沫封窜技术在稳泡以及注入过程中的影响因素较多且不易控制,这些因素可能会导致其封堵效果变差。凝胶封窜剂可选择范围广,不同于CO2泡沫,凝胶通常为三维网状结构,结构稳定,其在中外油田都有广泛应用。
-
图1 远井区主要气窜原因示意[15]
-
Fig.1 Main causes of gas channeling in regions far from wellbore[15]
-
2 凝胶封窜体系研究进展
-
2.1 延缓交联聚丙烯酰胺凝胶
-
聚丙烯酰胺(PAM)类凝胶主要是由聚丙烯酰胺大分子和交联剂组成,是一种常规的地下交联凝胶聚合物,具有吸附损失小、对细菌的侵害不敏感、易溶解等优点[23],其在中国油田有着较大范围的应用。聚丙烯酰胺类凝胶中常用作封窜剂的为部分水解聚丙烯酰胺(HPAM)[9],以醋酸铬(III)为催化剂的 HPAM 是石油工业中应用最广泛的凝胶体系。作为弱凝胶,HPAM 是以沿大孔道流动和拉伸变形的方式通过多孔介质优先进入高渗透区,并可降低高渗透层的渗透率,改善储层层间非均质性,扩大波及体积,从而提高采收率[24]。同时,由于 HPAM 中含有大量的羧基和酰胺基等亲水基团,这些亲水基团在水溶液中通过水化作用吸收自身重量几倍甚至几十倍的水,并具有良好的保水性能;同时羧基间的静电排斥作用使得主链伸展开来。这种亲水基团的水化作用以及静电排斥作用显著增加了凝胶颗粒的体积,表现出较大的流体力学半径,同时通过交联作用产生的三维网状结构使其具有一定的强度,进而能在地层深部形成堵塞,使流体流向改变[25] (图2)。但是,由于 PAM 是在储层中发生凝胶化的,其具有如凝胶化时间不易控制,由于剪切降解、色谱分离或胶凝剂组成变化导致的凝胶化不确定性等缺点,而且延缓交联凝胶需要用于溶解、混合常规延缓交联凝胶聚合物和交联剂的注入设备及仪器,操作和人工成本较高[23,26],这些缺点阻碍了PAM凝胶更加广泛的工业应用,但是由于其价格低廉且封堵性能较好,所以还是具有较大的研究价值。
-
凝胶体系是有效的调剖封窜剂[28],最常用于 CO2驱封窜的是 HPAM/Cr(III)聚合物凝胶[9],关于延缓交联 PAM 凝胶的主要研究进展见表1。SYED 等使用 2种类型的 PAM 聚合物制备凝胶,并通过岩心驱替实验证明 PAM 凝胶可以有效降低气体渗透率,对裂缝岩心进行的聚合物凝胶处理实验表明,聚合物凝胶溶液可有效修复裂缝渗漏[29]。LI 等用改性 PAM、六亚甲基四胺和间苯二酚制备了一种 CO2响应性的延缓交联凝胶体系,并研究了温度和聚合物浓度等因素对聚合物性质的影响,实验结果表明该凝胶体系有良好的黏温性质和堵水性能,有助于提高波及效率[30]。AL-ALI等采用了 X-ray CT 技术,对不同浓度的 HPAM 凝胶的封堵效果进行观测,发现低浓度的 HPAM 凝胶强度较弱,会随产出的油一起流动,部分凝胶泄漏到基质中,只有少部分起到了封堵 CO2的作用;但是注入高浓度 HPAM 凝胶用来堵塞可渗透通道或裂缝是有效的[31]。有研究表明聚合物浓度越高,凝胶强度越强,可见低浓度凝胶强度不足以封堵裂缝。
-
有研究表明用于CO2驱封窜的聚丙烯酰胺注入油藏较长时间后封堵效率会下降,SUN 等用高压容器测试了聚丙烯酰胺-铬(Ⅲ)聚合物凝胶在 CO2条件下的稳定性,结果表明该凝胶在与 CO2接触时会降解,所以长期处于 CO2环境下的凝胶降解后内部会形成通道,即凝胶突破,从而降低凝胶封堵效率[32]。BRATTEKÅS 等研究发现 HPAM 凝胶在裂缝中运移的过程中会发生脱水现象,此外从凝胶中脱出的水还会控制凝胶进入裂缝的速度[33]。聚丙烯酰胺遇CO2降解和运移脱水问题使得凝胶稳定性下降,从而导致封堵效果下降。
-
另外针对延缓交联凝胶成胶时间不可控、堵塞井筒的问题,邵明鲁等制备了一种引发剂微囊,探究了引发剂微囊对延缓交联聚合体系成胶时间的控制情况,实验结果表明,微囊引发剂相比于常规过硫酸铵引发剂能够有效延长延缓交联聚合体系的成胶时间[34]。
-
综上所述,延缓交联PAM能有效地封堵窜流通道,提高波及效率,适用于高温高盐油藏,但存在成胶时间不可控、易堵塞损害地层等缺点,且要将其应用于 CO2驱封窜仍有一个亟待解决的问题,即常规 PAM 类凝胶的耐酸能力。因此开发可在酸性环境下稳定存在的 PAM 凝胶体系对 CO2驱过程中的有效封窜具有重要意义。
-
2.2 预交联凝胶颗粒
-
预交联凝胶颗粒(PPG)在油田开发调驱中发挥着重要作用[35]。这主要是由于 PPG 吸水膨胀后具有弹性,受到外力作用后以变形等方式通过孔隙介质[36],注入性好。预交联凝胶颗粒通常是将聚丙烯酰胺或 HPAM 与交联剂在地面预交联形成凝胶,然后经过造粒、烘干、粉碎和筛分等工艺制备成凝胶颗粒,这些凝胶颗粒在水中以分散的微粒存在,具有吸水膨胀性能[25]。延缓交联 HPAM 和预交联凝胶颗粒都是通过封堵高渗透区,使 CO2或水等流体转向至低渗透区来提高波及效率的,不同的是延缓交联 HPAM 是在地下成胶,而 HPAM 凝胶颗粒则是在地面成胶[9,37]。不同于延缓交联 PAM 凝胶,预交联凝胶颗粒强度和尺寸可控,耐盐、耐高温(温度为 20~110℃,矿化度为 2 000~280 000 mg/L),适用于储层均质性较差的油藏[38]。
-
预交联凝胶颗粒的研究现状见表2。BAI 等对预交联凝胶颗粒开展了较为系统的研究,通过蚀刻玻璃微模型实验观察凝胶粒子通过不同尺寸孔喉时的传输过程,并将这些过程归纳为6种模式:直接通过、吸附和滞留、堵塞、变形并通过、收缩和通过、脱落和通过;同时还研究了单体浓度、交联剂浓度、温度、矿化度等因素对凝胶性质的影响,并制备了改性的预交联凝胶颗粒,使其能够抵抗CO2的腐蚀,具有较好的抗酸性和稳定性,在酸性环境中也有较高的膨胀率[15,36,39]。ZHOU 等使用丙烯酰胺(AM), N,N'-亚甲基双丙烯酰胺(MBA)和二甲基二烯丙基氯化铵(DMDAAC)通过自由基聚合方法制备了耐酸预交联凝胶颗粒(AR-PPG),研究了 AR-PPG 在酸性环境中的溶胀性、黏弹性和抗剪切性,并对其封堵性能进行了研究,与常规PPG相比,AR-PPG在酸性环境中表现出更好的溶胀性、抗剪切性,这主要是由于 DMDAAC 的阳离子基团与 H+ 之间存在的静电排斥和磺酸基之间的空间位阻效应使聚合物链很难被压缩,从而增加了 AR-PPG 的耐酸性和抗剪切性[40]。CO2驱过程中,CO2大量存在导致油藏为酸性环境,耐酸耐CO2腐蚀的PPG凝胶的研制,解决了聚丙烯酰胺长期处于酸性油藏中会降解,从而导致封堵效率降低的问题。此外,CO2响应型 PPG 也可用于CO2驱封窜,且在CO2环境下性质稳定,PU等合成了 CO2响应型预交联凝胶颗粒(IPN-ASSAP),用于解决致密储层水平压裂产生复杂裂缝导致的 CO2气窜问题,该凝胶颗粒具有良好的 CO2响应性, CO2会使颗粒粒度、强度等性质发生变化,从而提高封堵能力[41]。
-
为了使预交联凝胶颗粒能有更好的应用,唐孝芬等建立了系统评价预交联凝胶颗粒性能的方法,不再使用单一的膨胀倍数进行评价,而是通过膨胀倍数、膨胀速率、膨胀时间、颗粒圆度和粒径、凝胶颗粒的强度一系列指标进行系统性的评价[42],为凝胶颗粒的规范化生产、筛选分级奠定了基础,有利于预交联凝胶颗粒的现场应用。
-
目前所用的预交联凝胶颗粒尺寸普遍偏大(毫米级),膨胀速率和倍数偏高,严重影响封堵半径,甚至引起现场注入困难等问题;同时,高膨胀倍数的预交联凝胶颗粒膨胀后强度大大降低,且易破碎;此外,膨胀后的预交联凝胶颗粒稳定性不足[37]。近年来,胜利油田研制了一种新型支化预交联凝胶颗粒(B-PPG),在主链上引入部分支化链,使其悬浮液黏度得到较大程度地提高。B-PPG 吸水膨胀后的颗粒尺寸远小于传统的 PPG颗粒,可进入较低渗透率的地层,可以有效进行深部调驱,于龙等对 BPPG的封堵性能进行了实验评价,并研究了影响BPPG封堵效率的因素,结果表明B-PPG可变形通过岩心孔隙,并对非均质岩心的封堵具有选择性[43]。
-
注:AM—丙烯酰胺;AA—丙烯酸;APS—过硫酸铵;AMPS-Na—2-丙烯酰胺基-2-甲基丙烷磺酸钠盐;MBA—N,N'-亚甲基双丙烯酰胺; PEG-DA—聚乙二醇二丙烯酸酯;CRG—抗CO2凝胶颗粒;SSS—4-苯乙基磺酸钠;DMDAAC—二甲基二烯丙基氯化铵;DMAEMA—甲基丙烯酸二乙基氨基乙酯;AFAPE-20—丙烯酰脂肪醇聚氧乙烯醚;AVCA—4,4-偶氮二(4-氰基戊酸);IPN-ASSAP—互穿网络CO2响应预交联凝胶颗粒。
-
综上所述,近年来耐酸抗 CO2预交联凝胶颗粒的研究弥补了传统 PAM 类凝胶不能长时间在酸性环境中稳定存在的缺陷,也使得预交联凝胶颗粒能更好应用于 CO2驱油领域,但预交联凝胶颗粒还存在着尺寸偏大、吸水速率快、不好注入的缺点,虽然已有如B-PPG此类缩小PPG尺寸的改性凝胶出现,但如果能在降低膨胀速率和增强膨胀后凝胶强度、稳定性方面取得突破,那么预交联凝胶颗粒的应用将更加广泛。
-
2.3 两级封窜凝胶体系
-
ZHAO 等提出了一种两级封窜技术,可以有效控制低渗透裂缝型油藏中的 CO2气窜,扩大波及体积,从而提高采收率[44]。不同于PAM类凝胶单一封窜高渗透区,两级封窜凝胶体系是一种既能对裂缝也能对高渗透层进行封窜的技术。两级封窜凝胶体系的设计主要分为2部分(图3):一是针对油藏中的裂缝需要有较高强度的封窜体系的特性,选用高强度淀粉凝胶,可以对油藏中的裂缝实现有效封堵;二是在封堵裂缝的基础上注入乙二胺,其在地层水的条件下会与CO2发生化学反应生成高黏度的有机胺盐,对高渗透层形成有效封堵,从而改善油藏的非均质性,扩大波及体积,进而显著提高采收率[45]。其中常用来封堵裂缝的强凝胶为改性淀粉凝胶,改性淀粉凝胶是一种以淀粉为刚性骨架,结合了 PAM 的柔性支链后形成的交联网状立体大分子共聚物,具有黏度适中易注入,稳定性好,地下成胶强度高,与岩石黏接强度高,成胶时间可调节等优点,而且改性淀粉凝胶较纯PAM类封堵剂来说成本大大下降,且施工方便[46-48];用来封堵高渗透层的常用小分子胺为乙二胺,乙二胺在油藏温度达到或超过其沸点时接近气态,注入能力良好[49]。淀粉凝胶加乙二胺的段塞组合可在一定程度上有效控制 CO2气窜,延缓CO2气窜时间,扩大波及体积,进而提高采收率[50]。两级封窜凝胶体系的研究进展见表3。
-
图3 两级封窜技术示意
-
Fig.3 Two-stage channeling blocking technology
-
为了测试强凝胶和小分子胺复配的封窜效果,赵凤兰等通过调驱实验考察了改性淀粉凝胶-泡沫复合体系在非均质岩心中的驱油效果,实验结果表明,复合调驱时淀粉凝胶优先封堵含油饱和度低的高渗透层,迫使后续泡沫体系进入含油饱和度高的中低渗透层,复合驱驱油效果好于单独淀粉凝胶调剖或泡沫驱[48]。ZHAO等提出了一种先用改性淀粉凝胶体系对裂缝进行封堵,再用乙二胺对高渗透层进行封窜的两级封窜体系,并进行了连续CO2驱、气水交替驱,连续 CO2驱一级气窜控制、连续 CO2驱两级气窜控制的对比实验结果表明,两级气窜控制可使注入气体被迫进入低渗透层或基质,有效提高了 CO2驱油效率[44]。王维波等通过单一改性淀粉、单一乙二胺和改性淀粉+乙二胺的岩心驱替实验比较发现,两级封窜体系结合了改性淀粉凝胶和乙二胺封窜的优点,二者的协同作用可以更好地提高采收率[51]。HAO 等通过设计具有复杂裂缝和非均质性的三维径向流模型来模拟油田的实际地层条件进行驱油实验发现,高强度凝胶有效地控制了沿三维径向流模型的主裂缝和微裂缝的气窜,增大了 CO2 的波及系数以驱替岩石基质中的原油;而乙二胺注入后发生流体分流,大大改善了模型的非均质性[52]。综上可知,强凝胶+小分子胺的复配体系封窜效果要强于单独的强凝胶或小分子胺封窜。
-
注:WAG—Water Alternating Gas气水交替驱。
-
有关两级封窜体系使用的强凝胶和小分子胺的配方,有研究人员进行了筛选。SONG 等研究了不同注入压力和岩石非均质条件下CO2驱的生产动态和气窜行为,总结出了 CO2驱油的 3个生产阶段:无气生产阶段、油气混采阶段和气窜阶段,并通过三维径向流实验研究了 PLS 凝胶和乙二胺、淀粉凝胶和 CO2泡沫、淀粉凝胶和乙二胺 3 种封窜体系的封窜效果,得出淀粉凝胶和乙二胺的结合封窜效果最好的结论[53]。
-
不同研究人员就两级封窜体系适用的封窜条件进行了实验并得出了相似的结论。ZHAO等利用天然均质岩心、人造均质和非均质岩心进行 CO2驱实验,研究了不同气窜控制系统适用的油藏渗透率及裂缝尺度,结果表明初级气窜控制系统(气水交替驱)适用于渗透率比为 5~30 的情况,二级气窜控制(注入乙二胺)适用于渗透率比大于 30 或尺度小于0.08 mm的小裂缝,对于中尺度(0.24 mm)或大尺度裂缝(0.40 mm)模型,三级气窜控制系统(改性淀粉凝胶注入或乙二胺注入)能有效控制气窜[49]。XU 等通过室内实验确定了两级封窜中改性淀粉凝胶和乙二胺的适用裂缝尺度并通过数值模拟实验来模拟裂缝封堵效果,评价了目标区块控制气窜后井组 CO2驱提高采收率效果,实验结果表明改性淀粉凝胶适用于封堵开口为 0.42~0.65 mm 的裂缝,乙二胺适用于封堵开口小于 0.24 mm 的裂缝,此外数值模拟显示应用两级封窜体系封堵气窜通道后CO2驱油效率从1.4%提高到24.1%,提高采收率3.76%[54]。
-
综上所述,两级封窜体系是一种新型的复配凝胶体系,结合了强凝胶和小分子胺的特点,将改性淀粉凝胶和乙二胺分别用于封堵不同尺度的窜流通道,不但可以封堵大裂缝,还可以封堵高渗透区,使得封窜效果优于单独使用凝胶或小分子胺,由前人研究的实验结果可知两级封窜凝胶体系配方的筛选以改性淀粉凝胶和乙二胺最优,且该体系对裂缝的渗透率和尺度有很强的针对性,适用于裂缝发育的非均质油藏和特低渗透油藏,对基质问题和裂缝问题的同时解决提供了新思路,使得凝胶体系的封窜效率提高。
-
2.4 泡沫凝胶
-
泡沫凝胶封窜主要是靠泡沫的贾敏效应,由于泡沫在多孔介质中相较于纯气体有较高的有效黏度,能增加油的流动性,因此泡沫凝胶在CO2封窜方面有很大的潜力[55-56]。
-
泡沫凝胶具有用液量少、价格低、效率高及对地层伤害小等优点[57],适用于渗透率较高的地层,对封堵裂缝、非均质油藏,具有较好的应用前景[58],是一种兼具泡沫和凝胶优势的假塑性流体[59-60]。泡沫凝胶的调堵机理主要有 3 方面:一是泡沫的贾敏效应,注入泡沫凝胶后会产生明显的分流作用,使更多泡沫凝胶进入高渗透层或高渗透层段,在大幅度提高高渗透层或高渗透层段阻力因子的同时,低渗透层或低渗透层段的阻力因子降低,促使流体转向流向含油饱和度高的储层,提高波及效率[61-62];二是成胶后凝胶起到稳泡剂的作用,凝胶包裹着泡沫可以提高泡沫界面膜的强度、泡沫的稳定性[63];三是泡沫具有遇油消泡的特性[64],泡沫凝胶在含油饱和度高的储层部位可遇油消泡,不会堵塞孔隙孔道,可选择性封堵[65]。泡沫凝胶封窜机理如图4所示。
-
泡沫凝胶可分为无机型和有机型,常用的无机型泡沫凝胶为硅酸盐泡沫凝胶体系,硅酸盐泡沫凝胶对Ca2+ 和Mg2+ 敏感,极易与Ca2+ 和Mg2+ 发生沉淀絮凝,且脆性大,易破碎;有机型泡沫凝胶一般采用单一的表面活性剂,多用 HPAM 作胶凝剂,耐温、耐盐性差[68]。
-
泡沫凝胶封窜中泡沫的稳定性十分重要,凝胶相当于泡沫的“保护层”,因此凝胶的稳定性决定了泡沫的稳定性。传统的泡沫凝胶不能在高温高盐油藏中稳定存在,这限制了泡沫凝胶的应用,近年来越来越多的研究人员在提升泡沫凝胶耐温耐盐性方面做出了研究,泡沫凝胶研究进展见表4。杨子浩等通过优选起泡剂和交联剂的实验筛选出了一套耐温耐盐的聚丙烯酰胺凝胶配方,即在聚丙烯酰胺中添加酚类交联剂和醛类助交联剂、稳泡剂黄原胶、起泡剂 CAB-35 和除氧剂硫脲,并通过黏度、泡沫半衰期测定,光学显微镜和扫描电镜观测,人造低渗透裂缝型岩心实验评价了凝胶体系的性能,结果表明该泡沫凝胶体系可以稳定存在,耐温性能优异,在人造低渗透裂缝型岩心中有较好的封堵能力,可以用于抑制低渗透油藏CO2驱气窜[69]。QU等根据塔河油田的油藏条件,合成了一种耐温耐盐的改性淀粉凝胶泡沫(MSGF),通过实验测定凝胶的耐温、耐盐、耐油以及在不同压力下的性能,并使用扫描电镜对凝胶泡沫的微观结构进行观察,结果表明改性淀粉凝胶与表面活性剂复配后,改性淀粉凝胶起到了稳定剂的作用,提高了发泡能力,并且能在塔河油藏条件下稳定存在[66]。ZHAO等通过在泡沫中添加梳状聚合物凝胶制备出了一种适用于高温油藏的泡沫凝胶,并通过凝胶增强泡沫性能实验、填砂实验、可视化模拟实验验证了凝胶能通过增加泡沫的黏度和体积来增强泡沫的稳定性和在多孔介质中的封堵能力[70]。研究人员通过凝胶改性、凝胶复配或加入不同添加剂等方法增强泡沫凝胶的耐温、耐盐性,使得泡沫凝胶在实际中的应用也取得了进一步的发展。
-
除了针对高温油藏的研究,还有研究人员针对泡沫凝胶在低温油藏中的应用进行了实验,QI等通过在常规的 PAM 泡沫凝胶中加入氯化铵和亚硝酸钠制备出了一种新型的可以自发热的泡沫凝胶,通过一系列凝胶强度和成胶时间评价实验,得出注入的泡沫凝胶有效堵塞了大孔隙,降低了岩石非均质性的结论[71]。若在低于50℃的油藏条件下成胶,聚合物和交联剂的反应速度会很慢,这会大大延长胶凝时间,严重甚至会导致不能成胶,自发热泡沫凝胶通过发热升高自身温度来缩短成胶时间,使得泡沫凝胶能在低温油藏环境下有更好的封窜效果。
-
2.5 其他封窜方法
-
除凝胶外,如水泥、酚醛树脂、泡沫等材料也可用作油田封窜剂,与上述的几种凝胶体系不同,这些封窜体系有些是用于近井区的。水泥封窜体系多用于应对油井套管、水泥环破坏、层与层之间的窜通问题,常用的有G级油井高抗水泥和超细水泥,其中超细水泥是 G 级油井水泥的再次粉碎物,具有不伤害地层、施工周期短、施工工艺简单、封窜强度高、安全性高、不需要找窜、通过窄缝能力强和成本低等优点,适用于多层段封窜[72-77]。酚醛树脂多用作近井区大裂缝的封窜堵漏,具有原料易得、价格低廉、污染小、安全性高、生产工艺简单的优点,酚醛树脂还多与 HPAM 制备冻胶作复合封窜剂, HPAM与酚醛树脂形成的三维网状结构使冻胶体系更加稳定,耐温抗盐能力增加[78-82]。CO2泡沫封窜是一种使用 CO2泡沫选择性封堵高渗透区、高含水层,使后续流体进行转向来提高波及效率的技术,是实现碳封存的重要技术之一,中国在 CO2驱方面起步较晚,因此要使 CO2泡沫封窜技术有更好的现场应用,还有一些问题待解决,比如泡沫的起泡能力、在高温高压油藏中的稳泡能力等[83-86]。
-
注:SDS—十二烷基硫酸钠;SDBS—十二烷基苯磺酸钠;CAB-35—非离子表面活性剂。
-
3 结论
-
CO2驱在提高采收率的同时还可以实现对 CO2 的利用,然而由于气体指进和油藏的非均质性,导致气驱过程中出现气窜问题,影响了气体的波及效率。延缓交联PAM凝胶、预交联凝胶颗粒等凝胶体系被用于解决气窜问题,这些凝胶主要是通过物理堵塞对气窜通道进行封堵。
-
尽管这些凝胶体系已被广泛研究,然而若要将上述凝胶封窜体系更好地应用于现场,未来还需注意:①传统延缓交联 HPAM 凝胶在 CO2制造的酸性地层环境下不稳定,易降解,CO2响应性智能凝胶可以为 HPAM 耐酸性差的问题提供解决思路,CO2响应性凝胶遇 CO2前为黏度较低的液体,遇 CO2后交联形成三维网状结构,黏度增大,体积膨胀,在 CO2 酸性条件下可在较长时间内保持稳定。②预交联凝胶颗粒尺寸大,膨胀速率高,膨胀倍数大,注入困难,并且过高的膨胀倍数会导致凝胶强度下降,易破碎,目前已有的支化预交联凝胶颗粒可以缩小凝胶颗粒的粒径,膨胀速率快的问题可通过在制备颗粒的过程中增加交联剂的用量来改善,但加入过量的交联剂会使凝胶颗粒脆性增大,可通过膜材料包裹高吸水颗粒,利用网络互穿结构和双重交联技术制备凝胶颗粒来缓解膨胀速率。③泡沫凝胶耐温性差,在高温油藏下泡沫易破裂,无法在高温条件下进行长时间的封堵,筛选出耐温性能更好的起泡剂和交联剂对泡沫凝胶体系整体的耐温性能提升有帮助,因此筛选出耐温性能优良的聚合物凝胶是解决泡沫凝胶耐温性差的可行方法。
-
参考文献
-
[1] 张强,韩永翔,宋连春.全球气候变化及其影响因素研究进展综述[J].地球科学进展,2005,20(9):990-998.ZHANG Qiang,HAN Yongxiang,SONG Lianchun.The summa⁃ rize of development of global climate change and its effect factors [J].Advances in Earth Science,2005,20(9):990-998.
-
[2] 张所续,马伯永.世界能源发展趋势与中国能源未来发展方向 [J].中国国土资源经济,2019,32(10):20-27,33.ZHANG Suoxu,MA Boyong.Development trend of world energy and future development directions of China’s energy[J].Natural Resource Economics of China,2019,32(10):20-27,33.
-
[3] IEA.CO2 emissions from fuel combustion[EB/OL].[2020-12-14].https://www.iea.org/subscribe-to-data-services/CO2-emis⁃ sions-statistics.
-
[4] 于泽伟.碳中和目标下的CCUS[J].能源,2020,(12):89-90.YU Zewei.CCUS under the target of carbon neutrality[J].Energy,2020,(12):89-90.
-
[5] 国家国际发展合作署.习近平在第七十五届联合国大会一般性辩论上的讲话(全文)[EB/OL][.2020-12-14].http://www.ci⁃ dca.gov.cn/2020-09/23/c_1210813555.htm.China International Development Cooperation Agency.Speech by Xi Jinping at the General Debate of the 75th United Nations Gen⁃ eral Assembly(full text)[EB/OL][.2020-12-14].http://www.ci⁃ dca.gov.cn/2020-09/23/c_1210813555.htm.
-
[6] 张贤.碳中和目标下中国碳捕集利用与封存技术应用前景[J].可持续发展经济导刊,2020,(12):22-24.ZHANG Xian.The application prospect of CCUS in China under the target of carbon neutrality[J].China Sustainability Tribune,2020,(12):22-24.
-
[7] 朱梓杰.浅议国际石油贸易与中国石油进口的优化路径[J].中国商论,2020,(17):1-2.ZHU Zijie.A brief discussion on the optimization path of interna⁃ tional oil trade and China’s oil import[J].China Journal of Com⁃ merce,2020,(17):1-2.
-
[8] KUMAR S,MANDAL A.A comprehensive review on chemically enhanced water alternating gas/CO2(CEWAG)injection for en⁃ hanced oil recovery[J].Journal of Petroleum Science and Engi⁃ neering,2017,157:696-715.
-
[9] SUN Xindi,BAI Baojun,LONG Yifu,et al.A comprehensive re⁃ view of hydrogel performance under CO2 conditions for confor⁃ mance control[J].Journal of Petroleum Science and Engineering,2019,185:106662.
-
[10] FARAJZADEH R,ANDRIANOV A,KRASTEV R,et al.Foam-oil interaction in porous media:Implications for foam assisted en⁃ hanced oil recovery[J].Advances in Colloid and Interface Sci⁃ ence,2012,183-184:1-13.
-
[11] 高树生,胡志明,侯吉瑞,等.低渗透油藏二氧化碳驱油防窜实验研究[J].特种油气藏,2013,20(6):105-108.GAO Shusheng,HU Zhiming,HOU Jirui,et al.Experimental study on anti-channeling during CO2 flooding for low permeabili⁃ ty reservoirs[J].Special Oil & Gas Reservoirs,2013,20(6):105-108.
-
[12] 刘向斌.大庆榆树林油田树101区块二氧化碳驱封窜技术研究 [D].杭州:浙江大学,2012.LIU Xiangbin.Control gas breakthrough for CO2 drive reservoir in Yushulin oilfield[D].Hangzhou:Zhejiang University,2012.
-
[13] 王海栋.CO2驱气窜机理及封窜技术研究[D].大庆:东北石油大学,2017.WANG Haidong.Study on the gas channeling mechanism and sealing technology of CO2 flooding[D].Daqing:Northeast Petro⁃ leum University,2017.
-
[14] 张世明.低渗透油藏CO2驱气窜通道识别方法[J].油气地质与采收率,2020,27(1):101-106.ZHANG Shiming.Study on identification method for gas channel⁃ ing of CO2 flooding in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):101-106.
-
[15] BAI Baojun,SUN Xindi.Development of swelling-rate controlla⁃ ble particle gels to control the conformance of CO2 flooding[C].SPE Improved Oil Recovery Conference,Tulsa,OK,USA,18-22 April2020,200339-MS.
-
[16] 李宪文,侯雨庭,古永红,等.白云岩储层酸蚀裂缝导流能力实验研究[J].油气地质与采收率,2021,28(1):88-94.LI Xianwen,HOU Yuting,GU Yonghong,et al.Experimental study on conductivity of acid etched fractures in dolomite reser⁃ voirs[J].Petroleum Geology and Recovery Efficiency,2021,28(1):88-94.
-
[17] 王建波,高云丛,王科战.腰英台特低渗透油藏CO2驱油井见气规律研究[J].断块油气田,2013,20(1):118-122.WANG Jianbo,GAO Yuncong,WANG Kezhan.Law of gas break⁃ through on CO2 flooding well in ultra-lower permeability reservoir of Yao Yingtai Oilfield[J].Fault-Block Oil and Gas Field,2013,20(1):118-122.
-
[18] 汤勇,廖松林,雷欣慧,等.黄3区低渗透裂缝性油藏提高 CO2 驱波及对策研究[J].油气藏评价与开发,2019,9(3):9-13.TANG Yong,LIAO Songlin,LEI Xinhui,et al.Study on improving the sweep efficiency of CO2 flooding in low permeability fractured reservoirs in Huang-3 block[J].Reservoir Evaluation and Devel⁃ opment,2019,9(3):9-13.
-
[19] 陈祖华,汤勇,王海妹,等.CO2驱开发后期防气窜综合治理方法研究[J].岩性油气藏,2014,26(5):102-106,123.CHEN Zuhua,TANG Yong,WANG Haimei,et al.Comprehensive treatment of gas channeling at the later stage of CO2 flooding[J].Lithologic Reservoirs,2014,26(5):102-106,123.
-
[20] 戴明利,魏发林,卢拥军,等.一种新型的 CO2响应性凝胶封窜体系[J].石油钻采工艺,2020,42(6):772-778.DAI Mingli,WEI Falin,LU Yongjun,et al.A new type of CO2 re⁃ sponsive gel based channeling blocking system[J].Oil Drilling & Production Technology,2020,42(6):772-778.
-
[21] 王明梅,常志东,习海玲,等.水基泡沫的稳定性评价技术及影响因素研究进展[J].化工进展,2005,24(7):723-728.WANG Mingmei,CHANG Zhidong,XI Hailing,et al.Advances of research and measurement of stability of aqueous foam[J].Chemi⁃ cal Industry and Engineering Progress,2005,24(7):723-728.
-
[22] 雷欣慧,郑自刚,余光明,等.特低渗油藏水驱后二氧化碳气水交替驱见效特征[J].特种油气藏,2020,27(5):113-117.LEI Xinhui,ZHENG Zigang,YU Guangming,et al.Response characteristics of gas-water alternate flooding with CO2 after wa⁃ ter flooding in ultra-low permeability reservoirs[J].Special Oil & Gas Reservoirs,2020,27(5):113-117.
-
[23] 张艳芳,罗跃,张建国,等.弱凝胶驱油体系的研究进展[J].精细石油化工进展,2003,4(6):45-48.ZHANG Yanfang,LUO Yue,ZHANG Jianguo,et al.Development in weak gel oil-displacing system[J].Advances in Fine Petro⁃ chemicals,2003,4(6):45-48.
-
[24] 李洪玺,刘全稳,王健,等.弱凝胶流动规律及其提高采收率机理新认识[J].油气地质与采收率,2006,13(4):85-87.LI Hongxi,LIU Quanwen,WANG Jian,et al.Flow regularity and new knowledge of enhancing recovery mechanism of weak gel[J].Petroleum Geology and Recovery Efficiency,2006,13(4):85-87.
-
[25] 马莹,张恒,苑世领.部分水解的预交联凝胶型聚丙烯酰胺的水化层结构[J].高等学校化学学报,2015,36(2):386-394.MA Ying,ZHANG Heng,YUAN Shiling.Hydration structure of partially hydrolyzed preformed particle gel[J].Chemical Journal of Chinese Universities,2015,36(2):386-394.
-
[26] BAI Baojun,HUANG Fusheng,LIU Yuzhang,et al.Case study on prefromed particle gel for in-depth fluid diversion[C].Tulsa:SPE Symposium on Improved Oil Recovery,2008.
-
[27] 彭浩.低渗透油藏注 CO2驱气窜控制方法研究[D].北京:中国石油大学(北京),2018.PENG Hao.Research on methods of anti-channeling of CO2-flooding in low-permeability reservoirs[D].Beijing:China Univer⁃ sity of Petroleum(Beijing),2018.
-
[28] HILD G P,WACKOWSKI R K.Reservoir polymer gel treatments to improve miscible CO2 flood[J].SPE Reservoir Evaluation & En⁃ gineering,1999,2(2):196-204.
-
[29] SYED A,PANTIN B,DURUCAN S,et al.The use of polymer-gel solutions for remediation of potential CO2 leakage from storage res⁃ ervoirs[J].Energy Procedia,2014,63:4 638-4 645.
-
[30] LI Dexiang,ZHANG Liang,LIU Yanmin,et al.CO2-triggered gela⁃ tion for mobility control and channeling blocking during CO2 flooding processes[J].Petroleum Science,2016,13(2):247-258.
-
[31] AL-ALI A H,SCHECHTER D S,LANE R H.Application of poly⁃ mer gels as conformance control agents for carbon dioxide EOR WAG floods[C].SPE 164096-MS,2013.
-
[32] SUN Xindi,BAI Baojun,ALHURAISHAWY A K,et al.Under⁃ standing the plugging performance of HPAM-Cr(III)polymer gel for CO2 conformance control[C].Carbon Management Technology Conference,Houston,Texas,USA,July 2019,CMTC-556840-MS.
-
[33] BRATTEKÅS B,SERIGHT R,ERSLAND G.Water leakoff during gel placement in fractures:Extension to oil-saturated porous me⁃ dia[J].SPE Production & Operations,2020,35(2):202-213.
-
[34] 邵明鲁,岳湘安,贺杰.微囊引发剂控制聚合凝胶体系成胶实验研究[J].油气藏评价与开发,2020,10(6):33-39.SHAO Minglu,YUE Xiang’an,HE Jie.Gelation studies of poly⁃ meric gel system based on microcapsule initiator[J].Reservoir Evaluation and Development,2020,10(6):33-39.
-
[35] 王飞.深部调驱用凝胶颗粒与孔喉适应性评价[J].油气地质与采收率,2020,27(3):100-105.WANG Fei.Adaptability evaluation of gel particles and pore throat for deep profile control[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(3):100-105.
-
[36] BAI Baojun,LI Liangxiong,LIU Yuzhang,et al.Preformed particle gel for conformance control:Factors affecting its properties and applications[J].SPE Reservoir Evaluation & Engineering,2007,10(4):415-422.
-
[37] 于萌,铁磊磊,张博,等.预交联凝胶调驱剂的研究现状与应用进展[J].合成化学,2017,25(7):623-628.YU Meng,TIE Leilei,ZHANG Bo,et al.Research progress and applications of preformed particle gel[J].Chinese Journal of Syn⁃ thetic Chemistry,2017,25(7):623-628.
-
[38] LIU Yuzhang,BAI Baojun,SHULER P J.Application and develop⁃ ment of chemical-based conformance control treatments in China Oilfields[C].SPE/DOE Symposium on Improved Oil Recovery 99641-MS,2006.
-
[39] BAI Baojun,LIU Yuzhang,COSTE J P,et al.Preformed particle gel for conformance control:Transport mechanism through porous media[J].SPE Reservoir Evaluation & Engineering,2007,10(2):176-184.
-
[40] ZHOU Bobo,KANG Wanli,YANG Hongbin,et al.Preparation and properties of an acid-resistant preformed particle gel for con⁃ formance control[J].Journal of Petroleum Science and Engineer⁃ ing,2021,197:107964.
-
[41] PU Wanfen,DU Daijun,FAN Huancai,et al.CO2-responsive pre⁃ formed gel particles with interpenetrating networks for controlling CO2 breakthrough in tight reservoirs[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,613:126065.
-
[42] 唐孝芬,刘玉章,刘戈辉,等.预交联凝胶颗粒调剖剂性能评价方法[J].石油钻采工艺,2004,26(4):72-75,85.TANG Xiaofen,LIU Yuzhang,LIU Gehui,et al.Character evalua⁃ tion method for profile modification of pre-crosslinked gel grain [J].Oil Drilling & Production Technology,2004,26(4):72-75,85.
-
[43] 于龙,李亚军,宫厚健,等.支化预交联凝胶颗粒封堵性能与调剖能力评价[J].油气地质与采收率,2015,22(5):107-112.YU Long,LI Yajun,GONG Houjian,et al.Evaluation on the plug⁃ ging performance and profile control ability of the branched-pre⁃ formed particle gel[J].Petroleum Geology and Recovery Efficien⁃ cy,2015,22(5):107-112.
-
[44] ZHAO Fenglan,HAO Hongda,HOU Jirui,et al.CO2 mobility con⁃ trol and sweep efficiency improvement using starch gel or ethyl⁃ enediamine in ultra-low permeability oil layers with different types of heterogeneity[J].Journal of Petroleum Science and Engi⁃ neering,2015,133:52-65.
-
[45] 韦琦.特低渗油藏 CO2驱气窜规律分析与工艺对策研究[D].北京:中国石油大学(北京),2018.WEI Qi.Study of gas channeling law and injection method for CO2 flooding in ultra-low permeability reservoirs[D].Beijing:China University of Petroleum(Beijing),2018.
-
[46] 田中原,曹伟佳,冯时男,等.硅酸钙无机凝胶配方优选及凝胶的封堵和液流转向效果评价[J].大庆石油地质与开发,2019,38(3):104-110.TIAN Zhongyuan,CAO Weijia,FENG Shinan,et al.Optimization of the calcium-silicate inorganic gel formulation and evaluation of its plugging and flow diversion effects[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(3):104-110.
-
[47] 邵明鲁,岳湘安,贺杰,等.基于 SR&NI ATRP引发机理延缓就地聚合凝胶成胶时间[J].油气地质与采收率,2020,27(2):125-130.SHAO Minglu,YUE Xiang’an,HE Jie,et al.Delaying gelation time of in-situ polymerization gel system based on SR & NI ATRP initiation mechanism[J].Petroleum Geology and Recovery Efficiency,2020,27(2):125-130.
-
[48] 赵凤兰,吕春阳,侯吉瑞,等.改性淀粉凝胶-泡沫复合调驱技术可行性及调剖体系定位位置优化[J].油田化学,2016,33(3):425-430.ZHAO Fenglan,LÜ Chunyang,HOU Jirui,et al.Feasibility of modified starch gel-foam composite oil displacement technology and position optimization of profile control system[J].Oilfield Chemistry,2016,33(3):425-430.
-
[49] ZHAO Fenglan,WANG Peng,HUANG Shijun,et al.Performance and applicable limits of multi-stage gas channeling control system for CO2 flooding in ultra-low permeability reservoirs[J].Journal of Petroleum Science and Engineering,2020,192:107336.
-
[50] 鲁国用.致密砂岩油藏 CO2驱两级封窜技术适应性实验研究 [D].北京:中国石油大学(北京),2019.LU Guoyong.Experimental study on adaptability of two-stage channeling sealing technology for CO2 flooding in tight sandstone reservoirs[D].Beijing:China University of Petroleum(Beijing),2019.
-
[51] 王维波,余华贵,杨红,等.低渗透裂缝性油藏 CO2驱两级封窜驱油效果研究[J].油田化学,2017,34(1):69-73.WANG Weibo,YU Huagui,YANG Hong,et al.Effect of twostage sealing gas channeling and flooding in low permeability frac⁃ ture reservoirs during CO2 flooding[J].Oilfield Chemistry,2017,34(1):69-73.
-
[52] HAO Hongda,HOU Jirui,ZHAO Fenglan,et al.Gas channeling control during CO2 immiscible flooding in 3D radial flow model with complex fractures and heterogeneity[J].Journal of Petroleum Science and Engineering,2016,146:890-901.
-
[53] SONG Zhaojie,HOU Jirui,LIU Xiaochun,et al.Conformance con⁃ trol for CO2-EOR in naturally fractured low permeability oil reser⁃ voirs[J].Journal of Petroleum Science and Engineering,2018,166:225-234.
-
[54] XU Ting,WEI Yi,MA Tao.Experiment and simulation of gas channeling control technique during CO2 flooding in normal pres⁃ sure tight oil reservoir of South Ordos Basin[C].Abu Dhabi Inter⁃ national Petroleum Exhibition & Conference203153-MS,2020.
-
[55] ROMERO-ZERON L,KANTZAS A.Influence of wettability on foamed gel mobility control performance in unconsolidated porous media[J].Journal of Canadian Petroleum Technology,2006,45(2):51-61.
-
[56] ROMERO-ZERON L,KANTZAS A.The effect of wettability and pore geometry on foamed-gel-blockage performance[J].SPE Res⁃ ervoir Evaluation & Engineering,2007,10(2):150-163.
-
[57] 刘向斌.聚合物凝胶在多孔介质中封堵效果实验[J].大庆石油地质与开发,2020,39(4):106-112.LIU Xiangbin.Experiment on the plugged effects of the polymer gel in the porous media[J].Petroleum Geology & Oilfield Devel⁃opment in Daqing,2020,39(4):106-112.
-
[58] 罗文利,何楚琦,冯利娟,等.高稳定性泡沫凝胶研制及性能评价[J].石油化工高等学校学报,2018,31(3):28-34.LUO Wenli,HE Chuqi,FENG Lijuan,et al.Study and evaluation of high stability foamed gel[J].Journal of Petrochemical Universi⁃ ties,2018,31(3):28-34.
-
[59] 陈启斌,马宝歧,倪炳华.泡沫凝胶性质的几种影响因素[J].华东理工大学学报:自然科学版,2007,33(1):71-74,119.CHEN Qibin,MA Baoqi,NI Binghua.Effects of several factors on the properties of a foamed gel[J].Journal of East China University of Science and Technology:Natural Science Edition,2007,33(1):71-74,119.
-
[60] SCHRAMM L L,KUTAY S M,MIKULA R J,et al.The morpholo⁃ gy of non-equilibrium foam and gelled foam lamellae in porous media[J].Journal of Petroleum Science and Engineering,1999,23(2):117-132.
-
[61] 杨浩,陈伟,邓军,等.泡沫分流特性研究[J].石油钻采工艺,2010,32(3):94-98.YANG Hao,CHEN Wei,DENG Jun,et al.Property study of foam divided-flow[J].Oil Drilling & Production Technology,2010,32(3):94-98.
-
[62] 许丹.泡沫凝胶调剖技术在超稠油油藏研究与应用[J].当代化工,2011,40(11):1 163-1 165.XU Dan.Research on the foamed gel profile control technique and its application in extra-heavy oil reservoirs[J].Contemporary Chemical Industry,2011,40(11):1 163-1 165.
-
[63] 程利民.无机凝胶泡沫的研制及其应用性能评价[D].青岛:中国石油大学(华东),2014.CHENG Limin.Development of inorganic gelled foam and evalua⁃ tion of its application characteristics[D].Qingdao:China Univer⁃ sity of Petroleum(East China),2014.
-
[64] 王继刚,王洪刚.新型泡沫调剖剂的室内研究与评价[J].科学技术与工程,2009,9(20):6 159-6 162.WANG Jigang,WANG Honggang.Synthesis and evaluation of a new type foam profile control agent[J].Science Technology and Engineering,2009,9(20):6 159-6 162.
-
[65] 罗智忆.耐温泡沫凝胶的研制及性能评价[D].北京:中国石油大学(北京),2019.LUO Zhiyi.Preparation and evaluation of temperature resistant foam gel[D].Beijing:China University of Petroleum(Beijing),2019.
-
[66] QU Ming,HOU Jirui,WANG Qian,et al.Modified starch gel foam:Research and application in naturally fractured-vuggy car⁃ bonate reservoir[C].Abu Dhabi International Petroleum Exhibi⁃ tion & Conference 188812-MS,2017.
-
[67] 张小琴,王宇池,王永青,等.减缓低渗透储层贾敏效应的方法研究[J].合成材料老化与应用,2013,42(2):28-32.ZHANG Xiaoqin,WANG Yuchi,WANG Yongqing,et al.Study on the method of reducing Jamin effect in the low permeability oil field[J].Synthetic Materials Aging and Application,2013,42(2):28-32.
-
[68] 张俊瑾,李遵照,蒋明龙,等.低渗透油藏调驱用凝胶泡沫体系的应用[J].石油化工,2018,47(2):181-185.ZHANG Junjin,LI Zunzhao,JIANG Minglong,et al.Oil displace⁃ ment-gel foam system applying to low permeable reservoir[J].Petrochemical Technology,2018,47(2):181-185.
-
[69] 杨子浩,罗智忆,林梅钦,等.改善低渗油藏二氧化碳气驱油效果的耐温泡沫凝胶体系的构建[J].油田化学,2020,37(1):86-92.YANG Zihao,LUO Zhiyi,LIN Meiqin,et al.Preparation of tem⁃ perature resistant foam gel system for improving CO2 gas flooding effect in low permeability reservoir[J].Oilfield Chemistry,2020,37(1):86-92.
-
[70] ZHAO Guang,DAI Caili,ZHANG Yanhui,et al.Enhanced foam stability by adding comb polymer gel for in-depth profile control in high temperature reservoirs[J].Colloids and Surfaces A:Physi⁃ cochemical and Engineering Aspects,2015,482:115-124.
-
[71] QI Ning,LI Boyang,CHEN Guobin,et al.Heat-generating ex⁃ pandable foamed gel used for water plugging in low-temperature oil reservoirs[J].Energy & Fuels,2018,32(2):1 126-1 131.
-
[72] 关辉.水泥封堵封窜技术探索[J].化学工程与装备,2018,(1):138-140.GUAN Hui.Exploration of cement plugging and channeling tech⁃ nology[J].Chemical Engineering & Equipment,2018,(1):138-140.
-
[73] 何光中,王研,张兴福,等.长井段水泥封窜技术研究[J].大庆石油地质与开发,2002,21(3):52-54.HE Guangzhong,WANG Yan,ZHANG Xingfu,et al.Research on plugging long channel wells with cement[J].Petroleum Geology & Oilfield Development in Daqing,2002,21(3):52-54.
-
[74] 路万彩,邹连波,杨鲁济.超细水泥封堵封窜配套工艺技术的应用[J].内江科技,2006,(1):148.LU Wancai,ZOU Lianbo,YANG Luji.Application of superfine ce⁃ ment plugging and channeling supporting techniques[J].Neijiang Technology,2006,(1):148.
-
[75] 夏长淮,周海彬,刘强鸿,等.多层段水泥封窜及配套工艺技术 [J].油气田地面工程,2010,29(5):39-40.XIA Changhuai,ZHOU Haibin,LIU Qianghong,et al.Technology of multi-layer cement channeling and matching process[J].OilGas Field Surface Engineering,2010,29(5):39-40.
-
[76] 杨雄.吐哈油田油水井水泥封堵工艺的优化与应用[D].青岛:中国石油大学(华东),2014.YANG Xiong.Optimization and application of oil-water well ce⁃ ment seal technique in Tuha Oilfield[D].Qingdao:China Univer⁃ sity of Petroleum(East China),2014.
-
[77] 张春栋.水泥封堵封窜技术探索与应用[J].内蒙古石油化工,2015,41(5):107-108.ZHANG Chundong.Exploration and application of cement plug⁃ ging and channeling technology[J].Inner Mongolia Petrochemical Industry,2015,41(5):107-108.
-
[78] 陈世军,赵康,常笃.油井堵水用高强度酚醛树脂预聚体封堵剂的合成[J].合成树脂及塑料,2015,32(4):30-33.CHEN Shijun,ZHAO Kang,CHANG Du.Synthesis of phenolic resin prepolymer plugging agent with high strength for oil well plugging[J].China Synthetic Resin and Plastics,2015,32(4):30-33.
-
[79] 葛际江,郑伟杰,魏开鹏,等.红河油藏封堵裂缝用酚醛冻胶的制备与性能评价[J].油田化学,2020,37(3):432-437.GE Jijiang,ZHENG Weijie,WEI Kaipeng,et al.Preparation and performance evaluation of phenolic gel using for plugging cracks in Honghe reservoir[J].Oilfield Chemistry,2020,37(3):432-437.
-
[80] 李超群,王增宝,闫国峰,等.耐温抗盐型HPAM/酚醛树脂冻胶体系研究[J].精细石油化工进展,2012,13(1):4-7.LI Chaoqun,WANG Zengbao,YAN Guofeng,et al.Study of HPAM/phenolic resin gelling fluid with heat resistance and salt tolerance[J].Advances in Fine Petrochemicals,2012,13(1):4-7.
-
[81] 刘刚,曹红雨.酚醛树脂在油田化学中的应用[J].中国新技术新产品,2012,(10):142.LIU Gang,CAO Hongyu.Application of phenolic resin in oilfield chemistry[J].New Technology & New Products of China,2012,(10):142.
-
[82] 余吉良,谢刚,南庆义,等.改性酚醛树脂封窜堵漏剂的性能及应用[J].油田化学,2005,22(4):299-301.YU Jiliang,XIE Gang,NAN Qingyi,et al.Performance properties and uses of modified phenol-formaldehyde resin sealant for chan⁃ nelling/leakage blockage[J].Oilfield Chemistry,2005,22(4):299-301.
-
[83] 刘必心,侯吉瑞,李本高,等.二氧化碳驱特低渗油藏的封窜体系性能评价[J].特种油气藏,2014,21(3):128-131.LIU Bixin,HOU Jirui,LI Bengao,et al.Performance evaluation of channeling blockage system for ultra-low permeability oil reser⁃ voirs with CO2 flooding[J].Special Oil & Gas Reservoirs,2014,21(3):128-131.
-
[84] 刘向斌.控制二氧化碳气窜泡沫配方体系的研制与应用—— 以宋芳屯油田芳48断块为例[J].油气地质与采收率,2011,18(5):51-53.LIU Xiangbin.Study and application of foam formular controlling CO2 channeling-case of Fang 48 block,Songfangtun oilfield [J].Petroleum Geology and Recovery Efficiency,2011,18(5):51-53.
-
[85] 邵立民.耐温抗盐CO2驱油泡沫封窜体系实验研究[J].精细石油化工进展,2016,17(2):38-42.SHAO Limin.Experimental study on heat resistant and salt resis⁃ tant foam gas channeling blocking system for CO2 flooding technology[J].Advances in Fine Petrochemicals,2016,17(2):38-42.
-
[86] 王庆,杨昌华,林伟民,等.中原油田耐温抗盐二氧化碳泡沫控制气窜研究[J].油气地质与采收率,2013,20(4):75-78.WANG Qing,YANG Changhua,LIN Weimin,et al.Study on gas channeling control by temperature and salt resistance CO2 foam,Zhongyuan oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2013,20(4):75-78.
-
摘要
由于油气间黏度差异大和油藏的非均质性,在CO2驱油过程会发生气窜从而降低CO2的波及效率。凝胶体系是CO2驱油过程中的有效封窜剂,在中外都有着广泛的应用。介绍了延缓交联聚丙烯酰胺凝胶、预交联凝胶颗粒、两级封窜凝胶体系、泡沫凝胶这4种凝胶体系的封窜机理以及研究进展。延缓交联丙烯酰胺凝胶流动性强,价格低廉,但是成胶强度、成胶时间不可控并且不耐酸性腐蚀。预交联凝胶颗粒成胶时间、成胶强度可控且耐高温耐高矿化度,但是粒度较大,无法进入渗透率较低的地层。两级封窜凝胶体系结合了刚性凝胶与小分子的优势,能够同时封堵不同尺寸的裂缝,但是对于超过特定尺寸的裂缝,封堵效果将会下降。泡沫凝胶对地层伤害小,但是不耐高温。目前,用于CO2驱气窜的凝胶体系存在着不耐酸性腐蚀的问题,如何使长期处于CO2酸性环境下的凝胶体系保持稳定是未来的研究方向。
Abstract
Due to the large viscosity difference between oil and gas and the heterogeneity of oil reservoirs,gas channeling occurs during CO2 flooding,reducing the sweep efficiency of CO2. Gel system is an effective channeling blocking agent for the process of CO2 flooding and is widely used in China and abroad. This paper outlines the channeling blocking mecha- nisms and research progress of four kinds of gel systems:retardant cross-linked polyacrylamide gels,pre-crosslinked gel particles,two-stage channeling blocking gel systems,and foam gels. Retardant cross-linked acrylamide gels have good mo- bility and low price,although the gel strength and gelling time are uncontrollable. More importantly,they are not resistant to acid corrosion. Pre-crosslinked gel particles enjoy controllable gelling time and gel strength and are resistant to high tem- perature and high salinity. Nevertheless,their large particle size prevents them from entering formations with low permeabil- ity. The two-stage channeling blocking gel systems,combining the advantages of rigid gels with those of small molecules, can simultaneously block fractures of different sizes. However,their blocking effect decreases when fractures exceed a cer- tain size. Foam gels cause little damage to the formation,although they are not resistant to high temperatures. At present, the gel systems used for gas channeling treatment during CO2 flooding have the problem of irresistibility to acid corrosion.Keeping gel systems in CO2 acid environments for a long time stable is the future research direction.
Keywords
CCUS ; CO2 flooding ; gas channeling ; channeling blocking agent ; gel