en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张志超(1987—),男,黑龙江安达人,工程师,博士,从事CO2地质埋存驱油研究工作。E-mail:1209712605@qq.com。

通讯作者:

柏明星(1984—),男,黑龙江大庆人,教授,博士。E-mail:bai510714@163.com。

中图分类号:TE85

文献标识码:A

文章编号:1009-9603(2023)02-0135-09

DOI:10.13673/j.cnki.cn37-1359/te.202207029

参考文献 1
李阳.低渗透油藏CO2驱提高采收率技术进展及展望[J].油气地质与采收率,2020,27(1):1-10.LI Yang.Technical advancement and prospect for CO2 flooding en⁃ hanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.
参考文献 2
AMINU M D,NABAVI S A,ROCHELLE C A,et al.A review of developments in carbon dioxide storage[J].Applied Energy,2017,208:1 389-1 419.
参考文献 3
DENG H,BIELICKI J M,OPPENHEIMER M,et al.Leakage risks of geologic CO2 storage and the impacts on the global energy sys⁃ tem and climate change mitigation[J].Climatic Change,2017,144(2):151-163.
参考文献 4
BLANCO H,FAAIJ A.A review at the role of storage in energy systems with a focus on power to gas and long-term storage[J].Re⁃ newable and Sustainable Energy Reviews,2018,81(Part1):1 049-1 086.
参考文献 5
GARCÍA J H,TORVANGER A.Carbon leakage from geological storage sites:implications for carbon trading[J].Energy Policy,2019,127:320-329.
参考文献 6
IGLAUER S.Optimum storage depths for structural CO2 trapping [J].International Journal of Greenhouse Gas Control,2018,77:82-87.
参考文献 7
秦积舜,李永亮,吴德斌,等.CCUS 全球进展与中国对策建议 [J].油气地质与采收率,2020,27(1):20-28.QIN Jishun,LI Yongliang,WU Debin,et al.CCUS global progress and China’s policy suggestions[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(1):20-28.
参考文献 8
DIAO Yujie,ZHANG Senqi,WANG Yongsheng,et al.Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS demonstration project as a case study[J].Environmental Earth Sciences,2015,73(11):7 571-7 586.
参考文献 9
GAN Manguang,NGUYEN M C,ZHANG Liwei,et al.Impact of reservoir parameters and wellbore permeability uncertainties on CO2 and brine leakage potential at the Shenhua CO2 Storage Site,China[J].International Journal of Greenhouse Gas Control,2021,111:103443.
参考文献 10
柏明星,张志超,白华明,等.二氧化碳地质封存系统泄漏风险研究进展[J].特种油气藏,2022,29(4):1-11.BAI Mingxing,ZHANG Zhichao,BAI Huaming,et al.Progress in leakage risk study of CO2 geosequestration system[J].Special Oil & Gas Reservoirs,2022,29(4):1-11.
参考文献 11
GHOLAMI R,RAZA A,IGLAUER S.Leakage risk assessment of a CO2 storage site:a review[J].Earth-Science Reviews,2021,223:103849.
参考文献 12
GUYANT E,HAN W S,KIM K Y,et al.Leakage and pressuriza⁃ tion risk assessment of CO2 reservoirs:a metamodeling modeling approach[J].International Journal of Greenhouse Gas Control,2016,54(Part1):345-361.
参考文献 13
AMINU M D,NABAVI S A,ROCHELLE C A,et al.A review of developments in carbon dioxide storage[J].Applied Energy,2017,208:1 389-1 419.
参考文献 14
BIELICKI J M,POLLAK M F,FITTS J P,et al.Causes and finan⁃ cial consequences of geologic CO2 storage reservoir leakage and interference with other subsurface resources[J].International Jour⁃ nal of Greenhouse Gas Control,2014,20:272-284.
参考文献 15
BIELICKI J M,POLLAK M F,DENG Hang,et al.The leakage risk monetization model for geologic CO2 storage[J].Environmen⁃ tal Science & Technology,2016,50(10):4 923-4 931.
参考文献 16
高冉,吕成远,伦增珉,等.二氧化碳驱替与埋存一体化数值模拟[J].特种油气藏,2021,28(2):102-107.GAO Ran,LÜ Chengyuan,LUN Zengmin,et al.Integrated numeri⁃ cal simulation of carbon dioxide displacement and sequestration [J].Special Oil & Gas Reservoirs,2021,28(2):102-107.
参考文献 17
闫方平,郭永伟,曹梦菁,等.异常高压致密油藏 CO2吞吐参数优化及微观孔隙动用特征:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].大庆石油地质与开发,2021,40(6):158-166.YAN Fangping,GUO Yongwei,CAO Mengjing,et al.Optimization of CO2 huff-puff parameters and micro-pore producing character⁃ istics of the tight oil reservoirs with abnormal high pressure:tak⁃ ing Lucaogou Formation in Junggar-Basin Jimsar Sag as an exam⁃ple[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(6):158-166.
参考文献 18
张志超,柏明星,陈巧珍.二氧化碳埋存井筒的腐蚀行为影响因素[J].腐蚀与防护,2021,42(4):54-57,61.ZHANG Zhichao,BAI Mingxing,CHEN Qiaozhen.Influencing factors of corrosion behavior of carbon dioxide storage wellbore [J].Corrosion and Protection,2021,42(4):54-57,61.
参考文献 19
PAWAR R J,BROMHAL G S,CAREY J W,et al.Recent advanc⁃ es in risk assessment and risk management of geologic CO2 storage [J].International Journal of Greenhouse Gas Control,2015,40(5):292-311.
参考文献 20
柏明星,REINICKE K M,艾池,等.二氧化碳地质存储过程中沿井筒渗漏定性分析[J].地质论评,2013,59(1):107-112.BAI Mingxing,REINICKE K M,AI Chi,et al.A qualitative analy⁃ sis of CO2 leakage along abandoned well during CO2 sequestration [J].Geological Review,2013,59(1):107-112.
参考文献 21
曾德智,喻智明,何奇垚,等.页岩气井环空带压安全风险定量评价方法研究[J].西南石油大学学报:自然科学版,2019,41(6):146-154.ZENG Dezhi,YU Zhiming,HE Qiyao,et al.Research on safety as⁃ sessment technology of sustained casing pressure in shale gas[J].Journal of Southwest Petroleum University:Science & Technology Edition,2019,41(6):146-154.
参考文献 22
张智,周琛洋,王汉,等.气井环空带压临界控制值研究[J].中国安全生产科学技术,2017,13(7):149-155.ZHANG Zhi,ZHOU Chenyang,WANG Han,et al.Research on critical control value of sustained annular pressure for gas well [J].Journal of Safety Science and Technology,2017,13(7):149-155.
参考文献 23
林潼,王孝明,张璐,等.盖层厚度对天然气封闭能力的实验分析[J].天然气地球科学,2019,30(3):322-330.LIN Tong,WANG Xiaoming,ZHANG Lu,et al.Experimental analysis of the effect of caprock thickness on sealed natural gas [J].Natural Gas Geoscience,2019,30(3):322-330.
参考文献 24
ISHIDA T,CHEN Youqing,BENNOUR Z,et al.Features of CO2 fracturing deduced from acoustic emission and microscopy in labo⁃ ratory experiments[J].Journal of Geophysical Research:Solid Earth,2016,121(11):8 080-8 098.
参考文献 25
CHEN Youqing,NAGAYA Y,ISHIDA T.Observations of frac⁃ tures induced by hydraulic fracturing in anisotropic granite[J].Rock Mechanics and Rock Engineering,2015,48(4):1 455-1 461.
参考文献 26
JACKSON M D,YOSHIDA S,MUGGERIDGE A H,et al.Threedimensional reservoir characterization and flow simulation of het⁃ erolithic tidal sandstones[J].AAPG Bulletin,2005,89(4):507-528.
参考文献 27
张文涛.毛细管突破压力模拟实验及页岩封闭能力[J].石油实验地质,2018,40(4):577-582.ZHANG Wentao.Experimental study of the breakthrough pressure of capillaries and the sealing ability of shale[J].Petroleum Geolo⁃ gy and Experiment,2018,40(4):577-582.
参考文献 28
付广,董金梦,彭万涛.断盖配置渗漏与封闭转换时期的确定方法及其应用[J].沉积学报,2020,38(4):868-875.FU Guang,DONG Jinmeng,PENG Wantao.Determination method and application for the conversion period of fault-caprock config⁃ uration leakage and sealing[J].Acta Sedimentologica Sinica,2020,38(4):868-875.
参考文献 29
郎岳,朱思源.南堡凹陷馆陶组火山岩盖层封闭能力定量评价 [J].大庆石油地质与开发,2019,38(2):25-32.LANG Yue,ZHU Siyuan.Quantitative evaluation of the volcanic caprock sealing capacity for Guantao Formation in Nanpu Sag[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):25-32.
参考文献 30
TREMOSA J,MITO S,AUDIGANE P,et al.Experimental assess⁃ ment of well integrity for CO2 geological storage:a numerical study of the geochemical interactions between a CO2-brine mixture and a sandstone-cement-steel sample[J].Applied Geochemistry,2017,78(2):61-73.
参考文献 31
MS ELGENDY A,RICCI S,COJOCARIU E I,et al.A streamlined workflow from experimental analyses to dynamic geochemical modelling[C].Amsterdam:The SPE Europec featured at 82nd EAGE Conference and Exhibition,2021:1-18.
参考文献 32
XIAO Ting,XU Hao,MOODIE N,et al.Chemical-mechanical im⁃ pacts of CO2 intrusion into heterogeneous caprock[J].Water Re⁃ sources Research,2020,56(11):1-29.
参考文献 33
SAATY T L.Decision making with the analytic hierarchy process [J].International Journal of Services Sciences,2008,1(1):83-98.
参考文献 34
严康文,文怀军,郭晋宁,等.基于层次分析法的封盖层封盖能力定量评价[J].煤炭工程,2016,48(7):125-128.YAN Kangwen,WEN Huaijun,GUO Jinning,et al.Quantitative evaluation for cap capability of capping layer based on AHP[J].Coal Engineering,2016,48(7):125-128.
参考文献 35
CLAUDIO G,THOMAS G,ALFREDO B.Modeling of rocks and cement alteration due to CO2 injection in an exploited gas reservoir [J].Transport in Porous Media,2011,90:183-200.
参考文献 36
TAMBACH T J,KOENEN M,WASCH L J,et al.Geochemical evaluation of CO2 injection and containment in a depleted gas field [J].International Journal of Greenhouse Gas Control,2015,32:61-80.
参考文献 37
马东烨,陈宇航,王应斌,等.鄂尔多斯盆地东部上古生界盖层封闭性能评价[J].天然气地球科学,2021,32(11):1 673-1 684.MA Dongye,CHEN Yuhang,WANG Yingbin,et al.Sealing capa⁃ bility evaluation of the Upper Paleozoic cap rock in the eastern Ordos Basin[J].Natural Gas Geoscience,2021,32(11):1 673-1 684.
参考文献 38
贾瑞轩,孙灵辉,苏致新,等.二氧化碳吞吐致密油藏的可动用性[J].断块油气田,2020,27(4):504-508.JIA Ruixuan,SUN Linghui,SU Zhixin,et al.Availability of CO2 huff and puff in tight reservoir[J].Fault-Block Oil and Gas Field,2020,27(4):504-508.
目录contents

    摘要

    CO2地质封存是缓解温室效应的重要手段,而封存系统的泄漏风险评价是安全封存的基础。首先,综合分析影响 CO2地质封存系统泄漏的因素,认为诱发泄漏风险的原因主要是 CO2低温冷流体产生对井筒和盖层的交变应力和CO2-水-岩腐蚀反应综合作用下导致井筒和盖层的完整性失效。考虑多因素综合作用对CO2地质封存系统泄漏的影响,并基于模糊综合评价理论(FCE),建立了CO2泄漏风险因素间的层次关系模型,进行了CO2地质封存系统泄漏风险评价,其过程包括应用非线性正态隶属函数建立CO2泄漏风险因素对评语的隶属度矩阵,并应用层次分析方法构建泄漏风险影响因素间的比较矩阵,以获得泄漏风险因素的权重子集,并对给定实例CO2地质封存系统泄漏风险进行评价,进而得出所评价的CO2地质封存井筒当前处于泄漏低风险,盖层处于泄漏中风险,封存系统处于泄漏中风险。通过采集 CO2地质封存过程中泄漏风险影响因素的变化并进行模糊运算模型更新,可动态跟踪 CO2地质封存系统泄漏风险。

    Abstract

    Geological CO2 storage has been thought of as an important technical means for alleviating the greenhouse effect, and the leakage risk assessment of the storage system is the basis of safe storage. In this study,the influencing factors in the leakage of the geological CO2 storage system were comprehensively analyzed. It is believed that the leakage risk is mainly induced by the alternating stress on the wellbore and caprock produced by cryogenic fluids of CO2 and the integrity failure of the wellbore and caprock caused by the comprehensive action of CO2-water and rock corrosion reactions. Hence,the multi-factor influence on the leakage of the geological CO2 storage system was taken into account. Then,the fuzzy compre- hensive evaluation(FCE)theory was used to construct a model for the hierarchical relationships between factors leading to CO2 leakage risks,and the model was employed to assess the leakage risks of the geological CO2 storage system. Specifical- ly,the nonlinear normal membership function was applied to construct the membership matrix of the influencing factors with regard to comments. The analytic hierarchy process(AHP)was used to construct the comparison matrices between the influencing factors to obtain the weight subset of these influencing factors. In addition,a geological CO2 storage system was taken as an example for leakage risk assessment. It is concluded that the wellbore for geological CO2 storage faces a low risk of leakage while the cap rock and the storage system have a moderate leakage risk. Moreover,the leakage risk of the geologi- cal CO2 storage system can be dynamically tracked upon the collection of the changes of influencing factors in the process of CO2 storage for the update of the fuzzy calculation model.

  • CO2排放量日益增加造成的温室效应严重威胁着地球环境,导致全球气候的变化,如气温连年上升、冰川融化、森林大火等自然灾害[1]。据 AMINU 等统计,与工业革命时期大气中的 CO2质量浓度为 502.8 mg/m3相比,至 2030年大气中的 CO2质量浓度预计将增至约为 808.2 mg/m3 [2],2070年将达到峰值为933.8 mg/m3 [3]。在过去的120 a中,大气中高浓度的CO2导致全球气温上升了0.8℃[4]。为应对CO2排放产生的危害,CO2捕集与封存(CCS)被认为是一种有效的方法。根据 GARCÍA等预测,到 2100年通过 CCS技术进行 CO2埋存将有效控制全球平均气温上升幅度在 2℃以内[5]。CCS 是指将 CO2从工业或相关能源的集中排放源(水泥厂、钢铁厂、发电厂)中分离后注入地下深部适宜地层中,通过物理、化学等作用将 CO2长期储存于地下并与大气隔绝的过程[6]。而注入到地下封存的 CO2溶于地层水成酸性,改变了原始地下水-岩平衡环境,会使封存井筒和地层时刻经历着地应力-化学溶蚀等多场耦合作用[7-8]。此外,注入井筒中的 CO2低温流体在进入封存层过程中,也会使井筒和水泥环组合体产生交变应力和热应力作用,导致井筒套管和水泥环脱胶结形成 CO2泄漏通道[9-10]。CO2沿封存系统泄漏的另一个通道是盖层,当 CO2地质封存层的压力超过盖层抑制泄漏的门槛压力时,盖层将失去完整性成为 CO2的泄漏通道[11-12]。CO2沿盖层泄漏有 2 种方式:一种是封存层压力超过盖层的毛管力导致的渗漏,其泄漏量比较低,泄漏导致的危害程度也低;另一种是封存层的压力超过盖层破裂或断层开启压力,形成CO2高速泄漏通道,这种泄漏导致的危害较大,且很难有有效的措施对其进行治理,并严重影响 CO2地质封存系统的安全性[13]。为保证 CO2地质封存的安全性,应对封存系统的泄漏风险进行评价,判断泄漏类型和泄漏发生的危害性。而CO2地质封存系统泄漏事件的发生是由多种不同因素共同作用导致的,应用单一的理论函数无法进行统一的量化评价。因此,笔者通过对影响 CO2泄漏风险要素进行综合分析,并通过模糊综合评价的方法得出多因素综合作用下CO2地质封存系统泄漏风险的量化指标,旨在为 CO2地质封存系统泄漏风险预测提供一定的借鉴意义。

  • 1 CO2地质封存系统组成及泄漏风险影响因素

  • 1.1 CO2地质封存系统组成及泄漏机理

  • CO2地质封存系统结构模型如图1所示,其主要由封存层、盖层及沟通地表和封存层间的注入井筒组合体构成。CO2从注入井注入到封存层,气体沿水平方向运移同时受地下水浮力作用垂向向上运移,在地层中形成倒锥形气体埋存区域。CO2在封存层运移过程中与储层、盖层、断层、注入井筒组合体及地层咸水相互接触,诱发 CO2-水-岩反应和应力变化;且随着CO2注入埋存量的不断增加,封存系统所承受的压力、温度、力学、化学作用也在不断发生动态变化,当封存系统中一个结构单元的完整性被动态的应力和腐蚀作用破坏时,封存系统将出现气体泄漏通道,具有CO2泄漏风险。

  • 图1 CO2地质封存系统结构模型

  • Fig.1 Structural model of geological CO2 storage system

  • 1.2 CO2地质封存系统泄漏风险影响因素

  • CO2地质封存系统泄漏风险影响因素之间的层次关系模型如图2 所示,包括井筒完整性和盖层完整性。井筒完整性受封存井的固井质量、水泥环腐蚀、套管状况等因素的综合影响,导致井筒完整性失效,诱发井筒泄漏风险[14-16]。而封存井发生 CO2 泄漏最明显的标志体现在井筒环空压力泄压后,环空压力又快速恢复,表明井筒完整性缺失严重[17-18]。根据2016年API发布的API RP90-2《陆上油田环空压力管理推荐做法》[19-20],曾德智等考虑管柱、完井设备、井口装置和地层的承压能力,确定了封存井的环空带压上限[21-22]。此外,CO2-盐水多相流在地层压力和扩散双重作用下也会进入井筒组合体,对组合体腐蚀,加剧封存井的完整性缺失和 CO2的泄漏风险。

  • 图2 CO2地质封存系统泄漏风险影响因素之间的层次关系模型

  • Fig.2 Model for hierarchical relationships between influencing factors in leakage of geological CO2 storage system

  • 封存系统的盖层完整性对CO2泄漏风险的影响与破地压差、盖地比、断层封闭性、盖层厚度以及盖层腐蚀等因素有关。其中,破地压差是导致盖层泄漏的重要因素,当封存层的压力高于盖层毛管突破压力但低于盖层破裂压力时,气体会沿盖层发生渗漏。盖层的突破压力除与封存压力和盖层岩性等因素有关外,还与封存气体的种类有关。林潼等研究了 CH4,N2,CO2在 5 块白云岩和膏岩盖层岩心中的突破压力,发现 3 种气体在 2 种盖层中的突破压力由大至小均为 CH4,N2,CO2 [23]。出现不同盖层突破压力的本质是 CO2与盖层流体的界面张力小于 CH4和 N2与盖层流体的界面张力,导致 CO2更易突破盖层毛管力而发生气体渗流。而封存层压力过高会压裂盖层,造成 CO2快速泄漏。ISHIDA等对比油、水、超临界 CO2对花岗岩的压裂效果,发现超临界 CO2对花岗岩的压裂门限压力为水的 70%、油的 50%,且低黏度的超临界 CO2压裂可以形成更复杂的裂缝[24-25]

  • 盖地比是指纵向盖层中的泥岩厚度与盖层厚度的比值。盖地比越高,盖层的气体封闭能力越强。JACKSON 等基于对英格兰南部怀特岛下白垩统岩层平面和纵向的砂泥岩分布与层内流体流动能力研究,认为岩层内气体流动性与岩层内砂泥岩的分布和比例相关,并提出利用盖地比的阈值来表征盖层的气体封闭能力,认为其水平阈值为0.28,垂直阈值为0.50[26]

  • 在 CO2地质封存盖层内存在断裂构造时,盖层的气体封闭能力与断层的封闭性相关,一般用断层泥岩涂抹系数表征断层的气体封闭能力。泥岩涂抹系数为含有断层泥的断层长度与全部断层长度的比值,其值越高,断层的封闭性越好,防止 CO2突破的能力越强。

  • 而对于盖层厚度,一些学者认为盖层对 CO2气体封闭能力与盖层厚度无关,仅与盖层突破压力相关[27]。而付广等通过不同厚度盖层岩心突破实验发现,盖层厚度增加,突破压力和气体封闭能力均增加,从而增加了CO2气体封存系统的安全性[28-29]。 TREMOSA 等通过对盖层厚度和气体封闭能力关系的研究发现,盖层厚度增加表明盖层形成过程中沉积环境较稳定,平面上连续性好,被断层、裂缝破坏的概率较低,从而增加了盖层对 CO2气体封存的安全性[30]

  • CO2进入盖层孔隙中会引发盖层岩石矿物溶解和沉淀反应,MS ELGENDY 等应用多场耦合模拟技术对中东Turkey油藏泥岩盖层中的CO2腐蚀规律进行了研究,发现经过1 000 a封存,CO2的腐蚀并未对盖层孔隙度产生明显影响,表明 CO2腐蚀对盖层泄漏风险的影响较小[31]。XIAO 等也通过数值模拟方法研究了 CO2对页岩和泥灰岩组合盖层的腐蚀,研究结果表明 CO2腐蚀导致在 2种岩性的接触面上生成伊利石、石英、白云石和菱铁矿等沉淀,接触面处的孔隙度明显降低,盖层的密封性得到强化[32]

  • 2 CO2地质封存系统泄漏风险评价

  • 2.1 模糊风险评价原理

  • 导致CO2地质封存系统发生泄漏的影响因素较多,利用单一影响因素无法进行判断,因此,需建立 CO2地质封存系统泄漏风险影响因素集U,而通过多影响因素对封存系统发生泄漏的风险进行综合评价即为模糊综合评判:

  • U=u1,u2,u3,,um
    (1)
  • 在 CO2地质封存系统泄漏风险综合评价时,专家和行业工程师会根据相关经验将CO2地质封存系统泄漏风险的影响因素转化为相应的评语,构成封存系统泄漏风险的评语集V

  • V=v1,v2,v3,,vn
    (2)
  • 对于CO2地质封存系统泄漏风险的每一个影响因素ui都可以通过一个模糊映射f建立起UV的模糊映射关系 RfRf中的每一个元素 rij是影响因素集中因素 ui对于评语集 V 中评语 vn中第 j 个评语的隶属程度,而构成映射关系的fu)为 CO2地质封存系统泄漏风险影响因素对风险评语转化的隶属函数:

  • uf(u)=Rf=r11,r12,r13,,r1n,r2n,,rm1,rm2,rm3,,rmn
    (3)
  • 不同类型的泄漏风险影响因素对CO2地质封存系统泄漏风险的影响程度不同,因此需根据因素集中不同因素对封存系统泄漏风险的影响程度建立因素集 U 的权重集 A,权重集中的元素 am为单一风险影响因素对某一评语的相对重要程度:

  • A=a1,a2,a3,,am
    (4)
  • 因此,多因素影响下对 CO2地质封存系统泄漏风险的评价可以由一个模糊运算关系式来表达:

  • T(U)=AR=B=b1,b2,b3,,bn
    (5)
  • 2.2 泄漏风险影响因素隶属函数确定

  • 工程中多作用因素与评语之间进行模糊转化的常用函数主要有三角隶属函数、阶梯隶属函数、正态隶属函数和岭形隶属函数等,其中三角隶属函数、阶梯隶属函数主要描述影响因素与评语之间为线性的影响关系,正态隶属函数和岭形隶属函数描述影响因素与评语之间的模糊为非线性变化关系。分析CO2地质封存系统泄漏风险影响因素与泄漏风险之间的关系,并咨询相关专家,选择正态隶属函数作为影响因素隶属度变换的隶属函数:

  • r(u)=e(u-c)22σ2
    (6)
  • 对于包含影响因素端点值的因素值域区间,仅保留可以描述因素与风险之间相互作用关系的正态隶属函数的二分之一作为隶属度计算函数。

  • 分析图2 中 CO2地质封存系统泄漏影响因素 (套管状况、井筒环空压力升速、水泥环腐蚀和盖层腐蚀)参数变化与泄漏风险程度之间呈非线性正相关关系,应用正态隶属函数分别计算泄漏影响因素对风险评语集中评语的隶属度:

  • (7)
  • rzum=e-co-um22σm12cminumco, σm1=co-cmin3e-um-co22σm22coumcmax, σm2=cmax-co3
    (8)
  • (9)
  • 分析图2中 CO2地质封存系统泄漏风险影响因素(固井质量、破地压差、盖地比、断层封闭性、盖层厚度)与泄漏风险程度之间呈非线性负相关关系,则选取(9)式计算影响因素对低风险评语的隶属度,(8)式计算影响因素对中风险评语的隶属度, (7)式计算影响因素对高风险评语的隶属度。CO2 地质封存系统的泄漏风险影响因素正态隶属函数的数学期望分别为 cmincocmax,并由正态隶属函数性质,取距离函数数学期望值 3 个标准差 σ 范围内的 CO2泄漏风险影响因素的值作为函数值域。CO2 泄漏风险影响因素对评语集中的低、中和高风险评语的正态隶属函数模型如图3所示。

  • 2.3 泄漏风险影响因素权重确定

  • CO2泄漏风险影响因素对泄漏风险相对重要程度的确定,主要由多名行业内专家组成的研讨会对需评价指标进行打分,确定影响因素的相对权重。专家打分得出因素权重集的方法简单,但其权重结果存在人为主观判断,会因为专家的经验得出不同权重集,评价结果差异性较大。而较为准确的获取多因素权重的方法为层次分析方法(AHP),其过程包括影响因素比较矩阵的构建、比较矩阵的一致性检验、特征向量的求解及向量的归一化处理等。

  • 2.3.1 影响因素比较矩阵的构建

  • 以 CO2地质封存系统的井筒完整性、盖层完整性和封存系统泄漏风险为评价目标,建立泄漏影响因素间对目标层的相对重要性比较关系,构建不同层次影响因素指标的比较矩阵:

  • 图3 CO2地质封存系统泄漏风险影响因素对泄漏风险评语的正态隶属函数

  • Fig.3 Normal membership function of influencing factors in leakage of geological CO2 storage system with regard to leakage risk comment

  • M=u11u12u13u1su21u22u23u2sui1ui2ui3uis
    (10)
  • 矩阵中的元素uis表示为风险影响因素uius对上层评价指标影响的相对强度,1/uis代表的意义与 uis相反,采用表1中的 1—9因素强度标度来反映其重要程度。

  • 表1 层次分析法常用比例标度

  • Table1 Commonly used scales of AHP

  • 2.3.2 影响因素比较矩阵的一致性检验

  • 比较矩阵的一致性检验是为了衡量所构建矩阵的可靠性,判断矩阵的可靠性将会直接影响计算权重结果的可信度和相对准确性。采用 SAATY 提出的一致性指标 CI 与同阶平均随机一致性指标 RI 的比值,即随机一致性比率 CR 来判别矩阵的一致性[33]

  • CI=λmax-kk-1
    (11)
  • CR=CIRI
    (12)
  • 如果 CR<0.1,则认为比较矩阵具有可接受的一致性;如果 CR>0.1,则需对比较矩阵的元素进行重新赋值和修正计算,直至一致性通过为止。且比较矩阵的阶数k为2,3,4,5时,同阶平均随机一致性指标RI的取值分别为0,0.52,0.89,1.12。

  • 当构建的比较矩阵通过一致性检验后,求解比较矩阵的最大特征值 λmax 对应的特征向量,并对特征向量进行归一化计算,得到 CO2地质封存系统泄漏风险影响因素权重集矩阵A

  • A=a1,a2,a3,,am
    (13)
  • 3 结果与讨论

  • 3.1 CO2泄漏影响因素隶属度矩阵

  • 由于缺乏实际 CO2埋存场地的泄漏风险参数,人为建立一个CO2地质封存场地LD进行CO2泄漏风险的实例分析,并对泄漏风险影响因素参数进行赋值,其中,固井质量BI(目的层段的声幅衰减/胶结良好井段的声幅衰减)值为 0.6,井筒环空压力升速为 8 MPa/h,套管工作时间为8 a,井筒水泥环腐蚀率为 0.4,盖层的盖地比为 0.53,断层泥岩涂抹系数为 0.6,盖层的破地压差为 6 MPa,盖层厚度为 130 m,盖层腐蚀率(腐蚀厚度/盖层厚度)为0.53。对CO2地质封存系统的泄漏风险影响因素隶属度计算时,依据严康文等对CO2地质封存系统泄漏风险影响因素阈值的研究成果[34-38],对实例中 CO2泄漏风险影响因素的正态隶属函数的数学期望进行赋值(表2)。利用(7)—(9)式对实例中井筒和盖层的泄漏风险影响因素进行隶属度转化,构建影响因素隶属度矩阵,分别为R1R2

  • R1=0.3260.3260.0020.3260.32600.6070.136000.0111
    (14)
  • R2=0.01110.01100.1980.0210.060.8360.0010.3260.3260100
    (15)
  • 3.2 CO2泄漏风险影响因素的权重矩阵

  • 应用AHP分析方法建立研究区CO2地质封存系统的井筒和盖层泄漏风险影响因素对(井筒和盖层)完整影响程度的比较矩阵 M1M2及井筒和盖层完整性因素对上层评价指标泄漏风险影响程度的比较矩阵 M3(表3—表5)。其中,M1的最大特征值为 4.144 8,一致性检验指标为 0.048 2,随机一致性比率为 0.054;M2的最大特征值为 4.969 8,一致性检验指标为 0.007 5,随机一致性比率为 0.007;M3的最大特征值为 2,一致性检验指标为 0,随机一致性比率为 0。因为 3 个比较矩阵的随机一致性比率均小于0.1,所以满足比较矩阵一致性检验。分别求出井筒、盖层和 CO2地质封存系统泄漏风险影响因素的权重矩阵,分别为A1A2A3

  • 表2 CO2地质封存系统泄漏风险影响因素的正态隶属函数的数学期望分布

  • Table2 Mathematical expectation distribution of membership functions of influencing factors in leakage of geological CO2 storage system

  • (16)
  • (17)
  • (18)
  • 3.3 CO2泄漏风险评价

  • 对井筒和盖层CO2泄漏风险影响因素的隶属度矩阵R1R2、权重矩阵A1A2进行模糊运算得出井筒和盖层的CO2泄漏风险评语Tuwell)和Tucap):

  • 表3 井筒CO2泄漏风险影响因素对井筒完整影响程度的比较矩阵

  • Table3 Comparison matrix of impact of influencing factors in CO2 leakage of wellbore on wellbore integrity

  • 表4 盖层CO2泄漏风险影响因素对盖层完整影响程度的比较矩阵

  • Table4 Comparison matrix of impact of influencing factors in CO2 leakage of caprock on caprock integrity

  • 表5 井筒和盖层完整性因素对上层评价指标泄漏风险影响程度比较矩阵(M3

  • Table5 Comparison matrix of impact of wellbore and caprock integrity factors on leakage risk comment(M3

  • Tuwell =A1R1=(0.334,0.267,0.102)
    (19)
  • Tucap =A2R2=(0.124,0.648,0.01)
    (20)
  • 根据最大隶属度原则,认为此时研究区封存井的井筒处于 CO2泄漏低风险状态,盖层处于 CO2泄漏中风险状态。

  • 对于 CO2地质封存系统泄漏风险评价时,将井筒泄漏风险和盖层泄漏风险评语进行合成,得到 CO2地质封存系统泄漏风险影响因素的隶属度矩阵 R3,并与权重矩阵A3进行模糊运算,得出CO2地质封存系统泄漏风险评语Tuall):

  • (21)
  • Tuall =A3R3=(0.297,0.340,0.08)
    (22)
  • 根据最大隶属度原则,得出该封存场地的 CO2 泄漏风险等级为中风险;且在 CO2长时间埋存过程中,通过收集相关泄漏风险评价参数的动态变化值,重复以上模糊运算,可得出CO2地质封存系统动态封存过程中泄漏风险的动态变化规律。针对易发生 CO2泄漏的封存井筒组合体损坏后形成的 CO2 泄漏通道的治理,可通过注入高含钙离子溶液发生原位钙化沉淀反应,形成封堵气体泄漏通道的碳酸钙沉淀;且微裂隙的尺寸越小,原位反应的时间越长,原位钙化沉淀量越高,对微小泄漏通道的封堵效果越好。

  • 4 结论

  • CO2地质封存系统泄漏风险由井筒诱发风险的可能性比盖层高,井筒完整性失效机理主要是在 CO2注入和封存过程中,CO2冷流体对井筒产生的应力损伤及腐蚀作用破坏了井筒完整性。井筒失效最常见的现象是井筒环空压力的快速上升,且当井筒形成泄漏通道后,CO2-盐水多相流会进入泄漏通道,进一步腐蚀,加剧 CO2从井筒的泄漏风险。另外,固井水泥与 CO2腐蚀反应也会缩短孔隙水中氯离子自由通过水泥环到达套管的时间,加速套管电化学腐蚀,降低套管的使用寿命。且 CO2对水泥腐蚀会在不同水泥环位置产生不同的腐蚀影响,对靠近封存层区域的水泥环淋滤作用强,腐蚀严重,近套管水泥环区域CO2淋滤作用弱,水泥钙化作用强,促使水泥环自愈。

  • CO2地质封存系统中盖层泄漏主要受破地压差、盖地比、断层封闭性、盖层厚度和盖层腐蚀的影响。其中盖地比和破地压差对盖层泄漏的影响较大,低盖地比导致盖层疏松,偏向砂岩性质,而低破地压差对盖层压裂或突破盖层毛管力的风险较大。盖层发生 CO2泄漏有低速渗漏和高速泄漏 2 种模式,当封存层压力高于盖层突破压力且未压裂盖层时,气体沿盖层发生低速渗漏,低速渗漏量和渗漏速度符合气体地下渗流定律,引发的渗漏治理相对容易;而当封存层压力高于盖层破裂压力或断层开启压力时,在盖层中形成CO2气体高速泄漏通道,泄漏速度快,形成的泄漏很难治理。

  • CO2地质封存系统泄漏风险影响因素和泄漏风险之间呈非线性相关,非线性正态隶属函数被选择用于CO2地质封存系统泄漏风险影响因素隶属度矩阵建立,并依据AHP方法建立了因素之间的比较矩阵,求取了泄漏风险影响因素的权重矩阵。通过模糊运算最终获得井筒、盖层和封存系统的 CO2泄漏风险评语。根据最大隶属度原则,CO2沿井筒泄漏风险等级为低风险,盖层泄漏等级为中风险,封存系统的泄漏等级为中风险。

  • 符号解释

  • am——CO2地质封存系统泄漏风险评价权重集中的元素;

  • A——CO2地质封存系统泄漏风险影响因素集 U 对应的权重集;

  • A——CO2地质封存系统泄漏风险影响因素权重矩阵;

  • A1——CO2地质封存系统井筒泄漏风险影响因素的权重矩阵;

  • A2——CO2地质封存系统盖层泄漏风险影响因素的权重矩阵;

  • A3——CO2地质封存系统泄漏风险影响因素的权重矩阵;

  • bn——CO2地质封存系统泄漏风险评语集的一个子集 TU)中的评语;

  • B——模糊运算后获得的评语集;

  • c——正态隶属函数的数学期望,对于 CO2地质封存系统为影响因素对评语隶属程度为1的因素值;

  • co——正态隶属函数(8)式的数学期望;

  • cmin——正态隶属函数(7)式的数学期望;

  • cmax——正态隶属函数(9)式的数学期望;

  • CI——影响因素比较矩阵的一致性检验指标;

  • CR——影响因素比较矩阵的随机一致性比率;

  • f——模糊映射;

  • fu)——隶属函数;

  • i——泄漏风险影响因素的编号;

  • j——泄漏风险评语集中评语的编号;

  • k——比较矩阵的阶数;

  • m——CO2地质封存系统泄漏风险影响因素编号;

  • M——不同层次影响因素指标的比较矩阵;

  • M1——CO2地质封存系统井筒泄漏风险影响因素对井筒完整影响程度的比较矩阵;

  • M2——CO2地质封存系统盖层泄漏风险影响因素对盖层完整影响程度的比较矩阵;

  • M3——CO2地质封存系统井筒和盖层完整性因素对上层评价指标泄漏风险影响程度的比较矩阵;

  • n——CO2地质封存系统泄漏风险的评语编号;

  • pf ——封存层压力,MPa;

  • pg——盖层上覆地层压力,MPa;

  • r——因素隶属度;

  • rhum——高风险隶属函数;

  • rlum——低风险隶属函数;

  • rzum——中风险隶属函数;

  • rmn——泄漏风险影响因素um对评语vn的隶属度;

  • rij——影响因素集 U 中因素 ui对于评语集 V 中评语 vn中第j个评语的隶属程度;

  • ru)——正态隶属函数;

  • rum)——因素集 U 中的影响因素对于评语集 V 中评语的隶属度;

  • R——影响因素的隶属度矩阵;

  • Rf ——影响因素到评语集间的模糊映射关系;

  • RI——同阶平均随机一致性指标;

  • R1——CO2地质封存系统井筒泄漏风险影响因素的隶属度矩阵;

  • R2——CO2地质封存系统盖层泄漏风险影响因素的隶属度矩阵;

  • R3——CO2地质封存系统泄漏风险影响因素的隶属度矩阵;

  • s——泄漏风险影响因素的编号;

  • Tuall)——CO2地质封存系统的泄漏风险评语;

  • Tuwell)——CO2地质封存系统井筒的泄漏风险评语;

  • Tucap)——CO2地质封存系统盖层的泄漏风险评语;

  • TU)——CO2地质封存系统泄漏风险的评语集 V 的一个子集;

  • u——影响因素集U中的一个因素;

  • ui ——CO2地质封存系统泄漏风险的第i个影响因素;

  • us ——CO2地质封存系统泄漏风险的第s个影响因素;

  • uis——泄漏风险影响因素的比较值;

  • um——CO2地质封存系统泄漏风险影响因素;

  • U——CO2地质封存系统泄漏风险影响因素集;

  • vn——CO2地质封存系统泄漏风险的评语;

  • V——CO2地质封存系统泄漏风险的评语集;

  • Δp——盖层两侧压差,MPa;

  • ∘——一种模糊运算符号;

  • λmax——比较矩阵的最大特征值;

  • σ——正态隶属函数的标准差,反映影响因素分布宽度;

  • σh——高风险正态隶属函数(7)式的标准差;

  • σl ——低风险正态隶属函数(9)式的标准差;

  • σm1——中风险正态隶属函数(8)式的左半部分标准差;

  • σm2——中风险正态隶属函数(8)式的右半部分标准差。

  • 参考文献

    • [1] 李阳.低渗透油藏CO2驱提高采收率技术进展及展望[J].油气地质与采收率,2020,27(1):1-10.LI Yang.Technical advancement and prospect for CO2 flooding en⁃ hanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.

    • [2] AMINU M D,NABAVI S A,ROCHELLE C A,et al.A review of developments in carbon dioxide storage[J].Applied Energy,2017,208:1 389-1 419.

    • [3] DENG H,BIELICKI J M,OPPENHEIMER M,et al.Leakage risks of geologic CO2 storage and the impacts on the global energy sys⁃ tem and climate change mitigation[J].Climatic Change,2017,144(2):151-163.

    • [4] BLANCO H,FAAIJ A.A review at the role of storage in energy systems with a focus on power to gas and long-term storage[J].Re⁃ newable and Sustainable Energy Reviews,2018,81(Part1):1 049-1 086.

    • [5] GARCÍA J H,TORVANGER A.Carbon leakage from geological storage sites:implications for carbon trading[J].Energy Policy,2019,127:320-329.

    • [6] IGLAUER S.Optimum storage depths for structural CO2 trapping [J].International Journal of Greenhouse Gas Control,2018,77:82-87.

    • [7] 秦积舜,李永亮,吴德斌,等.CCUS 全球进展与中国对策建议 [J].油气地质与采收率,2020,27(1):20-28.QIN Jishun,LI Yongliang,WU Debin,et al.CCUS global progress and China’s policy suggestions[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(1):20-28.

    • [8] DIAO Yujie,ZHANG Senqi,WANG Yongsheng,et al.Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS demonstration project as a case study[J].Environmental Earth Sciences,2015,73(11):7 571-7 586.

    • [9] GAN Manguang,NGUYEN M C,ZHANG Liwei,et al.Impact of reservoir parameters and wellbore permeability uncertainties on CO2 and brine leakage potential at the Shenhua CO2 Storage Site,China[J].International Journal of Greenhouse Gas Control,2021,111:103443.

    • [10] 柏明星,张志超,白华明,等.二氧化碳地质封存系统泄漏风险研究进展[J].特种油气藏,2022,29(4):1-11.BAI Mingxing,ZHANG Zhichao,BAI Huaming,et al.Progress in leakage risk study of CO2 geosequestration system[J].Special Oil & Gas Reservoirs,2022,29(4):1-11.

    • [11] GHOLAMI R,RAZA A,IGLAUER S.Leakage risk assessment of a CO2 storage site:a review[J].Earth-Science Reviews,2021,223:103849.

    • [12] GUYANT E,HAN W S,KIM K Y,et al.Leakage and pressuriza⁃ tion risk assessment of CO2 reservoirs:a metamodeling modeling approach[J].International Journal of Greenhouse Gas Control,2016,54(Part1):345-361.

    • [13] AMINU M D,NABAVI S A,ROCHELLE C A,et al.A review of developments in carbon dioxide storage[J].Applied Energy,2017,208:1 389-1 419.

    • [14] BIELICKI J M,POLLAK M F,FITTS J P,et al.Causes and finan⁃ cial consequences of geologic CO2 storage reservoir leakage and interference with other subsurface resources[J].International Jour⁃ nal of Greenhouse Gas Control,2014,20:272-284.

    • [15] BIELICKI J M,POLLAK M F,DENG Hang,et al.The leakage risk monetization model for geologic CO2 storage[J].Environmen⁃ tal Science & Technology,2016,50(10):4 923-4 931.

    • [16] 高冉,吕成远,伦增珉,等.二氧化碳驱替与埋存一体化数值模拟[J].特种油气藏,2021,28(2):102-107.GAO Ran,LÜ Chengyuan,LUN Zengmin,et al.Integrated numeri⁃ cal simulation of carbon dioxide displacement and sequestration [J].Special Oil & Gas Reservoirs,2021,28(2):102-107.

    • [17] 闫方平,郭永伟,曹梦菁,等.异常高压致密油藏 CO2吞吐参数优化及微观孔隙动用特征:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].大庆石油地质与开发,2021,40(6):158-166.YAN Fangping,GUO Yongwei,CAO Mengjing,et al.Optimization of CO2 huff-puff parameters and micro-pore producing character⁃ istics of the tight oil reservoirs with abnormal high pressure:tak⁃ ing Lucaogou Formation in Junggar-Basin Jimsar Sag as an exam⁃ple[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(6):158-166.

    • [18] 张志超,柏明星,陈巧珍.二氧化碳埋存井筒的腐蚀行为影响因素[J].腐蚀与防护,2021,42(4):54-57,61.ZHANG Zhichao,BAI Mingxing,CHEN Qiaozhen.Influencing factors of corrosion behavior of carbon dioxide storage wellbore [J].Corrosion and Protection,2021,42(4):54-57,61.

    • [19] PAWAR R J,BROMHAL G S,CAREY J W,et al.Recent advanc⁃ es in risk assessment and risk management of geologic CO2 storage [J].International Journal of Greenhouse Gas Control,2015,40(5):292-311.

    • [20] 柏明星,REINICKE K M,艾池,等.二氧化碳地质存储过程中沿井筒渗漏定性分析[J].地质论评,2013,59(1):107-112.BAI Mingxing,REINICKE K M,AI Chi,et al.A qualitative analy⁃ sis of CO2 leakage along abandoned well during CO2 sequestration [J].Geological Review,2013,59(1):107-112.

    • [21] 曾德智,喻智明,何奇垚,等.页岩气井环空带压安全风险定量评价方法研究[J].西南石油大学学报:自然科学版,2019,41(6):146-154.ZENG Dezhi,YU Zhiming,HE Qiyao,et al.Research on safety as⁃ sessment technology of sustained casing pressure in shale gas[J].Journal of Southwest Petroleum University:Science & Technology Edition,2019,41(6):146-154.

    • [22] 张智,周琛洋,王汉,等.气井环空带压临界控制值研究[J].中国安全生产科学技术,2017,13(7):149-155.ZHANG Zhi,ZHOU Chenyang,WANG Han,et al.Research on critical control value of sustained annular pressure for gas well [J].Journal of Safety Science and Technology,2017,13(7):149-155.

    • [23] 林潼,王孝明,张璐,等.盖层厚度对天然气封闭能力的实验分析[J].天然气地球科学,2019,30(3):322-330.LIN Tong,WANG Xiaoming,ZHANG Lu,et al.Experimental analysis of the effect of caprock thickness on sealed natural gas [J].Natural Gas Geoscience,2019,30(3):322-330.

    • [24] ISHIDA T,CHEN Youqing,BENNOUR Z,et al.Features of CO2 fracturing deduced from acoustic emission and microscopy in labo⁃ ratory experiments[J].Journal of Geophysical Research:Solid Earth,2016,121(11):8 080-8 098.

    • [25] CHEN Youqing,NAGAYA Y,ISHIDA T.Observations of frac⁃ tures induced by hydraulic fracturing in anisotropic granite[J].Rock Mechanics and Rock Engineering,2015,48(4):1 455-1 461.

    • [26] JACKSON M D,YOSHIDA S,MUGGERIDGE A H,et al.Threedimensional reservoir characterization and flow simulation of het⁃ erolithic tidal sandstones[J].AAPG Bulletin,2005,89(4):507-528.

    • [27] 张文涛.毛细管突破压力模拟实验及页岩封闭能力[J].石油实验地质,2018,40(4):577-582.ZHANG Wentao.Experimental study of the breakthrough pressure of capillaries and the sealing ability of shale[J].Petroleum Geolo⁃ gy and Experiment,2018,40(4):577-582.

    • [28] 付广,董金梦,彭万涛.断盖配置渗漏与封闭转换时期的确定方法及其应用[J].沉积学报,2020,38(4):868-875.FU Guang,DONG Jinmeng,PENG Wantao.Determination method and application for the conversion period of fault-caprock config⁃ uration leakage and sealing[J].Acta Sedimentologica Sinica,2020,38(4):868-875.

    • [29] 郎岳,朱思源.南堡凹陷馆陶组火山岩盖层封闭能力定量评价 [J].大庆石油地质与开发,2019,38(2):25-32.LANG Yue,ZHU Siyuan.Quantitative evaluation of the volcanic caprock sealing capacity for Guantao Formation in Nanpu Sag[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):25-32.

    • [30] TREMOSA J,MITO S,AUDIGANE P,et al.Experimental assess⁃ ment of well integrity for CO2 geological storage:a numerical study of the geochemical interactions between a CO2-brine mixture and a sandstone-cement-steel sample[J].Applied Geochemistry,2017,78(2):61-73.

    • [31] MS ELGENDY A,RICCI S,COJOCARIU E I,et al.A streamlined workflow from experimental analyses to dynamic geochemical modelling[C].Amsterdam:The SPE Europec featured at 82nd EAGE Conference and Exhibition,2021:1-18.

    • [32] XIAO Ting,XU Hao,MOODIE N,et al.Chemical-mechanical im⁃ pacts of CO2 intrusion into heterogeneous caprock[J].Water Re⁃ sources Research,2020,56(11):1-29.

    • [33] SAATY T L.Decision making with the analytic hierarchy process [J].International Journal of Services Sciences,2008,1(1):83-98.

    • [34] 严康文,文怀军,郭晋宁,等.基于层次分析法的封盖层封盖能力定量评价[J].煤炭工程,2016,48(7):125-128.YAN Kangwen,WEN Huaijun,GUO Jinning,et al.Quantitative evaluation for cap capability of capping layer based on AHP[J].Coal Engineering,2016,48(7):125-128.

    • [35] CLAUDIO G,THOMAS G,ALFREDO B.Modeling of rocks and cement alteration due to CO2 injection in an exploited gas reservoir [J].Transport in Porous Media,2011,90:183-200.

    • [36] TAMBACH T J,KOENEN M,WASCH L J,et al.Geochemical evaluation of CO2 injection and containment in a depleted gas field [J].International Journal of Greenhouse Gas Control,2015,32:61-80.

    • [37] 马东烨,陈宇航,王应斌,等.鄂尔多斯盆地东部上古生界盖层封闭性能评价[J].天然气地球科学,2021,32(11):1 673-1 684.MA Dongye,CHEN Yuhang,WANG Yingbin,et al.Sealing capa⁃ bility evaluation of the Upper Paleozoic cap rock in the eastern Ordos Basin[J].Natural Gas Geoscience,2021,32(11):1 673-1 684.

    • [38] 贾瑞轩,孙灵辉,苏致新,等.二氧化碳吞吐致密油藏的可动用性[J].断块油气田,2020,27(4):504-508.JIA Ruixuan,SUN Linghui,SU Zhixin,et al.Availability of CO2 huff and puff in tight reservoir[J].Fault-Block Oil and Gas Field,2020,27(4):504-508.

  • 参考文献

    • [1] 李阳.低渗透油藏CO2驱提高采收率技术进展及展望[J].油气地质与采收率,2020,27(1):1-10.LI Yang.Technical advancement and prospect for CO2 flooding en⁃ hanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.

    • [2] AMINU M D,NABAVI S A,ROCHELLE C A,et al.A review of developments in carbon dioxide storage[J].Applied Energy,2017,208:1 389-1 419.

    • [3] DENG H,BIELICKI J M,OPPENHEIMER M,et al.Leakage risks of geologic CO2 storage and the impacts on the global energy sys⁃ tem and climate change mitigation[J].Climatic Change,2017,144(2):151-163.

    • [4] BLANCO H,FAAIJ A.A review at the role of storage in energy systems with a focus on power to gas and long-term storage[J].Re⁃ newable and Sustainable Energy Reviews,2018,81(Part1):1 049-1 086.

    • [5] GARCÍA J H,TORVANGER A.Carbon leakage from geological storage sites:implications for carbon trading[J].Energy Policy,2019,127:320-329.

    • [6] IGLAUER S.Optimum storage depths for structural CO2 trapping [J].International Journal of Greenhouse Gas Control,2018,77:82-87.

    • [7] 秦积舜,李永亮,吴德斌,等.CCUS 全球进展与中国对策建议 [J].油气地质与采收率,2020,27(1):20-28.QIN Jishun,LI Yongliang,WU Debin,et al.CCUS global progress and China’s policy suggestions[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(1):20-28.

    • [8] DIAO Yujie,ZHANG Senqi,WANG Yongsheng,et al.Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS demonstration project as a case study[J].Environmental Earth Sciences,2015,73(11):7 571-7 586.

    • [9] GAN Manguang,NGUYEN M C,ZHANG Liwei,et al.Impact of reservoir parameters and wellbore permeability uncertainties on CO2 and brine leakage potential at the Shenhua CO2 Storage Site,China[J].International Journal of Greenhouse Gas Control,2021,111:103443.

    • [10] 柏明星,张志超,白华明,等.二氧化碳地质封存系统泄漏风险研究进展[J].特种油气藏,2022,29(4):1-11.BAI Mingxing,ZHANG Zhichao,BAI Huaming,et al.Progress in leakage risk study of CO2 geosequestration system[J].Special Oil & Gas Reservoirs,2022,29(4):1-11.

    • [11] GHOLAMI R,RAZA A,IGLAUER S.Leakage risk assessment of a CO2 storage site:a review[J].Earth-Science Reviews,2021,223:103849.

    • [12] GUYANT E,HAN W S,KIM K Y,et al.Leakage and pressuriza⁃ tion risk assessment of CO2 reservoirs:a metamodeling modeling approach[J].International Journal of Greenhouse Gas Control,2016,54(Part1):345-361.

    • [13] AMINU M D,NABAVI S A,ROCHELLE C A,et al.A review of developments in carbon dioxide storage[J].Applied Energy,2017,208:1 389-1 419.

    • [14] BIELICKI J M,POLLAK M F,FITTS J P,et al.Causes and finan⁃ cial consequences of geologic CO2 storage reservoir leakage and interference with other subsurface resources[J].International Jour⁃ nal of Greenhouse Gas Control,2014,20:272-284.

    • [15] BIELICKI J M,POLLAK M F,DENG Hang,et al.The leakage risk monetization model for geologic CO2 storage[J].Environmen⁃ tal Science & Technology,2016,50(10):4 923-4 931.

    • [16] 高冉,吕成远,伦增珉,等.二氧化碳驱替与埋存一体化数值模拟[J].特种油气藏,2021,28(2):102-107.GAO Ran,LÜ Chengyuan,LUN Zengmin,et al.Integrated numeri⁃ cal simulation of carbon dioxide displacement and sequestration [J].Special Oil & Gas Reservoirs,2021,28(2):102-107.

    • [17] 闫方平,郭永伟,曹梦菁,等.异常高压致密油藏 CO2吞吐参数优化及微观孔隙动用特征:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].大庆石油地质与开发,2021,40(6):158-166.YAN Fangping,GUO Yongwei,CAO Mengjing,et al.Optimization of CO2 huff-puff parameters and micro-pore producing character⁃ istics of the tight oil reservoirs with abnormal high pressure:tak⁃ ing Lucaogou Formation in Junggar-Basin Jimsar Sag as an exam⁃ple[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(6):158-166.

    • [18] 张志超,柏明星,陈巧珍.二氧化碳埋存井筒的腐蚀行为影响因素[J].腐蚀与防护,2021,42(4):54-57,61.ZHANG Zhichao,BAI Mingxing,CHEN Qiaozhen.Influencing factors of corrosion behavior of carbon dioxide storage wellbore [J].Corrosion and Protection,2021,42(4):54-57,61.

    • [19] PAWAR R J,BROMHAL G S,CAREY J W,et al.Recent advanc⁃ es in risk assessment and risk management of geologic CO2 storage [J].International Journal of Greenhouse Gas Control,2015,40(5):292-311.

    • [20] 柏明星,REINICKE K M,艾池,等.二氧化碳地质存储过程中沿井筒渗漏定性分析[J].地质论评,2013,59(1):107-112.BAI Mingxing,REINICKE K M,AI Chi,et al.A qualitative analy⁃ sis of CO2 leakage along abandoned well during CO2 sequestration [J].Geological Review,2013,59(1):107-112.

    • [21] 曾德智,喻智明,何奇垚,等.页岩气井环空带压安全风险定量评价方法研究[J].西南石油大学学报:自然科学版,2019,41(6):146-154.ZENG Dezhi,YU Zhiming,HE Qiyao,et al.Research on safety as⁃ sessment technology of sustained casing pressure in shale gas[J].Journal of Southwest Petroleum University:Science & Technology Edition,2019,41(6):146-154.

    • [22] 张智,周琛洋,王汉,等.气井环空带压临界控制值研究[J].中国安全生产科学技术,2017,13(7):149-155.ZHANG Zhi,ZHOU Chenyang,WANG Han,et al.Research on critical control value of sustained annular pressure for gas well [J].Journal of Safety Science and Technology,2017,13(7):149-155.

    • [23] 林潼,王孝明,张璐,等.盖层厚度对天然气封闭能力的实验分析[J].天然气地球科学,2019,30(3):322-330.LIN Tong,WANG Xiaoming,ZHANG Lu,et al.Experimental analysis of the effect of caprock thickness on sealed natural gas [J].Natural Gas Geoscience,2019,30(3):322-330.

    • [24] ISHIDA T,CHEN Youqing,BENNOUR Z,et al.Features of CO2 fracturing deduced from acoustic emission and microscopy in labo⁃ ratory experiments[J].Journal of Geophysical Research:Solid Earth,2016,121(11):8 080-8 098.

    • [25] CHEN Youqing,NAGAYA Y,ISHIDA T.Observations of frac⁃ tures induced by hydraulic fracturing in anisotropic granite[J].Rock Mechanics and Rock Engineering,2015,48(4):1 455-1 461.

    • [26] JACKSON M D,YOSHIDA S,MUGGERIDGE A H,et al.Threedimensional reservoir characterization and flow simulation of het⁃ erolithic tidal sandstones[J].AAPG Bulletin,2005,89(4):507-528.

    • [27] 张文涛.毛细管突破压力模拟实验及页岩封闭能力[J].石油实验地质,2018,40(4):577-582.ZHANG Wentao.Experimental study of the breakthrough pressure of capillaries and the sealing ability of shale[J].Petroleum Geolo⁃ gy and Experiment,2018,40(4):577-582.

    • [28] 付广,董金梦,彭万涛.断盖配置渗漏与封闭转换时期的确定方法及其应用[J].沉积学报,2020,38(4):868-875.FU Guang,DONG Jinmeng,PENG Wantao.Determination method and application for the conversion period of fault-caprock config⁃ uration leakage and sealing[J].Acta Sedimentologica Sinica,2020,38(4):868-875.

    • [29] 郎岳,朱思源.南堡凹陷馆陶组火山岩盖层封闭能力定量评价 [J].大庆石油地质与开发,2019,38(2):25-32.LANG Yue,ZHU Siyuan.Quantitative evaluation of the volcanic caprock sealing capacity for Guantao Formation in Nanpu Sag[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):25-32.

    • [30] TREMOSA J,MITO S,AUDIGANE P,et al.Experimental assess⁃ ment of well integrity for CO2 geological storage:a numerical study of the geochemical interactions between a CO2-brine mixture and a sandstone-cement-steel sample[J].Applied Geochemistry,2017,78(2):61-73.

    • [31] MS ELGENDY A,RICCI S,COJOCARIU E I,et al.A streamlined workflow from experimental analyses to dynamic geochemical modelling[C].Amsterdam:The SPE Europec featured at 82nd EAGE Conference and Exhibition,2021:1-18.

    • [32] XIAO Ting,XU Hao,MOODIE N,et al.Chemical-mechanical im⁃ pacts of CO2 intrusion into heterogeneous caprock[J].Water Re⁃ sources Research,2020,56(11):1-29.

    • [33] SAATY T L.Decision making with the analytic hierarchy process [J].International Journal of Services Sciences,2008,1(1):83-98.

    • [34] 严康文,文怀军,郭晋宁,等.基于层次分析法的封盖层封盖能力定量评价[J].煤炭工程,2016,48(7):125-128.YAN Kangwen,WEN Huaijun,GUO Jinning,et al.Quantitative evaluation for cap capability of capping layer based on AHP[J].Coal Engineering,2016,48(7):125-128.

    • [35] CLAUDIO G,THOMAS G,ALFREDO B.Modeling of rocks and cement alteration due to CO2 injection in an exploited gas reservoir [J].Transport in Porous Media,2011,90:183-200.

    • [36] TAMBACH T J,KOENEN M,WASCH L J,et al.Geochemical evaluation of CO2 injection and containment in a depleted gas field [J].International Journal of Greenhouse Gas Control,2015,32:61-80.

    • [37] 马东烨,陈宇航,王应斌,等.鄂尔多斯盆地东部上古生界盖层封闭性能评价[J].天然气地球科学,2021,32(11):1 673-1 684.MA Dongye,CHEN Yuhang,WANG Yingbin,et al.Sealing capa⁃ bility evaluation of the Upper Paleozoic cap rock in the eastern Ordos Basin[J].Natural Gas Geoscience,2021,32(11):1 673-1 684.

    • [38] 贾瑞轩,孙灵辉,苏致新,等.二氧化碳吞吐致密油藏的可动用性[J].断块油气田,2020,27(4):504-508.JIA Ruixuan,SUN Linghui,SU Zhixin,et al.Availability of CO2 huff and puff in tight reservoir[J].Fault-Block Oil and Gas Field,2020,27(4):504-508.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告