en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

付建民(1981—),男,河北唐山人,高级工程师,从事海上钻完井等技术管理工作。E-mail:fujm@cnooc.com.cn。

中图分类号:TE122.2+22

文献标识码:A

文章编号:1009-9603(2023)03-0042-07

DOI:10.13673/j.pgre.202206033

参考文献 1
薛永安,李慧勇.渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J].中国海上油气,2018,30(3):1-9. XUE Yongan,LI Huiyong.Large condensate gas field in deep Archean metamorphic buried hill in Bohai Sea:discovery and geological significance[J].China Offshore Oil and Gas,2018,30(3):1-9.
参考文献 2
徐长贵,周心怀,邓津辉.渤海锦州 25-1 大型轻质油气田的发现与启示[J].中国石油勘探,2010,15(1):34-38. XU Changgui,ZHOU Xinhuai,DENG Jinhui.Discovery of large-scale Jinzhou25-1 light oil & gas field in Bohai Sea area and its enlightenment[J].China Petroleum Exploration,2010,15(1):34-38.
参考文献 3
何瑞兵,范白涛,马英文,等.新型抗高温水包油钻井液研究与应用[J].中国海上油气,2011,23(6):403-407.HE Ruibing,FAN Baitao,MA Yingwen,et al.Study and applica‐ tion of the new high temperature tolerance oil-in-water drilling fluid[J].China Offshore Oil and Gas,2011,23(6):403-407.
参考文献 4
沈澈,蒋有录,苏圣民,等.二连盆地乌兰花凹陷花岗岩潜山储层特征及发育模式[J].大庆石油地质与开发,2021,40(6):12-19.SHEN Che,JIANG Youlu,SU Shengmin,et al.Characteristics and development modes of the granite buried-hill reservoir in Wulanhua Sag of Erlian Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(6):12-19.
参考文献 5
卢欢,牛成民,李慧勇,等.变质岩潜山油气藏储层特征及评价 [J].断块油气田,2020,27(1):28-33.LU Huan,NIU Chengmin,LI Huiyong,et al.Reservoir feature and evaluation of metamorphic buried-hill reservoir[J].FaultBlock Oil and Gas Field,2020,27(1):28-33.
参考文献 6
李鸿儒,谭忠健,胡云,等.渤中凹陷西南环M构造太古界潜山油气藏流体类型随钻识别方法[J].油气地质与采收率,2021,28(5):22-31.LI Hongru,TAN Zhongjian,HU Yun,et al.Reservoir fluid type identification while drilling for Archaeozoic buried hill reservoir of M structure at southwest margin of Bozhong Sag,Bohai Sea,East China[J].Petroleum Geology and Recovery Efficiency,2021,28(5):22-31.
参考文献 7
ZHU Jingyi,YANG Zhaozhong,LI Xiaogang,et al.Evaluation of different microwave heating parameters on the pore structure of oil shale samples[J].Energy Science & Engineering,2018,6(6):797-809.
参考文献 8
LI Xinlei,YOU Lijun,KANG Yili,et al.Investigation on the thermal cracking of shale under different cooling modes[J].Jour‐ nal of Natural Gas Science and Engineering,2022,97:104359.
参考文献 9
SCHEMBRE J M,KOVSCEK A R.Mechanism of formation damage at elevated temperature[J].Journal of Energy Resources Technology,Transaction of the ASME,2005,127(3):171-180.
参考文献 10
苏玉亮,庄新宇,李蕾,等.致密砂岩气藏长岩心压力损失及渗透率损害评价实验[J].特种油气藏,2021,28(1):98-102.SU Yuliang,ZHUANG Xinyu,LI Lei,et al.Experiment on long core pressure loss and permeability damage evaluation in tight sandstone gas reservoir[J].Special Oil & Gas Reservoirs,2021,28(1):98-102.
参考文献 11
王晓雯.致密油藏储层敏感性评价及主控因素研究[J].特种油气藏,2021,28(1):103-110.WANG Xiaowen.Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J].Special Oil & Gas Reservoirs,2021,28(1):103-110.
参考文献 12
孟选刚,郭肖,高涛.特低渗砂岩储层温度敏感性实验[J].西南石油大学学报:自然科学版,2015,37(3):98-102. MENG Xuangang,GUO Xiao,GAO Tao.Temperature sensitivi‐ ty experiment on ultra-low permeability sandstone reservoir[J].Journal of Southwest Petroleum University:Science & Technolo‐ gy Edition,2015,37(3):98-102.
参考文献 13
曾平,赵金洲,李治平,等.温度、有效应力和含水饱和度对低渗透砂岩渗透率影响的实验研究[J].天然气地球科学,2005,16(1):31-34. ZENG Ping,ZHAO Jinzhou,LI Zhiping,et al.Experimental study concerning the effect of temperature,effective stress and water saturation on the permeability of tight sandstone[J].Natu‐ ral Gas Geoscience,2005,16(1):31-34.
参考文献 14
刘向君,高涵,梁利喜.温度围压对低渗透砂岩孔隙度和渗透率的影响研究[J].岩石力学与工程学报,2011,30(S2):3 771-3 778. LIU Xiangjun,GAO Han,LIANG Lixi.Study of temperature and confining pressure effects on porosity and permeability in low permeability sandstone[J].Chinese Journal of Rock Mechan‐ ics and Engineering,2011,30(S2):3 771-3 778.
参考文献 15
刘洪,郭肖.温度对低渗透砂岩应力敏感性影响实验研究[J].石油化工应用,2016,35(4):23-27,32. LIU Hong,GUO Xiao.Experimental study on temperature effect on stress sensitivity of low permeability sandstone[J].Petrochem‐ ical Industry Application,2016,35(4):23-27,32.
参考文献 16
SHU Biao,ZHU Runjun,ELSWORTH D,et al.Effect of temper‐ ature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite[J].Ap‐ plied Energy,2020,272:115290.1-115290.12.
参考文献 17
RAMEZANIAN M,EMADI H.Investigating effects of tempera‐ ture and confining pressure on dynamic elastic properties and permeability-an experimental study[J].Geomechanics for Energy and the Environment,2020,22:100179.
参考文献 18
WONG L N Y,ZHANG Yahui.Numerical investigation of micro‐ mechanisms of thermal strengthening in rock[C].New York:53rd U S Rock Mechanics/Geomechanics Symposium,2019.
参考文献 19
YANG Shengqi,XU Peng,LI Yanbao,et al.Experimental investi‐ gation on triaxial mechanical and permeability behavior of sand‐ stone after exposure to different high temperature treatments[J].Geothermics,2017,69:93-109.
参考文献 20
WONG L N Y,ZHANG Yahui,WU Zhijun.Rock strengthening or weakening upon heating in the mild temperature range?[J].Engineering Geology,2020,272:105619.
参考文献 21
RANJITH P G,VIETE D R,CHEN Baijie,et al.Transformation plasticity and the effect of temperature on the mechanical behav‐ iour of Hawkesbury sandstone at atmospheric pressure[J].Engi‐ neering Geology,2012,151:120-127.
参考文献 22
FREDRICH J T,WONG T.Micromechanics of thermally in‐ duced cracking in three crustal rocks[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Ab‐ stracts,1987,24(4):134.
参考文献 23
MALAGA-STARZEC K,ÅKESSON U,LINDQVIST J E,et al.Microscopic and macroscopic characterization of the porosity of marble as a function of temperature and impregnation[J].Con‐ struction and Building Materials,2006,20(10):939-947.
参考文献 24
ALM O,JAKTLUND L,KOU Shaoquan.The influence of mi‐ crocrack density on the elastic and fracture mechanical proper‐ ties of Stripa granite[J].Physics of the Earth and Planetary Interi‐ ors,1985,40(3):161-179.
目录contents

    摘要

    太古界潜山花岗片麻岩储层岩性复杂、矿物类型丰富,且具有埋藏深度大、储层温度高的特点,高温作用对岩石孔隙结构和渗流特征具有显著的影响。选取太古界花岗片麻岩露头岩样,开展了渗透率温度敏感性评价实验和不同温度下的应力敏感性评价实验,探索渗透率对温度和有效应力的响应特征。结果表明:渗透率为0.1~1 mD的花岗片麻岩基块岩样,室温为20 ℃、有效应力为20 MPa条件下其渗透率是储层温度为170 ℃、有效应力为20 MPa 条件下的1.66~2.04倍,随着温度升高,渗透率呈指数递减趋势;氮气驱条件下,20 ℃花岗片麻岩储层应力敏感性为中等偏强,100和 170 ℃高温环境下应力敏感性为中等偏弱,随着温度增加应力敏感性有减弱趋势。200 ℃以内适中温度有利于提升岩石强度,弱化岩石应力敏感性。

    Abstract

    Archean granite gneiss reservoirs are complex in lithology and rich in mineral types,with a large burial depth and high reservoir temperature,and high temperature has a significant impact on rock pore structure and flow characteris‐ tics. This paper used samples of Archean granite gneiss outcrops for experiments to evaluate the temperature sensitivity of permeability and the stress sensitivity under different temperatures and explore the response characteristics of permea‐ bility to temperature and effective stress. The results reveal that for the samples of granite gneiss blocks with permeabili‐ ty ranging from 0.1 mD to 1 mD,the permeability under the room temperature of 20 ℃ and the effective stress of 20 MPa is 1.66-2.04 times higher than that under the reservoir temperature of 170 ℃ and the effective stress of 20 MPa,and the permeability declines exponentially with the rise in temperature. Under nitrogen flooding conditions,the stress sensi‐ tivity of granite gneiss reservoirs at 20 ℃ is moderately strong,and the stress sensitivity at 100 ℃ and 170 ℃ is moder‐ ately weak,which tends to weaken with the increase in temperature. A moderate temperature within 200 ℃ is beneficial to improve rock strength and weakens the stress sensitivity of rock.

  • 近年来,渤海海域变质岩潜山油气藏的勘探开发取得了一系列重大突破,发现了如锦州 25-1、渤中 19-6 和渤中 13-2 等大型太古界油气田[1]。锦州 25-1油田是目前为止渤海海域最大的轻质油气田,同时也是辽西凹陷首个亿吨级油田[2-3],变质岩潜山油气藏的成功勘探开发对于海上油气田增储上产具有重要意义。

  • 变质岩储层岩性复杂、矿物类型丰富、油气藏类型复杂[4-6],且具有埋藏深度大、储层温度高的特点,高温作用对岩石孔隙结构和渗流特征具有显著的影响。温度是影响变质作用最基本而又主要的外部因素,主要表现为2个方面:①温度升高促使岩石内部原子的活动能力增强,引起物质成分迁移进而产生新矿物;②温度升高促进重结晶作用进行。重结晶是岩石在固态下同种矿物经过颗粒溶解、组分迁移,然后又重新结晶成粗大颗粒的过程,未形成新矿物,如石灰石向大理岩的变质过程。此外,在高温条件下,组成岩石的各种造岩矿物会发生各种物理化学反应,改变内部结构,降低岩石强度,从而发生热破裂[7]。岩石热破裂的产生存在阈值温度,低于阈值温度时,温度升高,岩石渗透率缓慢增加,也有可能不变或降低;高于阈值温度时,渗透率急剧增加[8]。无论是变质-成岩阶段还是钻完井及增产改造作业过程流体进入储层,都存在温度与流体参与,发生各种物理化学反应,造成储层渗流能力变化。油气藏储层温度敏感性主要研究储层温度改变引起的渗透率变化程度[9]。有学者针对致密储层低孔、低渗透及孔隙结构复杂等特点,提出压力损失和渗透率损害率综合表征致密储层损害程度[10]。针对不同类型致密储层,孔隙结构和黏土矿物组成是造成储层敏感性差异的主要原因[11]

  • 中外学者已开展大量储层敏感性方面的研究,但较多关注致密砂岩、页岩及煤岩等沉积岩储层,有关变质岩及火成岩储层损害方面研究较少。此外,关于储层敏感性多侧重流体敏感性和应力敏感性,对于温度敏感性研究关注较少。笔者以太古界潜山花岗片麻岩储层为研究对象,选取矿物组分、物性参数与渤海海域渤中凹陷太古界潜山井下岩心相似的致密基块露头岩样,模拟太古界花岗片麻岩气藏储层温度与有效应力变化过程,开展渗透率温度敏感性评价实验及温度对渗透率应力敏感性评价实验,分析温度和有效应力对花岗片麻岩储层渗透率的影响。

  • 1 实验样品与方法

  • 1.1 样品采集与实验设备

  • 实验样品选自天津市蓟州区常州村太古界— 中上元古界国家地质公园一带,主要为太古界变质岩露头岩样,岩性以花岗片麻岩为主。X 射线衍射分析结果表明,样品石英含量为24.5%,斜长石含量为 22.5%,钾长石含量为 12%,黏土矿物含量为 7%,另含有少量黄铁矿、菱铁矿及铁白云石。黏土矿物以伊利石为主,相对含量为 43.5%,其次为伊/蒙间层矿物,相对含量为 27%,高岭石相对含量为 12%,绿泥石相对含量为 17%,露头岩样矿物组分与井下岩心相近,实验样品基本物性参数见表1。

  • 表1 花岗片麻岩样品基本物性参数

  • Table1 Basic physical property parameters of granitic gneiss samples

  • 采用高温高压岩心夹持器,模拟储层高温高压环境,开展渗透率温度敏感性评价实验和温度对渗透率应力敏感性评价实验。实验装置如图1 所示,主要由 3部分构成:第 1部分为围压系统、岩心夹持器和温度调节系统(最高温度为200℃,最高围压为 60 MPa,模拟实际储层温压条件);第 2部分为流体驱替装置(保证高压驱替条件,最高工作压力为 30 MPa);第3部分由压力传感器、皂泡流量计构成,准确监测驱替压力和流量变化。

  • 图1 高温高压岩心夹持器组成示意

  • Fig.1 Composition of core holder at high temperature and high pressure

  • 统计了渤中凹陷渤中 13-2 和渤中 19-6 区块 7 口井的太古界花岗片麻岩储层温压特征(表2), 4 702.0~5 529.0 m 太古界变质岩储层井底静温为 157.1~187.4℃,属于深层超高温油气藏储层。地层静压力为46.545~53.740 MPa,压力系数为1.090~1.153,属于正常地层压力系统。

  • 表2 渤中凹陷太古界花岗片麻岩储层温压特征

  • Table2 Temperature and pressure characteristics of Archean granite gneiss reservoirs in Bozhong Depression

  • 1.2 实验方法

  • 1.2.1 渗透率温度敏感性评价实验

  • 渗透率温度敏感性评价实验具体步骤如下:① 选择实验露头岩样,将岩样在烘箱内烘干48 h,测量长度、直径等基本参数;②将围压设定为 5.0 MPa,并老化 12 h,入口压力设置为 1 MPa,出口压力为 0.5 MPa,实验设置 7 个温度点,分别为 T1(170℃), T2 (145℃),T3 (120℃),T4 (95℃),T5 (70℃),T6 (45℃),T7(20℃);其中,T1为地层温度,T7为地面温度,每点之间的温差为ΔT=(T7-T1)/6;③在实验温度点 T1时,低于临界流速的条件下,采用高纯氮气作为驱替介质测量岩样稳定的渗透率(K1);④改变实验温度(必须保持恒温 1.5 h 以上),重复第③步,直至测出最后一个实验温度点 T7所对应的岩心稳定渗透率(K7)。将入口压力设定为 2 MPa,出口压力为 1.5 MPa,围压分别设置为 10,15和 20 MPa,重复步骤①—④,测量不同有效应力作用下岩样的渗透率。

  • 实验过程中实时计算气体黏度、体积系数和偏差因子,根据达西定律实时计算岩样的气测渗透率:

  • Kg=2Q0p0μgLAp12-p22×100
    (1)
  • 由于温度对气体黏度有影响,参照孟选刚等[12] 的研究,计算过程考虑了由于温度变化氮气黏度的改变。

  • 如果有:

  • Ki-1-KiKi-1×100%5%
    (2)
  • 说明已发生温度敏感,则Ti-1为临界温度。

  • 渗透率温度敏感性评价公式为:

  • DKT=Kmax-KminKmax×100%
    (3)
  • 如果 DKT≤5%,则渗透率损害程度无;5%<DKT≤ 30%,渗透率损害程度弱;30%<DKT≤50%,渗透率损害程度中等偏弱;50%<DKT≤70%,渗透率损害程度中等偏强;70%<DKT≤90%,渗透率损害程度强;DKT>90%,渗透率损害程度极强。

  • 1.2.2 温度对渗透率应力敏感程度影响的评价实验

  • 采用恒定孔压变围压的应力敏感实验测试方法,驱替过程采用高纯氮气,实验前将样品置于 60℃烘箱中 24 h,进行干燥处理。温度对渗透率应力敏感程度影响的评价实验具体步骤如下:①入口压力设定为0.5 MPa,出口压力为0.3 MPa,第1组实验将温度设定为20℃;②分别测定围压为5,10,15, 20,25,30,35,40 MPa时岩样的渗透率,每个压力点稳定30 min;③再依次测量应力卸载时的渗透率;④ 将步骤①中的实验温度分别升高至50,100,170℃,重复步骤①—③。

  • 2 结果与讨论

  • 2.1 渗透率温度敏感程度评价

  • 由不同围压下渗透率随温度变化的特征(图2)可知,5 MPa围压作用下,岩样渗透率随温度升高降低幅度较大;10~20 MPa 围压作用下,岩样渗透率随温度升高降低幅度较小或几乎保持不变。这与前人的研究结果相似,一定温度范围内,渗透率随温度增加而下降,高温条件下岩石骨架膨胀在围压作用下孔隙空间被压缩是主要原因[13]。有效应力越大,温度对岩样渗透率的影响越小,有效应力达到一定值后温度对渗透率的影响几乎可忽略。不同围压下渗透率随温度变化呈指数函数关系(表3)。

  • 图2 不同围压下渗透率随温度变化特征

  • Fig.2 Characteristics of permeability variation with temperature under different confining pressures

  • Ar-M-2 与 Ar-M-3 岩样在室温条件下(20℃,20 MPa)渗透率分别为0.193和0.357 mD,原地温压条件下(170℃,20 MPa)渗透率分别为 0.116 和 0.175 mD,室温条件下岩样的渗透率为原地温压条件下的 1.66~2.04 倍,渗透率随温度变化呈指数函数变化趋势(图2)。

  • 表3 不同围压下渗透率与温度的函数关系

  • Table3 Functions of permeability and temperature under different confining pressures

  • 计算了不同围压下与 20℃相比,温度为 170℃ 时渗透率损害率(图3),围压为 5 MPa 时,Ar-M-2 的渗透率损害率为 74.86%,Ar-M-3 的为 44.24%,温度敏感程度为中等偏弱—强。围压增加至 20 MPa,Ar-M-2 的渗透率损害率为 39.76%,Ar-M-3 的为50.94%,温度敏感程度呈中等偏弱。

  • 图3 温度为170℃时不同围压下渗透率损害率

  • Fig.3 Permeability damage rates at 170℃ under different confining pressures

  • 2.2 温度对渗透率应力敏感程度评价

  • 有学者认为温度升高,岩石骨架体积膨胀,在考虑上覆地层压力作用时,岩石被压缩得更加致密,孔隙和喉道变小,渗透率会降低[14]。温度对岩石渗透率的影响低于有效应力对渗透率的影响,且应力敏感系数、渗透率均与温度存在正相关的线性关系[15]

  • 温度对渗透率应力敏感程度评价实验结果(图4,表4)表明,170℃高温环境岩样经应力加载后再卸载无因次渗透率较20℃时高,渗透率应力敏感性较弱。温度为 20℃时,围压由 5 MPa 增至 40 MPa 时,渗透率由 0.660 mD 下降至 0.030 mD,渗透率损害率为 95.08%;卸载至 5 MPa 围压时,渗透率恢复至 0.240 mD,渗透率损害率仍为 76.00%(图4)。继续升温至 100℃,围压加载过程渗透率由 0.124 mD 下降至 0.027 mD,渗透率损害率为 78.28%;围压卸载后,渗透率恢复至 0.097 mD,此时渗透率损害率降低至 20.97%。继续升温至 170℃,围压加载过程渗透率由0.085 mD下降至0.015 mD,渗透率损害率为 82.42%;围压卸载后,渗透率恢复至 0.204 5 mD,渗透率损害率为47.05%。

  • 2.3 温度敏感性作用机理

  • 2.3.1 温度和有效应力作用

  • 温度和围压是影响岩石物理及力学性质的主要外因,二者之间相互作用机理极为复杂[16-17]。上覆地层压力对岩石物理及力学性质具有显著影响,尤其对于埋藏较深的储层。围压的增加抑制了高温引起的矿物膨胀和微裂缝扩展的竞争作用,将初始阶段岩石强度强化效应和随后弱化效应这一现象放大化[18]。随着应力增加岩石压实程度增高, 200℃以内随温度上升矿物热膨胀效应增加颗粒界面间的剪切阻力,进而提升岩石强度。但温度继续升高,岩石强度会迅速降低,通常高达 500~1 000℃[19]

  • 低围压作用时,随着温度升高,矿物热膨胀,孔隙被压缩,岩石孔隙体积减小,渗透率下降(图5a)高围压作用时,溶蚀孔隙热演化,但是由于应力束缚作用,孔隙压缩程度低,渗透率降低并不显著,总体上来看,渗透率随温度变化更符合指数函数的变化趋势(图5b)。室温条件下,花岗片麻岩储层应力敏感性呈中等偏强,主要原因在于应力加载过程天然微裂缝闭合,应力卸载后裂缝张开程度低,导致渗流性能减弱(图5c);而高温环境削弱了花岗片麻岩储层的应力敏感性,主要原因在于 200℃内温度增加岩石强度提升,且在该温度范围内微裂缝发生扩展,裂缝面脱落的矿物颗粒具有支撑作用,使得应力加载过程中裂缝闭合效应迟滞,提升裂缝渗透率保持率,弱化应力敏感性(图5d)。

  • 图4 不同温度下花岗片麻岩储层渗透率应力敏感特征

  • Fig.4 Stress-sensitive characteristics of granite gneiss reservoirs at different temperatures

  • 表4 不同温度下花岗片麻岩储层渗透率应力敏感性评价结果

  • Table4 Evaluation results of stress sensitivity of granite gneiss reservoirs under different temperatures

  • 2.3.2 岩石物性、孔隙结构及矿物组分作用

  • 不同于放置在高温环境中岩石强度的弱化机制,岩石强度在温和温度范围内可能会降低或增加,WONG等在总结大量有关岩石热效应研究的基础上,认为室温至 200℃可被视为温和温度范围[20],变质岩在加热时存在强度由弱变强再变弱的过渡期,并归纳了3种主要作用机理:①微裂缝闭合的积极作用;②热诱导裂缝的双重效应;③岩石中水变化的双重效应。在该温度范围内岩石强度变化存在“过渡期”。总结了200℃范围内促成岩石强度增加的关键因素以及岩石 3 种典型过渡行为,这 3 种作用机理发生与岩石初始状态的物性、孔隙结构和矿物类型密切相关。

  • 初始孔隙度是影响岩石强度的主控因素,高孔隙度(>4%)岩石一般比低孔隙度(<4%)岩石强度增加幅度大。高孔隙度岩石的强度在 300~600℃ 温度范围增强[21],低孔隙度岩石自由空间小,应力高度集中有利于岩石热破裂,但通常在更高的温度下萌生热诱导裂缝,孔隙结构显著改善[22]

  • 由于大部分膨胀发生在不同晶体间接触边界,随着矿物颗粒粒径降低,晶体间接触边界总面积增加,细晶粒岩石热膨胀受温度变化比粗晶粒岩石更敏感[23]。细晶粒岩石热破裂阈值温度低至 60~75℃,表明“过渡期”强化时间会缩短[24]

  • 3 结论

  • 建立了花岗片麻岩储层的温度敏感性评价方法,明确了不同围压作用下花岗片麻岩储层的温度敏感性。低围压下花岗片麻岩储层温度敏感性为中等偏弱—强,高围压条件下,温度对渗透率的改变影响较小,温度敏感性较弱。对于花岗片麻岩基块岩样,渗透率为0.1~1 mD时,室温条件下(20℃,20 MPa)渗透率为原地温压条件下(170℃,20 MPa) 的 1.66~2.04 倍,渗透率随温度变化呈指数函数变化趋势。

  • 图5 花岗片麻岩储层温度敏感性及温度对应力敏感作用模式

  • Fig.5 Temperature sensitivity and effect of temperature on stress sensitivity of granite gneiss reservoirs

  • 20℃时的应力敏感程度较强,应力加载后再卸载渗透率难恢复,保持较差;170℃高温环境花岗片麻岩的应力敏感程度较弱,渗透率保持较好且易恢复,随温度增加岩石应力敏感性有减弱趋势。 200℃以内适中温度有利于岩石强度增强,减弱岩石应力敏感性。

  • 常温环境应力加载后,孔缝闭合,应力卸载后难以恢复,导致应力敏感性强;200℃内随温度上升矿物热膨胀效应增加颗粒界面间的剪切阻力,进而提升岩石强度,同时脱落的矿物颗粒使微孔缝的闭合迟滞,弱化应力敏感性。

  • 符号解释

  • A——实验样品横截面积,cm2

  • DKT——渗透率损害率,%;

  • i——温度点编号,1,2,···,6;

  • K——理论渗透率,mD;

  • Kg——气测渗透率,mD;

  • Ki ——Ti温度点对应的渗透率,mD;

  • Kmax——发生温度敏感前的最大渗透率,mD;

  • Kmin——发生温度敏感后的最小渗透率,mD;

  • L——实验样品长度,cm;

  • p0——标况条件下大气压力,MPa;

  • p1——入口压力,MPa;

  • p2——出口压力,MPa;

  • Q0——标况条件下气体流量,cm3 /s;

  • T——温度,℃;

  • Ti ——不同温度点的温度,℃;

  • μg——测试压力和测试温度下的气体黏度,mPa·s。

  • 参考文献

    • [1] 薛永安,李慧勇.渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J].中国海上油气,2018,30(3):1-9. XUE Yongan,LI Huiyong.Large condensate gas field in deep Archean metamorphic buried hill in Bohai Sea:discovery and geological significance[J].China Offshore Oil and Gas,2018,30(3):1-9.

    • [2] 徐长贵,周心怀,邓津辉.渤海锦州 25-1 大型轻质油气田的发现与启示[J].中国石油勘探,2010,15(1):34-38. XU Changgui,ZHOU Xinhuai,DENG Jinhui.Discovery of large-scale Jinzhou25-1 light oil & gas field in Bohai Sea area and its enlightenment[J].China Petroleum Exploration,2010,15(1):34-38.

    • [3] 何瑞兵,范白涛,马英文,等.新型抗高温水包油钻井液研究与应用[J].中国海上油气,2011,23(6):403-407.HE Ruibing,FAN Baitao,MA Yingwen,et al.Study and applica‐ tion of the new high temperature tolerance oil-in-water drilling fluid[J].China Offshore Oil and Gas,2011,23(6):403-407.

    • [4] 沈澈,蒋有录,苏圣民,等.二连盆地乌兰花凹陷花岗岩潜山储层特征及发育模式[J].大庆石油地质与开发,2021,40(6):12-19.SHEN Che,JIANG Youlu,SU Shengmin,et al.Characteristics and development modes of the granite buried-hill reservoir in Wulanhua Sag of Erlian Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(6):12-19.

    • [5] 卢欢,牛成民,李慧勇,等.变质岩潜山油气藏储层特征及评价 [J].断块油气田,2020,27(1):28-33.LU Huan,NIU Chengmin,LI Huiyong,et al.Reservoir feature and evaluation of metamorphic buried-hill reservoir[J].FaultBlock Oil and Gas Field,2020,27(1):28-33.

    • [6] 李鸿儒,谭忠健,胡云,等.渤中凹陷西南环M构造太古界潜山油气藏流体类型随钻识别方法[J].油气地质与采收率,2021,28(5):22-31.LI Hongru,TAN Zhongjian,HU Yun,et al.Reservoir fluid type identification while drilling for Archaeozoic buried hill reservoir of M structure at southwest margin of Bozhong Sag,Bohai Sea,East China[J].Petroleum Geology and Recovery Efficiency,2021,28(5):22-31.

    • [7] ZHU Jingyi,YANG Zhaozhong,LI Xiaogang,et al.Evaluation of different microwave heating parameters on the pore structure of oil shale samples[J].Energy Science & Engineering,2018,6(6):797-809.

    • [8] LI Xinlei,YOU Lijun,KANG Yili,et al.Investigation on the thermal cracking of shale under different cooling modes[J].Jour‐ nal of Natural Gas Science and Engineering,2022,97:104359.

    • [9] SCHEMBRE J M,KOVSCEK A R.Mechanism of formation damage at elevated temperature[J].Journal of Energy Resources Technology,Transaction of the ASME,2005,127(3):171-180.

    • [10] 苏玉亮,庄新宇,李蕾,等.致密砂岩气藏长岩心压力损失及渗透率损害评价实验[J].特种油气藏,2021,28(1):98-102.SU Yuliang,ZHUANG Xinyu,LI Lei,et al.Experiment on long core pressure loss and permeability damage evaluation in tight sandstone gas reservoir[J].Special Oil & Gas Reservoirs,2021,28(1):98-102.

    • [11] 王晓雯.致密油藏储层敏感性评价及主控因素研究[J].特种油气藏,2021,28(1):103-110.WANG Xiaowen.Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J].Special Oil & Gas Reservoirs,2021,28(1):103-110.

    • [12] 孟选刚,郭肖,高涛.特低渗砂岩储层温度敏感性实验[J].西南石油大学学报:自然科学版,2015,37(3):98-102. MENG Xuangang,GUO Xiao,GAO Tao.Temperature sensitivi‐ ty experiment on ultra-low permeability sandstone reservoir[J].Journal of Southwest Petroleum University:Science & Technolo‐ gy Edition,2015,37(3):98-102.

    • [13] 曾平,赵金洲,李治平,等.温度、有效应力和含水饱和度对低渗透砂岩渗透率影响的实验研究[J].天然气地球科学,2005,16(1):31-34. ZENG Ping,ZHAO Jinzhou,LI Zhiping,et al.Experimental study concerning the effect of temperature,effective stress and water saturation on the permeability of tight sandstone[J].Natu‐ ral Gas Geoscience,2005,16(1):31-34.

    • [14] 刘向君,高涵,梁利喜.温度围压对低渗透砂岩孔隙度和渗透率的影响研究[J].岩石力学与工程学报,2011,30(S2):3 771-3 778. LIU Xiangjun,GAO Han,LIANG Lixi.Study of temperature and confining pressure effects on porosity and permeability in low permeability sandstone[J].Chinese Journal of Rock Mechan‐ ics and Engineering,2011,30(S2):3 771-3 778.

    • [15] 刘洪,郭肖.温度对低渗透砂岩应力敏感性影响实验研究[J].石油化工应用,2016,35(4):23-27,32. LIU Hong,GUO Xiao.Experimental study on temperature effect on stress sensitivity of low permeability sandstone[J].Petrochem‐ ical Industry Application,2016,35(4):23-27,32.

    • [16] SHU Biao,ZHU Runjun,ELSWORTH D,et al.Effect of temper‐ ature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite[J].Ap‐ plied Energy,2020,272:115290.1-115290.12.

    • [17] RAMEZANIAN M,EMADI H.Investigating effects of tempera‐ ture and confining pressure on dynamic elastic properties and permeability-an experimental study[J].Geomechanics for Energy and the Environment,2020,22:100179.

    • [18] WONG L N Y,ZHANG Yahui.Numerical investigation of micro‐ mechanisms of thermal strengthening in rock[C].New York:53rd U S Rock Mechanics/Geomechanics Symposium,2019.

    • [19] YANG Shengqi,XU Peng,LI Yanbao,et al.Experimental investi‐ gation on triaxial mechanical and permeability behavior of sand‐ stone after exposure to different high temperature treatments[J].Geothermics,2017,69:93-109.

    • [20] WONG L N Y,ZHANG Yahui,WU Zhijun.Rock strengthening or weakening upon heating in the mild temperature range?[J].Engineering Geology,2020,272:105619.

    • [21] RANJITH P G,VIETE D R,CHEN Baijie,et al.Transformation plasticity and the effect of temperature on the mechanical behav‐ iour of Hawkesbury sandstone at atmospheric pressure[J].Engi‐ neering Geology,2012,151:120-127.

    • [22] FREDRICH J T,WONG T.Micromechanics of thermally in‐ duced cracking in three crustal rocks[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Ab‐ stracts,1987,24(4):134.

    • [23] MALAGA-STARZEC K,ÅKESSON U,LINDQVIST J E,et al.Microscopic and macroscopic characterization of the porosity of marble as a function of temperature and impregnation[J].Con‐ struction and Building Materials,2006,20(10):939-947.

    • [24] ALM O,JAKTLUND L,KOU Shaoquan.The influence of mi‐ crocrack density on the elastic and fracture mechanical proper‐ ties of Stripa granite[J].Physics of the Earth and Planetary Interi‐ ors,1985,40(3):161-179.

  • 参考文献

    • [1] 薛永安,李慧勇.渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J].中国海上油气,2018,30(3):1-9. XUE Yongan,LI Huiyong.Large condensate gas field in deep Archean metamorphic buried hill in Bohai Sea:discovery and geological significance[J].China Offshore Oil and Gas,2018,30(3):1-9.

    • [2] 徐长贵,周心怀,邓津辉.渤海锦州 25-1 大型轻质油气田的发现与启示[J].中国石油勘探,2010,15(1):34-38. XU Changgui,ZHOU Xinhuai,DENG Jinhui.Discovery of large-scale Jinzhou25-1 light oil & gas field in Bohai Sea area and its enlightenment[J].China Petroleum Exploration,2010,15(1):34-38.

    • [3] 何瑞兵,范白涛,马英文,等.新型抗高温水包油钻井液研究与应用[J].中国海上油气,2011,23(6):403-407.HE Ruibing,FAN Baitao,MA Yingwen,et al.Study and applica‐ tion of the new high temperature tolerance oil-in-water drilling fluid[J].China Offshore Oil and Gas,2011,23(6):403-407.

    • [4] 沈澈,蒋有录,苏圣民,等.二连盆地乌兰花凹陷花岗岩潜山储层特征及发育模式[J].大庆石油地质与开发,2021,40(6):12-19.SHEN Che,JIANG Youlu,SU Shengmin,et al.Characteristics and development modes of the granite buried-hill reservoir in Wulanhua Sag of Erlian Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(6):12-19.

    • [5] 卢欢,牛成民,李慧勇,等.变质岩潜山油气藏储层特征及评价 [J].断块油气田,2020,27(1):28-33.LU Huan,NIU Chengmin,LI Huiyong,et al.Reservoir feature and evaluation of metamorphic buried-hill reservoir[J].FaultBlock Oil and Gas Field,2020,27(1):28-33.

    • [6] 李鸿儒,谭忠健,胡云,等.渤中凹陷西南环M构造太古界潜山油气藏流体类型随钻识别方法[J].油气地质与采收率,2021,28(5):22-31.LI Hongru,TAN Zhongjian,HU Yun,et al.Reservoir fluid type identification while drilling for Archaeozoic buried hill reservoir of M structure at southwest margin of Bozhong Sag,Bohai Sea,East China[J].Petroleum Geology and Recovery Efficiency,2021,28(5):22-31.

    • [7] ZHU Jingyi,YANG Zhaozhong,LI Xiaogang,et al.Evaluation of different microwave heating parameters on the pore structure of oil shale samples[J].Energy Science & Engineering,2018,6(6):797-809.

    • [8] LI Xinlei,YOU Lijun,KANG Yili,et al.Investigation on the thermal cracking of shale under different cooling modes[J].Jour‐ nal of Natural Gas Science and Engineering,2022,97:104359.

    • [9] SCHEMBRE J M,KOVSCEK A R.Mechanism of formation damage at elevated temperature[J].Journal of Energy Resources Technology,Transaction of the ASME,2005,127(3):171-180.

    • [10] 苏玉亮,庄新宇,李蕾,等.致密砂岩气藏长岩心压力损失及渗透率损害评价实验[J].特种油气藏,2021,28(1):98-102.SU Yuliang,ZHUANG Xinyu,LI Lei,et al.Experiment on long core pressure loss and permeability damage evaluation in tight sandstone gas reservoir[J].Special Oil & Gas Reservoirs,2021,28(1):98-102.

    • [11] 王晓雯.致密油藏储层敏感性评价及主控因素研究[J].特种油气藏,2021,28(1):103-110.WANG Xiaowen.Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J].Special Oil & Gas Reservoirs,2021,28(1):103-110.

    • [12] 孟选刚,郭肖,高涛.特低渗砂岩储层温度敏感性实验[J].西南石油大学学报:自然科学版,2015,37(3):98-102. MENG Xuangang,GUO Xiao,GAO Tao.Temperature sensitivi‐ ty experiment on ultra-low permeability sandstone reservoir[J].Journal of Southwest Petroleum University:Science & Technolo‐ gy Edition,2015,37(3):98-102.

    • [13] 曾平,赵金洲,李治平,等.温度、有效应力和含水饱和度对低渗透砂岩渗透率影响的实验研究[J].天然气地球科学,2005,16(1):31-34. ZENG Ping,ZHAO Jinzhou,LI Zhiping,et al.Experimental study concerning the effect of temperature,effective stress and water saturation on the permeability of tight sandstone[J].Natu‐ ral Gas Geoscience,2005,16(1):31-34.

    • [14] 刘向君,高涵,梁利喜.温度围压对低渗透砂岩孔隙度和渗透率的影响研究[J].岩石力学与工程学报,2011,30(S2):3 771-3 778. LIU Xiangjun,GAO Han,LIANG Lixi.Study of temperature and confining pressure effects on porosity and permeability in low permeability sandstone[J].Chinese Journal of Rock Mechan‐ ics and Engineering,2011,30(S2):3 771-3 778.

    • [15] 刘洪,郭肖.温度对低渗透砂岩应力敏感性影响实验研究[J].石油化工应用,2016,35(4):23-27,32. LIU Hong,GUO Xiao.Experimental study on temperature effect on stress sensitivity of low permeability sandstone[J].Petrochem‐ ical Industry Application,2016,35(4):23-27,32.

    • [16] SHU Biao,ZHU Runjun,ELSWORTH D,et al.Effect of temper‐ ature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite[J].Ap‐ plied Energy,2020,272:115290.1-115290.12.

    • [17] RAMEZANIAN M,EMADI H.Investigating effects of tempera‐ ture and confining pressure on dynamic elastic properties and permeability-an experimental study[J].Geomechanics for Energy and the Environment,2020,22:100179.

    • [18] WONG L N Y,ZHANG Yahui.Numerical investigation of micro‐ mechanisms of thermal strengthening in rock[C].New York:53rd U S Rock Mechanics/Geomechanics Symposium,2019.

    • [19] YANG Shengqi,XU Peng,LI Yanbao,et al.Experimental investi‐ gation on triaxial mechanical and permeability behavior of sand‐ stone after exposure to different high temperature treatments[J].Geothermics,2017,69:93-109.

    • [20] WONG L N Y,ZHANG Yahui,WU Zhijun.Rock strengthening or weakening upon heating in the mild temperature range?[J].Engineering Geology,2020,272:105619.

    • [21] RANJITH P G,VIETE D R,CHEN Baijie,et al.Transformation plasticity and the effect of temperature on the mechanical behav‐ iour of Hawkesbury sandstone at atmospheric pressure[J].Engi‐ neering Geology,2012,151:120-127.

    • [22] FREDRICH J T,WONG T.Micromechanics of thermally in‐ duced cracking in three crustal rocks[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Ab‐ stracts,1987,24(4):134.

    • [23] MALAGA-STARZEC K,ÅKESSON U,LINDQVIST J E,et al.Microscopic and macroscopic characterization of the porosity of marble as a function of temperature and impregnation[J].Con‐ struction and Building Materials,2006,20(10):939-947.

    • [24] ALM O,JAKTLUND L,KOU Shaoquan.The influence of mi‐ crocrack density on the elastic and fracture mechanical proper‐ ties of Stripa granite[J].Physics of the Earth and Planetary Interi‐ ors,1985,40(3):161-179.