en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郑启明(1982—),男,湖南武冈人,工程师,硕士,从事石油地质方面的研究。E-mail:31684081@qq.com。

通讯作者:

李琦(1969—),男,河南济源人,教授,博士。E-mail:liqi@cugb.edu.cn。

中图分类号:TE121.3

文献标识码:A

文章编号:1009-9603(2023)03-0059-10

DOI:10.13673/j.pgre.202303029

参考文献 1
李华,杨朝强,周伟,等.莺歌海盆地东方 1-1 气田中新统黄流组浅海多级海底扇形成机理及储层分布[J].石油与天然气地质,2023,44(2):429-440.LI Hua,YANG Zhaoqiang,ZHOU Wei,et al.Genetic mecha‐ nism and reservoir distribution of shallow-marine multi-stepped submarine fans in the Miocene Huangliu Formation of Dongfang 1-1 gas field,Yinggehai Basin [J].Oil & Gas Geology,2023,44(2):429-440.
参考文献 2
GOULD K,PE-PIPER G,PIPER D J W.Relationship of diage‐ netic chlorite rims to depositional facies in Lower Cretaceous res‐ ervoir sandstones of the Scotian Basin [J].Sedimentology,2010,57(2):587-610.
参考文献 3
PIPER D J W,NOFTALL R,PE-PIPER G.Allochthonous pro‐ deltaic sediment facies in the Lower Cretaceous at the Tantallon M-41 well:Implications for the deep-water Scotian Basin [J].AAPG Bulletin,2010,94(1):87-104.
参考文献 4
KARIM A,HANLEY J J,PE-PIPER G,et al.Paleohydrogeo‐ logical and thermal events recorded by fluid inclusions and stable isotopes of diagenetic minerals in Lower Cretaceous sandstones,offshore Nova Scotia,Canada [J].AAPG Bulletin,2012,96(6):1 147-1 169.
参考文献 5
MOSCARDELLI L,OCHOA J,HUNT I,et al.Mixed silici‐ clastic-carbonate systems and their impact for the development of deep-water turbidites in continental margins:A case study from the Late Jurassic to Early Cretaceous Shelburne Sub-basin in offshore Nova Scotia [J].AAPG Bulletin,2019,103(10):2 487-2 520.
参考文献 6
SANGSTER C,PIPER D J W,HAWIE N,et al.Forward strati‐ graphic modelling of sediment pathways and depocentres in saltinfluenced passive-margin basins:Lower Cretaceous,central Scotian Basin [J].Basin Research,2019,31(4):728-753.
参考文献 7
SONG C P,JIANG S,WEN Z X,et al.Comparison of the pe‐ troleum geology in the deep-water basins between the passive margin of Morocco and its conjugate margin of Canada [J].Jour‐ nal of Earth Science,2020,31(5):919-929.
参考文献 8
WU G K,KONG F J,TIAN N X,et al.Structural characteris‐ tics and deep-water hydrocarbon accumulation model of the Sco‐ tian Basin,Eastern Canada [J].Energy Geoscience,2023,4(3):100152.
参考文献 9
MUKHOPADHYAY P K,BROWN D E,KIDSTON A G,et al.Petroleum systems of deepwater Scotian Basin,Eastern Canada:Challenges for finding oil versus gas provinces[C].Houston:Offshore Technology Conference,2003:2 053-2 063.
参考文献 10
KHALID P,AHMED N,KHAN K A,et al.AVO-derived attri‐ butes to differentiate reservoir facies from non-reservoirs facies and fluid discrimination in Penobscot area,Nova Scotia [J].Geo‐ sciences Journal,2015,19(3):471-480.
参考文献 11
OYARZUN R,DOBLAS M,LÓPEZ-RUIZ J,et al.Opening of the central Atlantic and asymmetric mantle upwelling phenome‐ na:Implications for long-lived magmatism in western North Af‐ rica and Europe [J].Geology,1997,25(8):727-730.
参考文献 12
LI G,PE-PIPER G,PIPER D J W.The provenance of Middle Jurassic sandstones in the Scotian Basin:Petrographic evidence of passive margin tectonics [J].Canadian Journal of Earth Scienc‐ es,2012,49(12):1 463-1 477.
参考文献 13
RODRIGUES S,DEPTUCK M E,KENDELL K L,et al.Creta‐ ceous to Eocene mixed turbidite-contourite systems offshore No‐ va Scotia(Canada):Spatial and temporal variability of downand along-slope processes [J].Marine and Petroleum Geology,2022,138:105572.
参考文献 14
SIBUET J C,ROUZO S,SRIVASTAVA S.Plate tectonic recon‐ structions and paleogeographic maps of the central and North At‐ lantic oceans [J].Canadian Journal of Earth Sciences,2012,49(12):1 395-1 415.
参考文献 15
CAMPBELL T J,RICHARDS F W B,SILVA R L,et al.Inter‐ pretation of the Penobscot 3D seismic volume using constrained sparse spike inversion,Sable Sub-Basin,offshore Nova Scotia [J].Marine and Petroleum Geology,2015,68:73-93.
参考文献 16
BEICIP Franlab.Play fairway analysis atlas [R].Nova Scotia,Canada,2011.
参考文献 17
陈华,林畅松,张忠民,等.西非下刚果-刚果扇盆地A区块中新统深水水道体系沉积特征及演化[J].石油实验地质,2021,43(5):476-486.CHEN Hua,LIN Changsong,ZHANG Zhongmin,et al.Depo‐ sitional characteristics and evolution of Miocene deep-water channel systems in block A of Lower Congo-Congo Fan Basin,West Africa [J].Petroleum Geology & Experiment,2021,43(5):476-486.
参考文献 18
李建平,廖计华,方勇.基于露头和岩心的深水重力流沉积新认识及其油气地质意义[J].油气地质与采收率,2020,27(6):30-37.LI Jianping,LIAO Jihua,FANG Yong.New understanding of deep-water gravity flow deposition and its significance in petro‐ leum geology based on outcrops and cores [J].Petroleum Geolo‐gy and Recovery Efficiency,2020,27(6):30-37.
参考文献 19
CHEN H,LIN C S,ZHANG Z M,et al.Evolution and control‐ ling factors of the gravity flow deposits in the Miocene sequence stratigraphic framework,the Lower Congo-Congo Fan Basin,West Africa [J].Petroleum Exploration and Development,2021,48(1):146-158.
参考文献 20
吴高奎,张忠民,陈华,等.下刚果盆地中新统重力流沉积演化及控制因素[J].沉积学报,2023,41(2):73-84.WU Gaokui,ZHANG Zhongmin,CHEN Hua,et al.Sedimen‐ tary evolution and controlling factors of Miocene gravity flow deposits in the Lower Congo Basin [J].Acta Sedimentologica Si‐ nica,2023,41(2):73-84.
参考文献 21
POSAMENTIER H W,KOLLA V,刘化清.深水浊流沉积综述 [J].沉积学报,2019,37(5):879-903.POSAMENTIER H W,KOLLA V,LIU Huaqing.An overview of deep-water turbidite deposition [J].Acta Sedimentologica Si‐ nica,2019,37(5):879-903.
参考文献 22
林畅松.盆地沉积动力学:研究现状与未来发展趋势[J].石油与天然气地质,2019,40(4):1-16.LIN Changsong.Sedimentary dynamics of basin:Status and trend [J].Oil & Gas Geology,2019,40(4):1-16.
参考文献 23
蒋恕,王浩,郭涛,等.渤海湾盆地辽东湾坳陷盆中隆起缓坡带重力流沉积形态及其控制因素[J].石油与天然气地质,2022,43(4):823-832.JIANG Shu,WANG Hao,GUO Tao,et al.Geomorphology of gravity flow deposits in the gentle slope zone of intra-basinal high in the Liaodong Bay Depression,Bohai Bay Basin and its controlling factors [J].Oil & Gas Geology,2022,43(4):823-832.
参考文献 24
郭玉新.渤中凹陷埕岛东坡东三段沉积物重力流类型及沉积模式[J].油气地质与采收率,2021,28(3):14-24.GUO Yuxin.Types and sedimentary models of sediment gravity flows of Ed3 Member in east slope of Chengdao area,Bozhong Sag [J].Petroleum Geology and Recovery Efficiency,2021,28(3):14-24.
参考文献 25
李安琪,胡林,王真真,等.琼东南盆地乐东凹陷梅山组海底扇沉积演化及油气地质意义[J].油气地质与采收率,2021,28(2):76-84.LI Anqi,HU Lin,WANG Zhenzhen,et al.Sedimentary evolu‐ tion of Meishan Formation submarine fan in Ledong Sag,Qiong‐ dongnan Basin and its significance in hydrocarbon exploration [J].Petroleum Geology and Recovery Efficiency,2021,28(2):76-84.
参考文献 26
WESTON J F,MACRAE R A,ASCOLI P,et al.A revised bio‐ stratigraphic and well-log sequence-stratigraphic framework for the Scotian margin,offshore eastern Canada[J].Canadian Journal of Earth Sciences,2012,49(12):1 417-1 462.
参考文献 27
MERCIER D L M,LONCKE L,BASILE C,et al.Transform continental margins-Part 2:A worldwide review[J].Tectonophys‐ ics,2016,693:96-115.
参考文献 28
冯志强,郭丰涛,张忠民,等.转换型陆缘——尼日尔三角洲盆地成因类型再认识[J].岩石学报,2022,38(9):2 565-2 580.FENG Zhiqiang,GUO Fengtao,ZHANG Zhongmin,et al.A transform margin:Review of genetic types of the Niger Delta Ba‐ sin[J].Acta Petrologica Sinica,2022,38(9):2 565-2 580.
参考文献 29
ALLEN P A,ALLEN J R.Basin Analysis:Principles and appli‐ cation to petroleum play assessment[M].Oxford:Wiley Black‐ well,2013:1-632.
参考文献 30
冯志强,李萌,郭元岭,等.中国典型大型走滑断裂及相关盆地成因研究[J].地学前缘,2022,29(6):206-223.FENG Zhiqiang,LI Meng,GUO Yuanling,et al.Genetic analy‐ sis of typical strike-slip faults and related basins in China[J].Earth Science Frontiers,2022,29(6):206-223.
参考文献 31
LIN C S,JIANG J,SHI H S,et al.Sequence architecture and depositional evolution of the Northern continental slope of the South China Sea:Responses to tectonic processes and changes in sea level[J].Basin Research,2017,30(1):568-595.
参考文献 32
龚承林,齐昆,徐杰,等.深水源-汇系统对多尺度气候变化的过程响应与反馈机制[J].沉积学报,2021,39(1):231-252.GONG Chenglin,QI Kun,XU Jie,et al.Process-product link‐ ages and feedback mechanisms of deepwater source-to-sink re‐ sponses to multi⁃scale climate changes[J].Acta Sedimentologica Sinica,2021,39(1):231-252.
参考文献 33
HADLER-JACOBSEN F,JOHANNESSEN E P,ASHTON N,et al.Submarine fan morphology and lithology distribution[M]//DORE A G,VINING B A,eds.Petroleum geology.London:Geo‐ logical Society,2005:1 121-1 145.
目录contents

    摘要

    针对加拿大东部斯科舍盆地重力流沉积演化研究不足的问题,综合岩心、测井、地震及磁异常等资料,明确斯科舍盆地塞布尔次盆下白垩统重力流沉积单元,揭示其沉积演化并探讨发育控制因素。研究结果表明:斯科舍盆地塞布尔次盆下白垩统密西沙加组和洛根峡谷组发育规模性重力流沉积,可以识别出块体搬运、重力流水道、天然堤及朵叶体等沉积单元;密西沙加组沉积初期(距今147 Ma)研究区西部发育小型重力流沉积,沉积末期(距今130 Ma)研究区中部发育大型坡底扇;洛根峡谷组沉积初期(距今 113 Ma)研究区普遍发育小型重力流沉积,沉积末期 (距今101 Ma)研究区东南部发育大型坡底扇。陆架边缘三角洲进积及陆坡窄、陡,分别为重力流发育提供了物质基础和动力条件。

    Abstract

    The research on the evolution of gravity flow deposits in the Scotia Basin in eastern Canada is insufficient. Therefore,according to the data of core samples,logging,seismic,and magnetic anomaly,the Lower Cretaceous grav‐ ity flow deposit units in the Sable Subbasin of the Scotia Basin are defined,and the evolution of deposits and develop‐ ment control factors are revealed and discussed. The results show that the Lower Cretaceous Mississauga Formation (MF)and Logan Canyon Formation(LF)in the Sable Subbasin of the Scotia Basin develop large-scale gravity flow de‐ posits,and deposit units including mass transport deposits(MTDs),gravity flow channels,natural levees,and lobes are identified. The small-scale gravity flow deposits develop in the west of the study area at the early deposit stage of MF (147 Ma before present),and the large-scale slope bottom fans develop in the middle of the study area at the late stage of MF(130 Ma before present). The small-scale gravity flow deposits commonly develop in the study area at the early deposit stage of LF(113 Ma before present),and the large-scale slope bottom fans develop in the southeast of the study area at the late deposit stage of LF(101 Ma before present). The shelf-edge deltas and steep continental slopes provide the material foundation and dynamic conditions for the development of gravity flow respectively.

  • 近年来,大西洋两岸诸多被动大陆边缘盆地(如圭亚那盆地、下刚果盆地)在深水区不断取得重大油气发现[1]。加拿大东部的斯科舍盆地为中大西洋西岸典型的中、新生代含盐被动大陆边缘盆地。早白垩世斯科舍盆地中北部的塞布尔次盆(Sable Subbasin)发育整体持续向海进积的大型陆架边缘三角洲沉积[2],砂体物性较好,构成了塞布尔气田群(可采储量达 2.5×108 t 油当量)的重要储层[3-4]。这些粗粒碎屑如果被大规模搬运至深水,将极大提高斯科舍盆地的深水油气勘探潜力[5]。截至目前,在斯科舍盆地现今陆坡先后完钻的数口探井并未钻遇厚层浊积砂岩,深水区仍属油气勘探前沿领域,并持续引发一个热点问题:斯科舍盆地下白垩统陆架边缘三角洲前端是否发育规模性重力流沉积?前人积极从混合沉积、盆地模拟及共轭陆缘对比等角度做出不少有意义的探索[5-7],倾向于认为斯科舍盆地发育深水重力流沉积并具有一定的油气勘探潜力,但其在沉积单元类型识别及沉积演化分析等方面仍存在不足。基于对斯科舍盆地塞布尔次盆及其邻区岩心、测井、地震及磁异常等资料的综合分析,识别出研究区下白垩统深水重力流沉积单元,进而揭示其沉积演化特征并探讨发育控制因素,旨在为斯科舍盆地的深水油气勘探工作提供借鉴。

  • 1 地质概况

  • 斯科舍盆地位于加拿大新斯科舍陆缘,从西南部美国边界的 Yarmouth Arch 延伸至东北部纽芬兰大浅滩的阿瓦隆隆起[8],长度约为 1 200 km,平均宽度约为250 km,总面积约为30×104 km2,目前盆地一半位于陆架,一半位于陆坡-深海平原,最大水深超过 4 km(图1)。构造单元上,斯科舍盆地自西向东可划分为谢尔本(Shelburne)、莫西干(Mohican)、安纳波利斯(Annapolis)、塞布尔(Sable)、阿布纳基 (Abenaki)、坦特伦(Tantallon)、休伦(Huron)和劳伦琴(Laurentian)等8个次盆[9-10] (图1)。

  • 斯科舍盆地的发育演化与中、新生代中大西洋的持续扩张以及北美板块与非洲板块的分离密切相关[11-13],为典型的被动大陆边缘盆地。裂谷期(距今 251~200 Ma)发育小型窄深裂谷,以构造沉降为主 (受控于弥散状的高角度正断层),充填陆相红层及阿尔戈组(Argo)蒸发岩沉积[14-16];三叠纪末—侏罗纪初(距今约 200 Ma),岩石圈破裂,形成拉斑玄武岩、SDR(向海倾斜反射层)和洋壳,盆地进入过渡期 (距今 200~150 Ma),发育莫西干组(Mohican)、莫霍克组(Mohank)、密克马克组(Mic Mac)碎屑岩及阿布纳基组(Abenaki)碳酸盐岩沉积[13];侏罗纪末— 白垩纪初,盆地进入早漂移期,阿瓦隆隆起(Avalon Uplift)强烈隆升、剥蚀,大量的陆源碎屑越过碳酸盐岩台地,形成大规模下白垩统陆架边缘三角洲沉积; 晚白垩世,盆地进入晚漂移期[13],发育以加积为主的成熟陆缘层序(图2)。

  • 图1 斯科舍盆地构造单元划分及井-震资料分布

  • Fig.1 Division of tectonic units and distribution of well-seismic data in Scotia Basin

  • 研究目的层下白垩统主要发育密西沙加组 (Mississauga)及上覆洛根峡谷组(Logan Canyon)陆架边缘三角洲沉积,盆地目前发现的大部分油气均蕴藏其中[8]。密西沙加组大体对应于贝利亚阶—巴雷姆阶,在研究区的厚度达3.5 km,向海过渡为沃瑞尔峡谷组(Verrill Canyon)泥岩沉积;洛根峡谷组大体对应于阿普特阶—塞诺曼阶,包括纳斯卡皮段 (Naskapi)泥岩、克里段(Cree)砂岩、塞布尔段(Sa‐ ble)泥岩和马莫拉段(Marmora)砂岩,向海过渡为肖特兰组(Shortland)泥岩沉积(图2)[5]

  • 图2 斯科舍盆地塞布尔次盆沉积充填柱状图

  • Fig.2 Stratigraphic chart of deposits and filling in Sable Subbasin of Scotia Basin

  • 2 沉积单元类型

  • 基于岩心、测井及地震等资料(图3—图5)的综合分析,总结出研究区主要的岩相组合特征,进而识别出块体搬运、重力流水道、天然堤及朵叶体等4种重力流沉积单元。

  • 2.1 块体搬运

  • 岩相上表现为棕红色、深灰色泥岩(生物扰动现象稀疏),夹薄层泥质粉砂岩,含扁平化菱铁矿结核或胶结层,发育透镜状层理、交错层理,滑塌构造变形丰富,泥岩层呈韧性变形,砂岩层呈脆性变形,砂泥接触面见低角度剪切带(图3a)。测井相方面,自然伽马曲线呈下漏斗-上钟型的复合旋回,齿化且顶、底突变(图4)。地震相上呈现弱振幅、低频、连续性差的反射特征,具有杂乱反射构型,底部见侵蚀作用,RMS 振幅属性可见侵蚀擦痕发育或呈斑点状[17]。综合岩相组合特征分析结果,可以解释为块体搬运沉积(MTD),多见于坡度较陡的外陆架-上陆坡[18]

  • 2.2 重力流水道

  • 重力流水道可分为侵蚀过路型水道、受限侵蚀型水道、弱受限侵蚀-加积型水道和不受限加积型水道等[19-20]。在地震剖面上,研究区洛根峡谷组可见弱振幅、高频、连续性中等的地震相特征,发育“V”形深切,以侵蚀充填为主,宽深比值很小(宽度可达 2 km,深度可达 2 km),孤立且随机发育(图5b),可解释为侵蚀过路型水道(研究区钻井资料不足,其岩相、测井相特征难以识别);密西沙加组可见强振幅、中频、连续性中等的地震相特征,发育“U”形侵蚀,以侵蚀充填为主,宽深比值较大(宽度为 10 km,深度为2 km)(图5b),可解释为受限侵蚀水道;RMS振幅属性可见洛根峡谷组发育“蛇曲形”窄条带状的振幅异常(图5c,5d),可解释为弱受限侵蚀-加积型水道。

  • 图3 斯科舍盆地塞布尔次盆W8井密西沙加组岩心照片(据文献[3]修改)

  • Fig.3 Core photos of Well W8 in MF in Sable Subbasin of Scotia Basin(Modified according to reference [3]

  • 图4 斯科舍盆地塞布尔次盆密西沙加组连井剖面(据文献[5]修改)

  • Fig.4 Connected well profile of MF in Sable Subbasin of Scotia Basin(Modified according to reference [5]

  • 图5 斯科舍盆地塞布尔次盆三维地震剖面解释及均方根振幅属性分析(剖面位置见图1和图6)(据文献[16]修改)

  • Fig.5 Three-dimensional seismic profile interpretation and RMS amplitude attribute analysis of Sable Subbasin of Scotia Basin (See profiles locations in Figs.1 and 6)(Modified according to reference [16]

  • 2.3 天然堤

  • 岩相特征表现为黑色泥岩,夹薄层中、细粒砂岩及粉砂质纹层(指示溢岸高密度浊流的存在),生物扰动作用稀疏,砂、泥岩突变接触,偶见负载构造,内部发育大量指示深水强还原环境及沉积速率突然下降的菱铁矿内碎屑、胶结层及指示砂质供应不足的衰减波纹层理;此外,可见递变层理、平行层理、交错层理、水平层理,对应鲍马序列的a-b-c-d段(图3b)。测井相特征表现为自然伽马曲线呈指状、锯齿状(图4)。地震相一般表现为强振幅、中频、连续性较好的楔状反射构型。综合上述岩相组合特征,总体可解释为天然堤沉积[3]

  • 2.4 朵叶体

  • 岩相特征表现为细砂岩、粉砂岩夹薄层泥岩,发育平行层理、波状层理等。测井相特征表现为自然伽马曲线一般呈漏斗型。地震相表现为强振幅、低频、连续性特征,呈透镜状反射或低幅丘状反射,底界面几乎无侵蚀作用,宽深比值大,以加积充填为主,RMS 振幅属性可见朵叶状,总体解释为朵叶体沉积(图5)。朵叶体的发育指示平缓的古地貌坡度,重力流作用较弱,对应于完整浊流体系的末端/ 下段[21]

  • 3 沉积演化特征

  • 密西沙加组沉积初期至沉积末期,斯科舍盆地塞布尔次盆陆架边缘三角洲发育规模增大并向东迁移(轴向仍为 NE—SW 向),沉积初期重力流水道集中发育于陆坡西侧且规模较小,沉积末期发育规模增大。从密西沙加组沉积末期至洛根峡谷组沉积初期,研究区陆架边缘三角洲分布范围减小,轴向由 NE—SW 向转变为近 NS 向,水道发育规模总体减小,发育区域向东迁移。洛根峡谷组沉积初期(距今 113 Ma)到沉积末期(距今 101 Ma),研究区陆架边缘三角洲发育规模明显增大,轴向仍为近 NS向,重力流水道发育规模增大,但主体仍位于陆坡东侧,呈现继承性发育、规模增大的沉积演化特征。

  • 3.1 密西沙加组沉积时期

  • 3.1.1 沉积初期

  • 密西沙加组沉积初期(距今 147 Ma),塞布尔陆架边缘三角洲已具规模并总体持续进积,最终三角洲砂体越过侏罗系碳酸盐岩台地/浅滩并通过4条斜坡水道继续向深水搬运。斜坡水道集中发育于研究区西部,中东部未见发育,可能是因为该时期陆架边缘三角洲主要的分流河道或水下分流河道集中分布在西侧。斜坡水道的轴向为近NS向,中部水道向深水推进时,在 W11 井附近,因受盐构造封堵而卸载沉积形成斜坡扇,东侧 2 条水道未受到盐构造的封堵而得以向深水远距离推进,最终形成坡底扇沉积 (图6a)。

  • 3.1.2 沉积末期

  • 密西沙加组沉积末期(距今 130 Ma),塞布尔陆架边缘三角洲几乎遍布研究区内外陆架,轴向为 NE—SW 向。三角洲砂体通过多条(至少 6条)斜坡水道向深水搬运,轴向为近NS向。最西部水道向前推进时,在 W9 井区受盐构造封堵,卸载为斜坡扇,相邻水道未受盐构造封堵而形成坡底扇沉积(长轴约为 50 km,短轴约为 30 km)。陆坡中部水道发育规模较大,向前推进时受盐构造封堵、改向,在坡脚处形成大型坡底扇,面积约为 1 800 km2。陆坡东侧 2 条水道未受明显构造作用控制,推进距离仍较近(形成斜坡扇),其原因可能是水道头部或物源区偏离了陆架边缘三角洲的主河道方向(图6b)。

  • 3.2 洛根峡谷组沉积时期

  • 3.2.1 沉积初期

  • 洛根峡谷组沉积初期(距今 113 Ma),塞布尔陆架边缘三角洲主要分布于外陆架,轴向为近 NS向。三角洲砂体通过多条(至少8条)陆坡水道向深水搬运,轴向为近NS向(图6c)。西侧3条水道向前推进时受盐构造封堵形成斜坡扇(规模较小)。陆坡中部 2~3条水道向前推进时受两侧盐构造的限制作用,发育坡底扇沉积(规模有限)。东部斜坡扇与中部坡底扇发育规模均有限,这与三角洲主体向东偏移且陆坡宽缓响应较好。陆坡西部发育的3条大型重力流水道向前推进时,并未受到盐构造的控制,最终携带大量物源到达深海盆地,形成大型坡底扇沉积,面积约为1 500 km2

  • 3.2.2 沉积末期

  • 洛根峡谷组沉积末期(距今 101 Ma),塞布尔陆架边缘三角洲呈NS向近乎遍布整个大陆架,三角洲砂体通过 7~8 条 NS 向斜坡水道向深水搬运(图6d)。陆坡中西侧6条水道规模较小,其中最西侧水道未受盐构造控制,向前推进形成小型坡底扇;W10 井与W11井之间2条水道明显受盐构造限制、封堵,发育小型斜坡扇;W9 及 W10 井东侧水道受盐构造限制,形成小型坡底扇;西起第5条水道迅速过渡为小型斜坡扇;西起第6条水道向前推进较远,受盐构造改向、封堵,形成面积约为 800 km2 的坡底扇。陆坡东侧水道规模较大且向前推进较远,形成坡底扇沉积,面积约为2 000 km2

  • 4 重力流发育控制因素

  • 分析盆地沉积演化控制因素,前人多从构造、物源、气候和海平面变化等角度综合阐述[22]。受限于研究区资料基础及认识程度,笔者尝试从物源供给、陆缘结构等不同层面探讨斯科舍盆地下白垩统深水重力流发育的控制因素[23],并与西非下刚果盆地、巴西圭亚那盆地及西非科特迪瓦盆地进行对比分析。

  • 4.1 物源供给

  • 中侏罗世,斯科舍陆缘主要发育碳酸盐岩浅滩沉积(图2)。晚侏罗世,盆地沉积环境尤其在塞布尔坳陷区域,因大型河流向其注入(伴生异重流)[5],逐渐转变为以发育陆源碎屑沉积为主。大量陆源碎屑在斯科舍陆架堆积,发育上侏罗统陆架三角洲。陆架三角洲不断向海推进,在侏罗纪末或白垩纪初越过了侏罗系碳酸盐岩浅滩并最终越过陆架坡折,形成大规模的下白垩统陆架边缘三角洲(图4,图6)。在贝利亚期—巴雷姆期(距今约 145~125 Ma) 和阿普特期—阿尔布期(距今约 125~100 Ma),因海平面下降等原因,陆架边缘三角洲整体表现为持续向海进积(图2)。总的来说,早白垩世河流异重流[24] 的发育及陆架边缘三角洲的大规模进积为斯科舍盆地重力流沉积的发育提供了充足的物质基础[25]

  • 图6 斯科舍盆地塞布尔次盆早白垩世沉积演化特征

  • Fig.6 Evolution characteristics of early Cretaceous deposits in Sable Subbasin of Scotia Basin

  • 4.2 陆缘结构

  • 斯科舍盆地发育在年轻(古生代)基底之上[26],其形成演化除了受北美板块与非洲板块分离以及中大西洋扩张所致的拉张作用影响,还受盆地东北部 NW—SE向纽芬兰转换断裂带活动的控制[8],因此盆地动力学机制(外因)具有走滑性质,容易形成窄、陡陆坡,例如处于转换陆缘的圭亚那、科特迪瓦盆地等[27-28]。从基底或岩石圈力学性质(内因)来看,斯科舍盆地基底为古生代年轻基底,大多含水率高、地温梯度大、结晶度低、厚度小,相应强度弱且易脆性形变[29-30],导致盆地在裂谷期多发育纯剪切断裂,在拗陷期因大规模热沉降而形成碗状坳陷层,在漂移期则形成宽陆架、陡陆坡。这种陆缘结构,配以物源供给,多形成由陆架三角洲-斜坡水道-坡底扇构成的深水“源-汇”系统[31-32],这与“掀斜陆架、宽缓陆坡”的下刚果盆地(发育大型斜坡扇沉积)对比鲜明[20]。综合分析斯科舍盆地及其邻区磁异常数据(图7)发现,塞布尔次盆与其西南部相比,明显发育更为狭窄的细颈化带,意味着 NE—SW 向展布的宽缓陆架向前迅速过渡为洋壳,对应形成窄、陡陆坡。来自陆架边缘三角洲的粗粒碎屑因失稳、活化或剥蚀作用[33],得以在窄、陡陆坡上继续加速并向前搬运,最终在坡底/洋壳上堆积形成大型坡底扇(图8)。综上所述,陆坡窄、陡为斯科舍盆地重力流沉积的发育提供了充足的动力条件。

  • 图7 斯科舍盆地及其邻区磁异常特征(据文献[14]修改)

  • Fig.7 Magnetic anomalies of Scotia Basin and its adjacent areas(Modified according to reference [14]

  • 图8 斯科舍盆地过塞布尔坳陷地质剖面(剖面位置见图1和图7)(据文献[8]修改)

  • Fig.8 Geological profile of depression across Sable Subbasin of Scotia Basin (See profiles locations in Figs.1 and 7)(Modified according to reference [8]

  • 5 结论

  • 斯科舍盆地塞布尔次盆下白垩统密西沙加组和洛根峡谷组发育规模性重力流沉积,可识别出块体搬运、重力流水道、天然堤及朵叶体等沉积单元。在密西沙加组沉积初期(距今 147 Ma),研究区重力流沉积小规模发育,沉积末期(距今 130 Ma)在塞布尔次盆中部发育大型坡底扇。洛根峡谷组沉积初期 (距今 113 Ma),研究区发育小规模重力流沉积,沉积末期(距今 101 Ma)在塞布尔次盆中部发育大型坡底扇。物源、坡度是塞布尔次盆下白垩统重力流发育的控制因素,陆架边缘三角洲进积为重力流发育提供物质基础,陆坡窄、陡为重力流发育提供动力条件。研究成果对斯科舍盆地深水油气勘探工作具有借鉴意义。

  • 参考文献

    • [1] 李华,杨朝强,周伟,等.莺歌海盆地东方 1-1 气田中新统黄流组浅海多级海底扇形成机理及储层分布[J].石油与天然气地质,2023,44(2):429-440.LI Hua,YANG Zhaoqiang,ZHOU Wei,et al.Genetic mecha‐ nism and reservoir distribution of shallow-marine multi-stepped submarine fans in the Miocene Huangliu Formation of Dongfang 1-1 gas field,Yinggehai Basin [J].Oil & Gas Geology,2023,44(2):429-440.

    • [2] GOULD K,PE-PIPER G,PIPER D J W.Relationship of diage‐ netic chlorite rims to depositional facies in Lower Cretaceous res‐ ervoir sandstones of the Scotian Basin [J].Sedimentology,2010,57(2):587-610.

    • [3] PIPER D J W,NOFTALL R,PE-PIPER G.Allochthonous pro‐ deltaic sediment facies in the Lower Cretaceous at the Tantallon M-41 well:Implications for the deep-water Scotian Basin [J].AAPG Bulletin,2010,94(1):87-104.

    • [4] KARIM A,HANLEY J J,PE-PIPER G,et al.Paleohydrogeo‐ logical and thermal events recorded by fluid inclusions and stable isotopes of diagenetic minerals in Lower Cretaceous sandstones,offshore Nova Scotia,Canada [J].AAPG Bulletin,2012,96(6):1 147-1 169.

    • [5] MOSCARDELLI L,OCHOA J,HUNT I,et al.Mixed silici‐ clastic-carbonate systems and their impact for the development of deep-water turbidites in continental margins:A case study from the Late Jurassic to Early Cretaceous Shelburne Sub-basin in offshore Nova Scotia [J].AAPG Bulletin,2019,103(10):2 487-2 520.

    • [6] SANGSTER C,PIPER D J W,HAWIE N,et al.Forward strati‐ graphic modelling of sediment pathways and depocentres in saltinfluenced passive-margin basins:Lower Cretaceous,central Scotian Basin [J].Basin Research,2019,31(4):728-753.

    • [7] SONG C P,JIANG S,WEN Z X,et al.Comparison of the pe‐ troleum geology in the deep-water basins between the passive margin of Morocco and its conjugate margin of Canada [J].Jour‐ nal of Earth Science,2020,31(5):919-929.

    • [8] WU G K,KONG F J,TIAN N X,et al.Structural characteris‐ tics and deep-water hydrocarbon accumulation model of the Sco‐ tian Basin,Eastern Canada [J].Energy Geoscience,2023,4(3):100152.

    • [9] MUKHOPADHYAY P K,BROWN D E,KIDSTON A G,et al.Petroleum systems of deepwater Scotian Basin,Eastern Canada:Challenges for finding oil versus gas provinces[C].Houston:Offshore Technology Conference,2003:2 053-2 063.

    • [10] KHALID P,AHMED N,KHAN K A,et al.AVO-derived attri‐ butes to differentiate reservoir facies from non-reservoirs facies and fluid discrimination in Penobscot area,Nova Scotia [J].Geo‐ sciences Journal,2015,19(3):471-480.

    • [11] OYARZUN R,DOBLAS M,LÓPEZ-RUIZ J,et al.Opening of the central Atlantic and asymmetric mantle upwelling phenome‐ na:Implications for long-lived magmatism in western North Af‐ rica and Europe [J].Geology,1997,25(8):727-730.

    • [12] LI G,PE-PIPER G,PIPER D J W.The provenance of Middle Jurassic sandstones in the Scotian Basin:Petrographic evidence of passive margin tectonics [J].Canadian Journal of Earth Scienc‐ es,2012,49(12):1 463-1 477.

    • [13] RODRIGUES S,DEPTUCK M E,KENDELL K L,et al.Creta‐ ceous to Eocene mixed turbidite-contourite systems offshore No‐ va Scotia(Canada):Spatial and temporal variability of downand along-slope processes [J].Marine and Petroleum Geology,2022,138:105572.

    • [14] SIBUET J C,ROUZO S,SRIVASTAVA S.Plate tectonic recon‐ structions and paleogeographic maps of the central and North At‐ lantic oceans [J].Canadian Journal of Earth Sciences,2012,49(12):1 395-1 415.

    • [15] CAMPBELL T J,RICHARDS F W B,SILVA R L,et al.Inter‐ pretation of the Penobscot 3D seismic volume using constrained sparse spike inversion,Sable Sub-Basin,offshore Nova Scotia [J].Marine and Petroleum Geology,2015,68:73-93.

    • [16] BEICIP Franlab.Play fairway analysis atlas [R].Nova Scotia,Canada,2011.

    • [17] 陈华,林畅松,张忠民,等.西非下刚果-刚果扇盆地A区块中新统深水水道体系沉积特征及演化[J].石油实验地质,2021,43(5):476-486.CHEN Hua,LIN Changsong,ZHANG Zhongmin,et al.Depo‐ sitional characteristics and evolution of Miocene deep-water channel systems in block A of Lower Congo-Congo Fan Basin,West Africa [J].Petroleum Geology & Experiment,2021,43(5):476-486.

    • [18] 李建平,廖计华,方勇.基于露头和岩心的深水重力流沉积新认识及其油气地质意义[J].油气地质与采收率,2020,27(6):30-37.LI Jianping,LIAO Jihua,FANG Yong.New understanding of deep-water gravity flow deposition and its significance in petro‐ leum geology based on outcrops and cores [J].Petroleum Geolo‐gy and Recovery Efficiency,2020,27(6):30-37.

    • [19] CHEN H,LIN C S,ZHANG Z M,et al.Evolution and control‐ ling factors of the gravity flow deposits in the Miocene sequence stratigraphic framework,the Lower Congo-Congo Fan Basin,West Africa [J].Petroleum Exploration and Development,2021,48(1):146-158.

    • [20] 吴高奎,张忠民,陈华,等.下刚果盆地中新统重力流沉积演化及控制因素[J].沉积学报,2023,41(2):73-84.WU Gaokui,ZHANG Zhongmin,CHEN Hua,et al.Sedimen‐ tary evolution and controlling factors of Miocene gravity flow deposits in the Lower Congo Basin [J].Acta Sedimentologica Si‐ nica,2023,41(2):73-84.

    • [21] POSAMENTIER H W,KOLLA V,刘化清.深水浊流沉积综述 [J].沉积学报,2019,37(5):879-903.POSAMENTIER H W,KOLLA V,LIU Huaqing.An overview of deep-water turbidite deposition [J].Acta Sedimentologica Si‐ nica,2019,37(5):879-903.

    • [22] 林畅松.盆地沉积动力学:研究现状与未来发展趋势[J].石油与天然气地质,2019,40(4):1-16.LIN Changsong.Sedimentary dynamics of basin:Status and trend [J].Oil & Gas Geology,2019,40(4):1-16.

    • [23] 蒋恕,王浩,郭涛,等.渤海湾盆地辽东湾坳陷盆中隆起缓坡带重力流沉积形态及其控制因素[J].石油与天然气地质,2022,43(4):823-832.JIANG Shu,WANG Hao,GUO Tao,et al.Geomorphology of gravity flow deposits in the gentle slope zone of intra-basinal high in the Liaodong Bay Depression,Bohai Bay Basin and its controlling factors [J].Oil & Gas Geology,2022,43(4):823-832.

    • [24] 郭玉新.渤中凹陷埕岛东坡东三段沉积物重力流类型及沉积模式[J].油气地质与采收率,2021,28(3):14-24.GUO Yuxin.Types and sedimentary models of sediment gravity flows of Ed3 Member in east slope of Chengdao area,Bozhong Sag [J].Petroleum Geology and Recovery Efficiency,2021,28(3):14-24.

    • [25] 李安琪,胡林,王真真,等.琼东南盆地乐东凹陷梅山组海底扇沉积演化及油气地质意义[J].油气地质与采收率,2021,28(2):76-84.LI Anqi,HU Lin,WANG Zhenzhen,et al.Sedimentary evolu‐ tion of Meishan Formation submarine fan in Ledong Sag,Qiong‐ dongnan Basin and its significance in hydrocarbon exploration [J].Petroleum Geology and Recovery Efficiency,2021,28(2):76-84.

    • [26] WESTON J F,MACRAE R A,ASCOLI P,et al.A revised bio‐ stratigraphic and well-log sequence-stratigraphic framework for the Scotian margin,offshore eastern Canada[J].Canadian Journal of Earth Sciences,2012,49(12):1 417-1 462.

    • [27] MERCIER D L M,LONCKE L,BASILE C,et al.Transform continental margins-Part 2:A worldwide review[J].Tectonophys‐ ics,2016,693:96-115.

    • [28] 冯志强,郭丰涛,张忠民,等.转换型陆缘——尼日尔三角洲盆地成因类型再认识[J].岩石学报,2022,38(9):2 565-2 580.FENG Zhiqiang,GUO Fengtao,ZHANG Zhongmin,et al.A transform margin:Review of genetic types of the Niger Delta Ba‐ sin[J].Acta Petrologica Sinica,2022,38(9):2 565-2 580.

    • [29] ALLEN P A,ALLEN J R.Basin Analysis:Principles and appli‐ cation to petroleum play assessment[M].Oxford:Wiley Black‐ well,2013:1-632.

    • [30] 冯志强,李萌,郭元岭,等.中国典型大型走滑断裂及相关盆地成因研究[J].地学前缘,2022,29(6):206-223.FENG Zhiqiang,LI Meng,GUO Yuanling,et al.Genetic analy‐ sis of typical strike-slip faults and related basins in China[J].Earth Science Frontiers,2022,29(6):206-223.

    • [31] LIN C S,JIANG J,SHI H S,et al.Sequence architecture and depositional evolution of the Northern continental slope of the South China Sea:Responses to tectonic processes and changes in sea level[J].Basin Research,2017,30(1):568-595.

    • [32] 龚承林,齐昆,徐杰,等.深水源-汇系统对多尺度气候变化的过程响应与反馈机制[J].沉积学报,2021,39(1):231-252.GONG Chenglin,QI Kun,XU Jie,et al.Process-product link‐ ages and feedback mechanisms of deepwater source-to-sink re‐ sponses to multi⁃scale climate changes[J].Acta Sedimentologica Sinica,2021,39(1):231-252.

    • [33] HADLER-JACOBSEN F,JOHANNESSEN E P,ASHTON N,et al.Submarine fan morphology and lithology distribution[M]//DORE A G,VINING B A,eds.Petroleum geology.London:Geo‐ logical Society,2005:1 121-1 145.

  • 参考文献

    • [1] 李华,杨朝强,周伟,等.莺歌海盆地东方 1-1 气田中新统黄流组浅海多级海底扇形成机理及储层分布[J].石油与天然气地质,2023,44(2):429-440.LI Hua,YANG Zhaoqiang,ZHOU Wei,et al.Genetic mecha‐ nism and reservoir distribution of shallow-marine multi-stepped submarine fans in the Miocene Huangliu Formation of Dongfang 1-1 gas field,Yinggehai Basin [J].Oil & Gas Geology,2023,44(2):429-440.

    • [2] GOULD K,PE-PIPER G,PIPER D J W.Relationship of diage‐ netic chlorite rims to depositional facies in Lower Cretaceous res‐ ervoir sandstones of the Scotian Basin [J].Sedimentology,2010,57(2):587-610.

    • [3] PIPER D J W,NOFTALL R,PE-PIPER G.Allochthonous pro‐ deltaic sediment facies in the Lower Cretaceous at the Tantallon M-41 well:Implications for the deep-water Scotian Basin [J].AAPG Bulletin,2010,94(1):87-104.

    • [4] KARIM A,HANLEY J J,PE-PIPER G,et al.Paleohydrogeo‐ logical and thermal events recorded by fluid inclusions and stable isotopes of diagenetic minerals in Lower Cretaceous sandstones,offshore Nova Scotia,Canada [J].AAPG Bulletin,2012,96(6):1 147-1 169.

    • [5] MOSCARDELLI L,OCHOA J,HUNT I,et al.Mixed silici‐ clastic-carbonate systems and their impact for the development of deep-water turbidites in continental margins:A case study from the Late Jurassic to Early Cretaceous Shelburne Sub-basin in offshore Nova Scotia [J].AAPG Bulletin,2019,103(10):2 487-2 520.

    • [6] SANGSTER C,PIPER D J W,HAWIE N,et al.Forward strati‐ graphic modelling of sediment pathways and depocentres in saltinfluenced passive-margin basins:Lower Cretaceous,central Scotian Basin [J].Basin Research,2019,31(4):728-753.

    • [7] SONG C P,JIANG S,WEN Z X,et al.Comparison of the pe‐ troleum geology in the deep-water basins between the passive margin of Morocco and its conjugate margin of Canada [J].Jour‐ nal of Earth Science,2020,31(5):919-929.

    • [8] WU G K,KONG F J,TIAN N X,et al.Structural characteris‐ tics and deep-water hydrocarbon accumulation model of the Sco‐ tian Basin,Eastern Canada [J].Energy Geoscience,2023,4(3):100152.

    • [9] MUKHOPADHYAY P K,BROWN D E,KIDSTON A G,et al.Petroleum systems of deepwater Scotian Basin,Eastern Canada:Challenges for finding oil versus gas provinces[C].Houston:Offshore Technology Conference,2003:2 053-2 063.

    • [10] KHALID P,AHMED N,KHAN K A,et al.AVO-derived attri‐ butes to differentiate reservoir facies from non-reservoirs facies and fluid discrimination in Penobscot area,Nova Scotia [J].Geo‐ sciences Journal,2015,19(3):471-480.

    • [11] OYARZUN R,DOBLAS M,LÓPEZ-RUIZ J,et al.Opening of the central Atlantic and asymmetric mantle upwelling phenome‐ na:Implications for long-lived magmatism in western North Af‐ rica and Europe [J].Geology,1997,25(8):727-730.

    • [12] LI G,PE-PIPER G,PIPER D J W.The provenance of Middle Jurassic sandstones in the Scotian Basin:Petrographic evidence of passive margin tectonics [J].Canadian Journal of Earth Scienc‐ es,2012,49(12):1 463-1 477.

    • [13] RODRIGUES S,DEPTUCK M E,KENDELL K L,et al.Creta‐ ceous to Eocene mixed turbidite-contourite systems offshore No‐ va Scotia(Canada):Spatial and temporal variability of downand along-slope processes [J].Marine and Petroleum Geology,2022,138:105572.

    • [14] SIBUET J C,ROUZO S,SRIVASTAVA S.Plate tectonic recon‐ structions and paleogeographic maps of the central and North At‐ lantic oceans [J].Canadian Journal of Earth Sciences,2012,49(12):1 395-1 415.

    • [15] CAMPBELL T J,RICHARDS F W B,SILVA R L,et al.Inter‐ pretation of the Penobscot 3D seismic volume using constrained sparse spike inversion,Sable Sub-Basin,offshore Nova Scotia [J].Marine and Petroleum Geology,2015,68:73-93.

    • [16] BEICIP Franlab.Play fairway analysis atlas [R].Nova Scotia,Canada,2011.

    • [17] 陈华,林畅松,张忠民,等.西非下刚果-刚果扇盆地A区块中新统深水水道体系沉积特征及演化[J].石油实验地质,2021,43(5):476-486.CHEN Hua,LIN Changsong,ZHANG Zhongmin,et al.Depo‐ sitional characteristics and evolution of Miocene deep-water channel systems in block A of Lower Congo-Congo Fan Basin,West Africa [J].Petroleum Geology & Experiment,2021,43(5):476-486.

    • [18] 李建平,廖计华,方勇.基于露头和岩心的深水重力流沉积新认识及其油气地质意义[J].油气地质与采收率,2020,27(6):30-37.LI Jianping,LIAO Jihua,FANG Yong.New understanding of deep-water gravity flow deposition and its significance in petro‐ leum geology based on outcrops and cores [J].Petroleum Geolo‐gy and Recovery Efficiency,2020,27(6):30-37.

    • [19] CHEN H,LIN C S,ZHANG Z M,et al.Evolution and control‐ ling factors of the gravity flow deposits in the Miocene sequence stratigraphic framework,the Lower Congo-Congo Fan Basin,West Africa [J].Petroleum Exploration and Development,2021,48(1):146-158.

    • [20] 吴高奎,张忠民,陈华,等.下刚果盆地中新统重力流沉积演化及控制因素[J].沉积学报,2023,41(2):73-84.WU Gaokui,ZHANG Zhongmin,CHEN Hua,et al.Sedimen‐ tary evolution and controlling factors of Miocene gravity flow deposits in the Lower Congo Basin [J].Acta Sedimentologica Si‐ nica,2023,41(2):73-84.

    • [21] POSAMENTIER H W,KOLLA V,刘化清.深水浊流沉积综述 [J].沉积学报,2019,37(5):879-903.POSAMENTIER H W,KOLLA V,LIU Huaqing.An overview of deep-water turbidite deposition [J].Acta Sedimentologica Si‐ nica,2019,37(5):879-903.

    • [22] 林畅松.盆地沉积动力学:研究现状与未来发展趋势[J].石油与天然气地质,2019,40(4):1-16.LIN Changsong.Sedimentary dynamics of basin:Status and trend [J].Oil & Gas Geology,2019,40(4):1-16.

    • [23] 蒋恕,王浩,郭涛,等.渤海湾盆地辽东湾坳陷盆中隆起缓坡带重力流沉积形态及其控制因素[J].石油与天然气地质,2022,43(4):823-832.JIANG Shu,WANG Hao,GUO Tao,et al.Geomorphology of gravity flow deposits in the gentle slope zone of intra-basinal high in the Liaodong Bay Depression,Bohai Bay Basin and its controlling factors [J].Oil & Gas Geology,2022,43(4):823-832.

    • [24] 郭玉新.渤中凹陷埕岛东坡东三段沉积物重力流类型及沉积模式[J].油气地质与采收率,2021,28(3):14-24.GUO Yuxin.Types and sedimentary models of sediment gravity flows of Ed3 Member in east slope of Chengdao area,Bozhong Sag [J].Petroleum Geology and Recovery Efficiency,2021,28(3):14-24.

    • [25] 李安琪,胡林,王真真,等.琼东南盆地乐东凹陷梅山组海底扇沉积演化及油气地质意义[J].油气地质与采收率,2021,28(2):76-84.LI Anqi,HU Lin,WANG Zhenzhen,et al.Sedimentary evolu‐ tion of Meishan Formation submarine fan in Ledong Sag,Qiong‐ dongnan Basin and its significance in hydrocarbon exploration [J].Petroleum Geology and Recovery Efficiency,2021,28(2):76-84.

    • [26] WESTON J F,MACRAE R A,ASCOLI P,et al.A revised bio‐ stratigraphic and well-log sequence-stratigraphic framework for the Scotian margin,offshore eastern Canada[J].Canadian Journal of Earth Sciences,2012,49(12):1 417-1 462.

    • [27] MERCIER D L M,LONCKE L,BASILE C,et al.Transform continental margins-Part 2:A worldwide review[J].Tectonophys‐ ics,2016,693:96-115.

    • [28] 冯志强,郭丰涛,张忠民,等.转换型陆缘——尼日尔三角洲盆地成因类型再认识[J].岩石学报,2022,38(9):2 565-2 580.FENG Zhiqiang,GUO Fengtao,ZHANG Zhongmin,et al.A transform margin:Review of genetic types of the Niger Delta Ba‐ sin[J].Acta Petrologica Sinica,2022,38(9):2 565-2 580.

    • [29] ALLEN P A,ALLEN J R.Basin Analysis:Principles and appli‐ cation to petroleum play assessment[M].Oxford:Wiley Black‐ well,2013:1-632.

    • [30] 冯志强,李萌,郭元岭,等.中国典型大型走滑断裂及相关盆地成因研究[J].地学前缘,2022,29(6):206-223.FENG Zhiqiang,LI Meng,GUO Yuanling,et al.Genetic analy‐ sis of typical strike-slip faults and related basins in China[J].Earth Science Frontiers,2022,29(6):206-223.

    • [31] LIN C S,JIANG J,SHI H S,et al.Sequence architecture and depositional evolution of the Northern continental slope of the South China Sea:Responses to tectonic processes and changes in sea level[J].Basin Research,2017,30(1):568-595.

    • [32] 龚承林,齐昆,徐杰,等.深水源-汇系统对多尺度气候变化的过程响应与反馈机制[J].沉积学报,2021,39(1):231-252.GONG Chenglin,QI Kun,XU Jie,et al.Process-product link‐ ages and feedback mechanisms of deepwater source-to-sink re‐ sponses to multi⁃scale climate changes[J].Acta Sedimentologica Sinica,2021,39(1):231-252.

    • [33] HADLER-JACOBSEN F,JOHANNESSEN E P,ASHTON N,et al.Submarine fan morphology and lithology distribution[M]//DORE A G,VINING B A,eds.Petroleum geology.London:Geo‐ logical Society,2005:1 121-1 145.