-
塔里木盆地哈拉哈塘油田奥陶系发育超深巨厚碳酸盐岩,以缝洞型油藏为主,孔、洞、缝储集体发育,经历多期岩溶及成岩改造作用,储集体内部结构复杂,具有极强的非均质性[1-11]。裂缝和溶洞既是储集空间,也是重要的流动通道,发育层系古老、埋藏超深,储集体内油水关系错综复杂。该类油藏以缝洞单元为开发基础,缝洞单元内具有相对统一的压力系统和油水界面。油田开发实践证实奥陶系油藏内发育多个缝洞单元,不同缝洞单元之间油水界面各不相同,没有统一的原始油水界面,这对钻井成功率、生产井见水预警及措施调整都产生不利影响。如何准确预测缝洞型油藏的原始油水界面,将影响该油藏的高效评价、稳油控水开发措施的合理优选及油气储量评估,对整个油田进一步增产、稳产均具重要意义。
-
目前,中外学者对油水界面识别与预测的研究方法,主要包括岩心剖面分析法、动态资料法、测井解释法、试油法、地球化学测定法等直接方法,也有地层压力估算法、毛管压力预测法、地震属性分析法、见水时间-产液深度交会法、岩溶残丘地貌法等间接方法[12-22]。由于缝洞型油藏的复杂地质特征,常规的直接方法识别油水界面对地层测试、取样精度要求极高,而缝洞型油藏在储层段常发生放空漏失致使测井、测试及取样资料精度降低甚至缺失,无法用常规的方法确定油区的油水关系。同时,由于该类油藏的特殊性,直接获得油水界面的监测资料,油水界面分布及变化规律研究具有极大难度; 间接方法则是对油水关系模式的简化且受深部地震资料品质降低的影响油水界面识别精度不够。常规的油水界面判识方法对缝洞型油藏而言,存在一定局限性。
-
为此,笔者提出了一种预测缝洞型碳酸盐岩油藏原始油水界面的新方法,通过多类多尺度缝洞型碳酸盐岩油藏不确定性地质建模技术[23] 建立静态地质模型,逐渐调整静态地质模型刻画储集体的油水界面,实现静态地质模型法刻画油、水体积匹配动态评价结果,最终确定缝洞单元的原始油水界面。该方法适用于缝洞型油藏成藏而未被钻井打开之前,随着生产推进,地层压力下降,新缝洞单元参与供液,油水界面则会重新分布。
-
1 区域地质概况
-
哈拉哈塘油田位于塔里木盆地塔北隆起中部,轮南低凸起的西部斜坡地带,整体表现为向西倾没的大型鼻状构造[24]。地理位置处于新疆库车县、沙雅县境内,北靠轮台凸起,南接北部坳陷,西邻英买力凸起,东接轮南凸起[25-26] (图1)。受加里东期、晚海西—印支期、喜马拉雅期等多期构造运动影响,北部中上奥陶统、中下奥陶统蓬莱坝组、鹰山组、一间房组顶发育不整合面,形成了北部大规模风化壳岩溶、层间岩溶;多期构造运动形成了 NW 向和 NE 向“X”型走滑断裂体系,南部形成受走滑断裂控制的断溶体岩溶[27-29]。奥陶系碳酸盐岩储层经多期岩溶及断裂活动控制形成溶洞-裂缝型复合油藏,主要目的层为奥陶系一间房组—鹰山组,岩性以亮晶颗粒灰岩为主,储层类型以洞穴型和裂缝孔洞型为主,大量不同规模、不同尺度岩溶缝洞单元在空间上叠合,整体上具有准层状油藏的特点[24-30]。基质孔隙度小于 1.8%,渗透率多小于 1 mD,而储层段孔隙度主要为 2%~22%,试井解释渗透率为 2~6 336.4 mD,平均为 739 mD,70% 的井为中—特高渗透储层,反映储层非均质性强,而缝洞体的溶蚀改造差异、充填程度差异等进一步加剧了储层的非均质性,油田钻录井已证实油藏没有统一的油水界面。强非均质性是缝洞型碳酸盐岩油藏原始油水界面识别难度大的内因,而地表沙漠、埋藏超深、高温高压等外因使得原始油水界面监测方法难以实施,这些因素综合加大了原始油水界面识别难度,导致油藏含油面积、储量、挖潜、扩边等落实困难,是油田高效开发亟需解决的生产难题。
-
图1 哈拉哈塘油田区域构造位置
-
Fig.1 Tectonic location of Halahatang Oilfield
-
2 原始油水界面的刻画方法
-
2.1 刻画方法流程
-
由于直接监测和间接计算缝洞型油藏原始油水界面具有实施难度大、油水识别可靠性低等客观原因,且考虑到利用缝洞型含水油藏产量不稳定分析方法可以实现对动态储量及水体的定量评价[31-33],笔者提出一种缝洞型碳酸盐岩油藏原始油水界面刻画的新方法,通过对单井/井组油水界面的识别推至井间,结合油藏地质规律推至全区,从而确定其原始油水界面,具体流程(图2)如下:①通过多类多尺度缝洞型碳酸盐岩油藏不确定性地质建模技术建立地质模型[23],该技术是国内首次考虑缝洞型油藏地质建模过程中的不确定性,并采用动、静态法结合减小不确定性影响,模型精度高,具现实指导性,用该模型计算缝洞体体积更准确。同时,采用油藏产量不稳定分析法[32] 计算缝洞体动态储量及水体积,分别获得缝洞储集体的油、水体积。当动、静态法储集体体积不一致时,在影响地质建模精准率的主要不确定性参数范围内调整参数,并重新计算储集体体积,循环直至静态模型法计算缝洞体体积与动态计算的油体积与水体积之和一致。 ②设置某一油水界面,基于动、静态储集体体积一致的地质模型计算该油水界面时的油体积,将结果与动态产量不稳定分析法计算的油体积进行对比,当静态模型法计算的油体积大于动态法时,说明油水界面设置偏低,需上调油水界面;当静态模型法结果小于动态法时,说明油水界面设置偏高,需下调油水界面。依据动、静态模型法计算的油体积结果差值,重新设置新的油水界面,再次计算新油水界面时模型中单井(或连通井组)控制的油体积。如此循环直至静态模型法计算的油体积与动态法结果一致,从而确定该单井/井组缝洞型油藏的原始油水界面。③依次完成油区其他单井/井组的油水界面计算后,得到全油区油藏原始油水界面。对单井/井组油水界面与全区油水界面分布趋势地质规律有差异的局部井,应用地质规律认识指导修正该单井/井组地质模型,完成原始油水界面复算,循环直至该单井/井组油水界面与全油区原始油水界面分布地质规律认识一致,从而确定全油藏的原始油水界面。④用油藏酸压认识及完井测试资料分析的缝洞储层油水特征,辅助生产测井、开发动态等资料认识,对识别的全油藏原始油水界面结果进行验证,实现多信息认识一致,从而指导开发生产。
-
图2 缝洞型油藏原始油水界面的识别流程
-
Fig.2 Identification process of original oil-water interface of fracture-cavity reservoirs
-
2.2 井组原始油水界面刻画
-
油藏原始油水界面的刻画需首先识别单井/井组处原始油水界面,以哈拉哈塘油田 X11—X11-2 井组为例,X11—X11-2 井组位于哈拉哈塘油田北部,为潜山区明河沿不整合面、断裂系统向南部径流而形成的暗河型缝洞系统,储集体主要发育层位为一间房组—鹰山组。试采过程中两口井均具有较长无水自喷采油期,这表明油藏整体能量较强,供液能力充足,见水后均能实现多轮次间开生产,说明可能存在一定规模水体。从描述缝洞体的甜点、Highlight、振幅变化率、反射强度等地震属性中优选出Highlight属性刻画出X11—X11-2井组的缝洞系统平面、剖面分布范围,识别出井组控制的储集体系统轮廓(图3)。
-
基于缝洞系统轮廓的识别结果,采用多类多尺度缝洞型碳酸盐岩油藏不确定性地质建模技术[23] 建立X11—X11-2井组地质模型(图4a)。建模中主要考虑大型溶洞与溶蚀孔洞型储层孔隙度界限的不确定性[23]、储层有效孔隙度下限的不确定性[23]、Highlight地震属性截断值的不确定性影响,这也是后期产量不稳定分析法计算的动态体积与模型计算缝洞储集体体积不一致时需要重点调整的建模参数。用地质模型三维网格积分法计算 X11— X11-2 连通井组控制的储集体体积为 372.12×104m3。采用产量不稳定分析方法[31-33] 对油井生产动态数据进行拟合计算,确定连通井组的油体积为 111.09×104 m3,采用考虑水体侵入影响的流动物质平衡方法[32]定量评价连通井组水体积为 208.979× 104 m3,即油藏动态法计算的连通井组储集体体积为油、水体积之和即为 320.069×104 m3。地质模型法计算的储集体体积与油藏工程法计算值有差异,在影响地质建模结果的主要参数不确定性范围内,调整建模参数,重新建立地质模型并计算模型中井组控制的储集体体积,如此循环直至与动态产量不稳定法计算的储集体体积(320.069×104 m3)一致,从而得到连通井组动、静态体积一致的地质模型(图4b)。
-
图3 X11—X11-2连通井组缝洞系统的平面和剖面分布
-
Fig.3 Plane and profile of fracture-cavity system in X11-X11-2 connected well group
-
图4 X11—X11-2井组地质模型
-
Fig.4 Geological model of X11-X11-2 connected well group
-
基于储集体体积一致的地质模型,设定某一油水界面,用连通井组地质模型计算该油水界面时的油体积。当模型计算的油体积与动态产量不稳定分析法计算的油体积结果不一致时,若静态模型法计算的储集体体积大于动态法的,则上调油水界面;若静态模型法计算的储集体体积小于动态法的,则下调油水界面,再次计算新油水界面时的模型油体积,如此循环直至与动态计算的油体积一致。从而反演确定了该连通井组的原始油水界面。当 X11—X11-2 井组动、静态模型法计算的储集体体积一致,设定油水界面为-5 772 m 时,用静态模型法计算的油体积为 58.40×104 m3,小于动态法计算的 111.09×104 m3,说明设定的油水界面偏高,需下调油水界面(图5a)。调整油水界面至-5 830 m,用静态模型法计算油体积为 156.13×104 m3,大于动态法计算的 111.09×104 m3,反映油水界面设置偏低,需上调油水界面(图5b)。如此循环持续调整油水界面至-5 801.13 m,静态模型法与动态法计算的油体积一致,从而确定该连通井组的原始油水界面为-5 801.13 m(图5c)。
-
图5 不同油水界面储集体的油、水分布模型
-
Fig.5 Oil-water distribution model of reservoirs with different oil-water interfaces
-
2.3 地质规律修正原始油水界面
-
对于均质性较好的油藏,油水界面通常为一平面,很少起伏,单井/井组油水界面即可以作为全区油水界面。但缝洞型油藏具有强非均质性,受断层分隔、暗河堵点、缝洞体充填性、储集体物性、流体密度变化等影响,不同缝洞单元油水界面差异较大,即使同一缝洞单元受致密基岩、断层、暗河堵点等分隔,也并非具有统一的油水界面,因此识别了研究区单井/井组油水界面后,由点向面结合动、静态信息对全区油水界面进行精细刻画,以使刻画的油水界面符合地质规律,与生产动态吻合,具有现实指导作用。
-
将新方法计算的 X11—X11-2井组原始油水界面由井点推至井间,从而得到全区油藏原始油水界面(图6a)。全区油藏原始油水界面趋势与古潜山面的地质趋势基本一致,总体上从潜山顶部向周围斜坡部位波动变小,呈潜山高、油水界面高、水体强的特点。对比全油藏原始油水界面,发现 X8 井处于潜山斜坡位置,原始油水界面明显比邻井低,与油气从构造低部位向潜山斜坡高部位储层运聚形成高部位油藏原始油水界面高于低部位的地质规律不符,且动态评价的水体能量在潜山斜坡高部位比低部位更强,X8 井水体能量比周围低部位邻井强,原始油水界面应更高。因此对单井/井组油水界面与全区油水界面分布趋势有差异的 X8 井,以地质规律为指导,重新建立 X8井地质模型,完成原始油水界面循环复算,直至单井/井组原始油水界面与全区原始油水界面分布地质规律认识一致,从而确定全油藏的原始油水界面(图6b)。
-
2.4 生产、测试等资料综合刻画原始油水界面
-
哈拉哈塘油田奥陶系油藏酸压、测试及生产等资料丰富,综合分析酸压结论、常规完井测试认识及开发动态资料,估算缝洞单元原始油水界面。测试直接为油层、油气层的井,投产时具有无水采油期,判别的原始油水界面在测试底段深度之下;测试为油水同层的井,投产初期即含水,判别的原始油水界面在测试顶、底深度之间;测试为水层的井,投产立即产水,判别的原始油水界面在测试顶深度之上。用生产测试信息判别的可能原始油水界面进一步验证新方法计算的原始油水界面,基本符合,证实该新方法是可靠的(表1)。例如,用缝洞型油藏原始油水界面识别方法确定X11—X11-2连通井组的原始油水界面为-5 801.13 m。X11井完钻层位为一间房组,井深为 6 748 m,对应的海拔高度为-5 772.3 m,测试为油层,说明原始油水界面至少在-5 772.3 m 之下。X11-2 井完钻层位为一间房组,井深为6 759.08 m,对应的海拔高度为-5 782.68 m,测试为油层,反映井组的原始油水界面在-5 782.68 m 之下。用新方法计算的原始油水界面为-5 801.13 m,与钻井测试的保守油水界面信息吻合,也验证了该方法的可靠性。
-
图6 调整前后的油藏原始油水界面分布
-
Fig.6 Distribution of original oil-water interface of reservoirs before and after adjustment
-
3 结论
-
笔者提出了一种判别缝洞型碳酸盐岩油藏油水界面的新方法。通过不确定性地质建模技术,实现静态模型法与产量不稳定分析法评价的储集体规模一致后,逐步调整模型油水界面,实现静态模型法刻画的油、水体积与动态法评价的一致,从而确定原始油水界面位置,并从单井/井组推至研究区,从而确定全区原始油水界面。缝洞型油藏不同缝洞单元油水界面差异较大,即使同一缝洞单元受致密基岩、断层、暗河堵点等分隔,也并非具有统一的油水界面。确定单井/井组原始油水界面后,还需结合区域地质规律、生产、钻井、测试等信息对原始油水界面趋势进行合理性分析及修正。
-
由于缝洞型储层具有“多洞一藏”甚至“一洞一藏”的特殊性,且发育“一洞一油水界面”的极端强非均质性,使得原始油水界面刻画难度大,而把握原始油水界面特征对油藏的有效开发意义重大。且距原始油水界面过大则容易漏掉油气层,过小则易导致出水,形成低产甚至无产。因此,在研究原始油水界面时需尊重客观资料、注重资料的综合分析与验证、突破常规碎屑岩油藏油水界面认识,在掌握原始油水界面规律的基础上可考虑通过加密井网,选择侧钻、注气等方式因储集体条件制宜,设置合理的避水高度,进一步挖潜。
-
参考文献
-
[1] 胡文革.塔河碳酸盐岩缝洞型油藏开发技术及攻关方向[J].油气藏评价与开发,2020,10(2):1-10.HU Wenge.Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield[J].Reser‐ voir Evaluation and Development,2020,10(2):1-10.
-
[2] 杨德彬,杨敏,李新华,等.塔河油田碳酸盐岩小缝洞型储层特征及成因演化[J].油气地质与采收率,2021,28(1):41-46.YANG Debin,YANG Min,LI Xinhua,et al.Characteristics and genetic evolution of small-scale fracture-cavity carbonate reser‐ voirs in Tahe Oilfield[J].Petroleum Geology and Recovery Effi‐ cieny,2021,28(1):41-46.
-
[3] 吕海涛,韩俊,张继标,等.塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J].石油实验地质,2021,43(1):14-22.LÜ Haitao,HAN Jun,ZHANG Jibiao,et al.Development charac‐ teristics and formation mechanism of ultra-deep carbonate faultdissolution body in Shunbei area,Tarim Basin[J].Petroleum Ge‐ ology & Experiment,2021,43(1):14-22.
-
[4] 刘沁园,唐军,申威,等.塔里木盆地缝洞型白云岩储层测井细分方法与应用[J].中国石油勘探,2021,26(5):132-139.LIU Qinyuan,TANG Jun,SHEN Wei,et al.Petrophysical classifi cation method and application of fracture-vuggy type dolomite reservoir in Tarim Basin[J].China Petroleum Exploration,2021,26(5):132-139.
-
[5] 吕艳萍,吕晶,徐想东,等.塔里木盆地塔河油田中下奥陶统鹰山组内幕储层成因机理[J].石油实验地质,2021,43(6):1 031-1 037.LÜ Yanping,LÜ Jing,XU Xiangdong,et al.Genetic mechanism of inner reservoirs of Yingshan Formation of Middle-Lower Or‐ dovician in Tahe Oil Field,Tarim Basin[J].Petroleum Geology & Experiment,2021,43(6):1 031-1 037.
-
[6] 刘军,陈强路,王鹏,等.塔里木盆地顺南地区中下奥陶统碳酸盐岩储层特征与主控因素[J].石油实验地质,2021,43(1):23-33.LIU Jun,CHEN Qianglu,WANG Peng,et al.Characteristics and main controlling factors of carbonate reservoirs of Middle-Low‐ er Ordovician,Shunnan area,Tarim Basin[J].Petroleum Geolo‐ gy & Experiment,2021,43(1):23-33.
-
[7] 李斌,吕海涛,耿峰,等.塔河油田碳酸盐岩缝洞型油藏单储系数概率分布模型[J].油气地质与采收率,2021,28(3):62-69.LI Bin,LÜ Haitao,GENG Feng,et al.A probability distribution model of reserves per unit volume of fracture-cavity reservoirs in Tahe Oilfield[J].Petroleum Geology and Recovery Efficieny,2021,28(3):62-69.
-
[8] 李小波,刘学利,杨敏,等.缝洞型油藏不同岩溶背景注采关系优化研究[J].油气藏评价与开发,2020,10(2):37-42,53.LI Xiaobo,LIU Xueli,YANG Min,et al.Study on relationship optimization of injection and production in fractured-vuggy res‐ ervoirs with different karst background[J].Reservoir Evaluation and Development,2020,10(2):37-42,53.
-
[9] 操银香,李柏颉,郭媛.高压注水扩容在缝洞型碳酸盐岩油藏中的应用——以塔河S1井为例[J].油气藏评价与开发,2020,10(2):49-53.CAO Yinxiang,LI Bojie,GUO Yuan.Application of high pres‐ sure water injection expansion in fractured-vuggy carbonate oil reservoir:A case study of well-S1 in Tahe Oilfield[J].Reservoir Evaluation and Development,2020,10(2):49-53.
-
[10] 孙致学,杨旭刚,王晓光,等.基于频域分析法的缝洞型油藏岩溶孔道识别方法[J].油气地质与采收率,2021,28(1):57-63,136.SUN Zhixue,YANG Xugang,WANG Xiaoguang,et al.Identifi‐ cation method of karst channels in fracture-cavity reservoirs based on frequency domain analysis[J].Petroleum Geology and Recovery Efficieny,2021,28(1):57-63,136.
-
[11] 常宝华,李世银,曹雯,等.缝洞型碳酸盐岩油气藏关键开发指标预测方法及应用[J].特种油气藏,2021,28(2):72-77.CHANG Baohua,LI Shiyin,CAO Wen,et al.Prediction method of key development indicators of fracture-cavity carbonate res‐ ervoirs and its application[J].Special Oil & Gas Reservoirs,2021,28(2):72-77.
-
[12] DENNEY D.Assessment of water holdup in a multilayer carbon‐ ate reservoir[J].Journal of Petroleum Technology,2015,57(9):63-65.
-
[13] 陈青,方小娟,余勤,等.缝洞型碳酸盐岩油藏原始油水界面的分布评价——以塔河油田4区为例[J].特种油气藏,2010,17(6):78-81.CHEN Qing,FANG Xiaojuan,YU Qin,et al.Evaluation of the original oil-water interface distribution of fractured-vuggy car‐ bonate reservoirs-Taking Area4 of Tahe Oilfield as an example [J].Special Oil and Gas Reservoirs,2010,17(6):78-81.
-
[14] 邓兴梁,李世银,梁彬,等.轮古奥陶潜山油水界面识别方法及油气分布特征评价——以轮古LG7井区为例[J].中国岩溶,2013,32(3):339-344.DENG Xingliang,LI Shiyin,LIANG Bin,et al.Identification of oil-water interface and evaluation of oil and gas distribution in Ordovician buried hill reservoir in Lungu:A case in Lungu-well block7[J].Carsologica Sinica,2013,32(3):339-344.
-
[15] 郭分乔,宋付英,李远钦,等.塔河缝洞型碳酸盐岩油藏油水界面确定方法探讨[J].内蒙古石油化工,2008,(15):74-76.GUO Fenqiao,SONG Fuying,LI Yuanqin,et al.Research on the WOC-determining method of carbonated caved-fracture reser‐ voir in Tahe Oil Field[J].Inner Mongolia Petrochemical Indus‐ try,2008,(15):74-76.
-
[16] 张林艳.塔河油田奥陶系缝洞型碳酸盐岩油藏的储层连通性及其油(气)水分布关系[J].中国能源,2006,11(5):32-36.ZHANG Linyan.Reservoir connectivity and oil-water relation‐ ship of rock dissolved carbonate oil reservoir in Tahe oilfied[J].China Foreign Energy,2006,11(5):32-36.
-
[17] 刘传虎,王学忠,乔明全.高精度三维地震属性识别浅层稀油油藏油水界面[J].天然气勘探与开发,2009,32(4):24-27.LIU Chuanhu,WANG Xuezhong,QIAO Mingquan.Apply highprecision3D seismic attribute to identifying oil-water interface of shallow and thin oil reservoir[J].Natural Gas Exploration & Development,2009,32(4):24-27.
-
[18] 鲁国明,朱家俊.利用毛细管压力预测油水界面位置的一种回归分析方法[J].石油勘探与开发,1995,22(4):70-73.LU Guoming,ZHU Jiajun.A regression analytical method to es‐ timate oil-water contact using capillary pressure data[J].Petro‐ leum Exploration and Development,1995,22(4):70-73.
-
[19] 李宗宇.塔河缝洞型碳酸盐岩油藏油水界面变化规律探讨[J].石油地质与工程,2010,24(2):79-81,84.LI Zongyu.Discussion on oil-water contact variance of fracturecavity carbonate rock reservoir of Tahe[J].Petroleum Geology and Engineering,2010,24(2):79-81,84.
-
[20] 周涌沂,李阳,孙焕泉.用毛管压力曲线确定流体界面[J].油气地质与采收率,2002,9(5):37-39.ZHOU Yongyi,LI Yang,SUN Huanquan.Determination of fluid interface by capillary pressure curve[J].Petroleum Geology and Recovery Efficiency‚2002,9(5):37-39.
-
[21] 赵军龙,张宁,闫博,等.基于时间推移的测井信息确定油水界面变化方法研究[J].地球物理学进展,2013,28(1):293-300.ZHAO Junlong,ZHANG Ning,YAN Bo,et al.Study on the identifying the oil/water boundary alteration with logging data based on the time-lapse[J].Progress in Geophysics,2013,28(1):293-300.
-
[22] 李辉.塔河油田十二区西部奥陶系油藏油水分布研究[D].成都:成都理工大学,2009.LI Hui.Research on oil/water distribution character of Ordovi‐ cian reservoir in 12th west block of Tahe Oilfield[D].Chengdu:Chengdu University of Technology,2009.
-
[23] 邓晓娟,李勇,刘志良,等.多尺度缝洞型碳酸盐岩油藏不确定性建模方法[J].石油学报,2018,39(9):1 051-1 062.DENG Xiaojuan,LI Yong,LIU Zhiliang,et al.Uncertainty mod‐ eling method of multi-scale fracture-cave carbonate reservoir [J].Acta Petrolei Sinica,2018,39(9):1 051-1 062.
-
[24] 倪新峰,张丽娟,沈安江,等.塔里木盆地英买力-哈拉哈塘地区奥陶系碳酸盐岩岩溶储层特征及成因[J].沉积学报,2011,29(3):465-474.NI Xinfeng,ZHANG Lijuan,SHEN Anjiang,et al.Characteris‐ tics and genesis of Ordovician carbonate karst reservoir in Ying‐ maili-Halahatang area,Tarim Basin[J].Acta Sedimentologica Sinica,2011,29(3):465-474.
-
[25] 高计县,唐俊伟,张学丰,等.塔北哈拉哈塘地区奥陶系一间房组碳酸盐岩岩心裂缝类型及期次[J].石油学报,2012,33(1):64-73.GAO Jixian,TANG Junwei,ZHANG Xuefeng,et al.Types and episodes of fractures in carbonate cores from the Ordovician Yijianfang Formation in the Halahatang area,northern Tarim Ba‐ sin[J].Acta Petrolei Sinica,2012,33(1):64-73.
-
[26] 祝渭平,孙东,姚清洲,等.塔里木盆地哈拉哈塘地区碳酸盐岩油气富集规律[J].特种油气藏,2021,28(2):41-48.ZHU Weiping,SUN Dong,YAO Qingzhou,et al.The law of hy‐ drocarbon accumulation in carbonate reservoirs in Halahatang area,Tarim Basin[J].Special Oil and Gas Reservoirs,2021,28(2):41-48.
-
[27] 赵宽志,淡永,郑多明,等.塔北哈拉哈塘地区奥陶系潜山岩溶储层发育特征及控制因素[J].中国岩溶,2015,34(2):171-178.ZHAO Kuanzhi,DAN Yong,ZHENG Duoming,et al.Character‐ istics of karst reservoirs in the Ordovician buried hills of the Halahatang area,northern Tarim basin[J].Carsologica China,2015,34(2):171-178.
-
[28] 郑多明,李志华,赵宽志,等.塔里木油田奥陶系碳酸盐岩缝洞储层的定量地震描述[J].中国石油勘探,2011,16(Z1):57-62.ZHENG Duoming,LI Zhihua,ZHAO Kuanzhi,et al.Quantita‐ tive seismic characterization of Ordovician fracture-cavity car‐ bonate reservoirs in Tarim Oilfield[J].China Petroleum Explora‐ tion,2011,16(Z1):57-62.
-
[29] 朱光有,杨海军,朱永峰,等.塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J].岩石学报,2011,27(3):827-844.ZHU Guangyou,YANG Haijun,ZHU Yongfeng,et al.Study on petroleum geological characteristics and accumulation of carbon‐ ate reservoirs in Hanilcatam area,Tarim basin[J].Acta Petrologi‐ ca Sinica,2011,27(3):827-844.
-
[30] 宁超众,孙龙德,胡素云,等.塔里木盆地哈拉哈塘油田奥陶系缝洞型碳酸盐岩储层岩溶类型及特征[J].石油学报,2021,42(1):15-32. NING Chaozhong,SUN Longde,HU Suyun,et al.Karst types and characteristics of the Ordovician fracture-cavity type car‐ bonate reservoirs in Halahatang oilfield,Tarim Basin[J].Acta Petrolei Sinica,2021,42(1):15-32.
-
[31] 耿甜,吕艳萍,巫波,等.缝洞型油藏储量评价方法及开发对策 [J].特种油气藏,2021,28(6):129-136.GENG Tian,LÜ Yanping,WU Bo,et al.Reservoir evaluation method and development countermeasures for fracture-vuggy rservoir[J].Special Oil & Gas Reservoirs,2021,28(6):129-136.
-
[32] 李勇,于清艳,李保柱,等.缝洞型有水油藏动态储量及水体大小定量评价方法[J].中国科学:技术科学,2017,47(7):708-717.LI Yong,YU Qingyan,LI Baozhu,et al.Quantitative evaluation method of OOIP and aquifer size for fractured-caved carbonate reservoirs with active aquifer support[J].Scientia Sinica Techno‐ logica,2017,47(7):708-717.
-
[33] 周代余,江同文,冯积累,等.确定底水油藏水平井无水期合理产能的简单方法[J].石油学报,2005,26(6):86-89.ZHOU Daiyu,JIANG Tongwen,FENG Jilei,et al.A simplified approach for determining the reasonable water-free production of horizontal well with bottom water drive reservoir[J].Acta Petrolei Sinica,2005,26(6):86-89.
-
摘要
哈拉哈塘油田奥陶系发育孔、洞、缝储集体,该储集体是由不同压力系统和不同油水关系的缝洞单元在空间上相互叠加形成的复杂油气藏,具有多压力系统、多油水关系、多开发动态特征并存的特点。错综复杂的油水关系加大了开发难度,导致钻井成功率较低。同时,由于该类油藏的特殊性,储层存在大量放空漏失段,传统的直接预测法或监测手段识别油水界面分布及变化规律难度较大、可靠性低。为此,笔者创新性地采用缝洞型碳酸盐岩油藏不确定性地质建模技术和油藏产量不稳定分析法分别计算缝洞体静态体积、动态油体积和水体积,在动、静态储集体体积一致的基础上,逐渐调整模型油水界面,实现静态模型法刻画油、水体积与动态评价结果一致,从而确定该井原始油水界面,由井点及面推至全区,利用地质规律及生产、钻井测试等分析结果综合修正原始油水界面位置。新方法为缝洞型油藏预测原始油水界面、预留避水高度提供了新思路,也为油田进一步调整开发措施奠定基础,后期可通过加密井网、侧钻注气等措施挖潜。
Abstract
Vuggs,caves and fractures are developed in the Ordovician reservoirs in Halahatang Oilfield,and these com‐ plex oil and gas reservoirs are composed of the fracture-cavity units superimposed on each other with different pressure systems and oil-water relationships. These reservoirs are characterized by the coexistence of the multiple pressure sys‐ tems,oil-water relationships,and development performances. As a result,the intricate oil-water relationship increases the difficulty of development and results in a low drilling success rate. At the same time,due to their particularity,these res‐ ervoirs have massive vented and lost sections. It is difficult to identify the original oil-water interface distribution and change law by traditional direct prediction or monitoring methods,and the reliability is low. In view of this,the static vol‐ ume of the reservoir is calculated by the geological modeling method based on the reservoir’s uncertainties. The dynam‐ ic oil volume and water volume are respectively calculated by the reservoir production instability analysis method. When the volumes of dynamic and static reservoirs are the same,the original oil-water interface is gradually adjusted to ensure that oil and water volumes characterized by the static model are consistent with that by dynamic evaluation,so as to de‐ termine the original oil-water interface of the well. In addition,by applying the method not only in one well or certain ar‐ eas but also in the whole region,the paper can comprehensively correct the oil-water interface position with information such as geological laws,as well as production and drilling tests. The new method provides new ideas for predicting the original oil-water interface of fracture-cavity reservoirs and reserving water avoidance height,and it lays a foundation for further adjusting development measures of the oilfield.Measures such as infilling well pattern,sidetracking and gas injec‐ tion can be used to tap the potential.