en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

徐润滋(1994—),男,江苏扬州人,在读博士研究生,从事提高采收率及油气田开发地质研究。E-mail:xu18101443711@163.com。

通讯作者:

杨胜来(1961—),男,河北辛集人,教授,博导。E-mail:yangsl@cup.edu.cn。

中图分类号:TE348

文献标识码:A

文章编号:1009-9603(2023)03-0094-10

DOI:10.13673/j.pgre.202301002

参考文献 1
渠沛然.我国原油对外依存度首次下降[N].中国能源报,2022-02-21(014).QU Peiran.China dependence on foreign crude oil declined for the first time [N].China Energy News,2022-02-21(014).
参考文献 2
朱维耀,岳明,刘昀枫,等.中国致密油藏开发理论研究进展[J].工程科学学报,2019,41(9):1 103-1 114.ZHU Weiyao,YUE Ming,LIU Junfeng,et al.Research prog‐ ress on tight oil exploration in China [J].Chinese Journal of En‐ gineering,2019,41(9):1 103-1 114.
参考文献 3
邹才能,张国生,杨智,等.非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J].石油勘探与开发,2013,40(4):385-399,454.ZOU Caineng,ZHANG Guosheng,YANG Zhi,et al.Geologi‐ cal concepts,characteristics,resource potential and key tech‐ niques of unconventional hydrocarbon:On unconventional pe‐ troleum geology [J].Petroleum Exploration and Development,2013,40(9):385-399,454.
参考文献 4
邱振,邹才能,李建忠,等.非常规油气资源评价进展与未来展望[J].天然气地球科学,2013,24(2):238-246.QIU Zhen,ZOU Caineng,LI Jianzhong,et al.Unconventional petroleum resources assessment:Progress and future prospects [J].Natural Gas Geoscience,2013,24(2):238-246.
参考文献 5
庞正炼,邹才能,陶士振,等.中国致密油形成分布与资源潜力评价[J].中国工程科学,2012,14(7):60-67.PANG Zhenglian,ZOU Caineng,TAO Shizhen,et al.Forma‐ tion,distribution and resource evaluation of tight oil in China [J].Strategic Study of CAE,2012,14(7):60-67.
参考文献 6
邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187.ZOU Caineng,ZHU Rukai,WU Songtao,et al.Types,Charac‐ teristics,genesis and prospects of conventional and unconven‐ tional hydrocarbon accumulations:taking tight oil and tight gas in China as an instance [J].Acta Petrolei Sinica,2012,33(2):173-187.
参考文献 7
贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.JIA Chengzao,ZOU Caineng,LI Jianzhong,et al.Assessment criteria,main types,basic features and resource prospects of the tight oil in China [J].Acta Petrolei Sinica,2012,33(3):343-350.
参考文献 8
ZOU Caineng,ZHU Rukai,LIU K,et al.Tight gas sandstone reservoirs in China:characteristics and recognition criteria [J].Journal of Petroleum Science and Engineering,2012,88-89(2):82-91.
参考文献 9
SU Yang,ZHA Ming,JIANG Lin,et al.Pore structure and flu‐ id distribution of tight sandstone by the combined use of SEM,MICP and X-ray micro-CT [J].Journal of Petroleum Science and Engineering,2022,208PE-109241:2-11.
参考文献 10
WANG Leizheng,YU Wei.Mechanistic simulation study of gas Puff and Huff process for Bakken tight oil fractured reservoir [J].Fuel,2019,239(1):1 179-1 193.
参考文献 11
ZHANG Junfeng,BI Haibin,XU Hao,et al.New progress and reference significance of overseas tight oil exploration and devel‐ opment [J].Acta Petrolei Sinica,2015,36(2):127-137.
参考文献 12
康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477.KANG Yili,TIAN Jian,LUO Pingya,et al.Technical bottle‐ neck and development strategies of enhancing recovery for tight oil reservoirs [J].Acta Petrolei Sinica,2020,41(4):467-477.
参考文献 13
MARCO F,PETER I,PHILIP B,et al.The role of rock matrix permeability in controlling hydraulic fracturing in sandstones [J].Rock Mechanics and Rock Engineering,2021,54:5 269-5 294.
参考文献 14
KROEPSCH A C,MANILOFF P T,ADGATE J L,et al.Envi‐ ronmental justice in unconventional oil and natural gas drilling and production:A critical review and research Agenda [J].Envi‐ ronmental Science & Technology,2019,53(12):6 601-6 615.
参考文献 15
DAVID Wheeler,MACGREGOR M,ATHERTON F,et al.Hy‐ draulic fracturing-Integrating public participation with an inde‐ pendent review of the risks and benefits [J].Energy Policy,2015,85:299-308.
参考文献 16
HOU X,ZHU Y,CHEN S,et al.Investigation on pore struc‐ ture and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements [J].Journal of Petroleum Science and Engineering,2019,187:106757.
参考文献 17
邹才能,丁云宏,卢拥军,等“.人工油气藏”理论、技术及实践 [J].石油勘探与开发,2017,44(1):144-154.ZOU Caineng,DING Yunhong,LU Yongjun,et al.Concept,technology and practice of“man-made reservoirs”development [J].Petroleum Exploration and Development,2017,44(1):144-154.
参考文献 18
徐润滋,齐银,余兴国,等.基于核磁共振技术的压裂液防膨剂防膨效果评价[J].大庆石油地质与开发,2020,39(2):80-85.XU Runzi,QI Yin,YU Xingguo,et al.Evaluation of the antiswelling effect of the fracturing-fluid anti-swelling agent based on nuclear magnetic resonance technique [J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):80-85.
参考文献 19
吴奇,胥云,张守良,等.非常规油气藏体积改造技术核心理论与优化设计关键[J].石油学报,2014,35(4):706-714.WU Qi,XU Yun,ZHANG Shouliang,et al.The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs [J].Acta Petrolei Sinica,2014,35(4):706-714.
参考文献 20
王永辉,卢拥军,李永平,等.非常规储层压裂改造技术进展及应用[J].石油学报,2012,33(S1):149-158.WANG Yonghui,LU Yongjun,LI Yongping,et al.Progress and application of fracturing technology in unconventional reser‐ voir [J].Acta Petrolei Sinica,2012,33(S1):149-158.
参考文献 21
吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术——内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.WU Qi,XU Yun,WANG Xiaoquan,et al.Volume fracturing technology of unconventional reservoirs:Connotation,optimi‐ zation design and implementation [J].Petroleum Exploration and Development,2012,39(3):352-358.
参考文献 22
张广清,陈勉.定向射孔水力压裂复杂裂缝形态[J].石油勘探与开发,2009,36(1):103-107.ZHANG Guangqing,CHEN Mian.Complex fracture shapes in hydraulic fracturing with orientated perforations [J].Petroleum Exploration and Development,2009,36(1):103-107.
参考文献 23
KING G E.Thirty years of gas-shale fracturing:What have we learned?[C].SPE Annual Technical Conference and Exhibition,Florence,Italy,September 2010,SPE-133456-MS.
参考文献 24
PAGELS M,WILLBERG D M,EDELMAN E,et al.Quantify‐ ing fracturing fluid damage on reservoir rock to optimize produc‐ tion [C].SPE/AAPG/SEG Unconventional Resources Technolo‐ gy Conference,Denver,Colorado,USA,2013:URTEC1578948-MS.
参考文献 25
余海棠,邓雄伟,刘艳梅,等.致密油储层渗吸驱油用纳米流体研究[J].断块油气田,2022,29(5):604-608.YU Haitang,DENG Xiongwei,LIU Yanmei,et al.Research of nanofluids suitable for imbibition and oil displacement in tight oil reservoirs [J].Fault-Block Oil and Gas Field,2022,29(5):604-608.
参考文献 26
TIAN Weibing,WU Keliu,CHEN Zhangxin,et al.Effect of dynamic contact angle on spontaneous capillary-liquid-liquid im‐ bibition by molecular kinetic theory [J].SPEJ,2021,26(4):2 324-2 339.
参考文献 27
刘继梓,巩联浩,卜广平,等.致密砂岩油藏高温高压动态渗吸特征及影响因素[J].特种油气藏,2021,28(4):142-149.LIU Jizi,GONG Lianhao,BU Guangping,et al.Characteris‐ tics and influencing factors of dynamic imbibition at high tem‐ perature and high pressure in tight sandstone reservoir [J].Spe‐ cial Oil & Gas Reservoirs,2021,28(4):142-149.
参考文献 28
刘博峰,张庆九,陈鑫,等.致密油储层压裂液渗吸特征及水锁损害评价[J].断块油气田,2021,28(3):318-322.LIU Bofeng,ZHANG Qingjiu,CHEN Xin,et al.Imbibition characteristics of fracturing fluid in the tight oil reservoir and wa‐ ter lock damage evaluation [J].Fault-Block Oil and Gas Field,2021,28(3):318-322.
参考文献 29
林魂,宋西翔,罗超,等.致密砂岩油藏裂缝与基质间渗吸特征及主控因素[J].油气地质与采收率,2022,29(5):133-140.LIN Hun,SONG Xixiang,LUO Chao,et al.Dynamic imbibi‐ tion characteristics between fractures and matrix in tight sand‐ stone reservoirs and main controlling factor [J].Petroleum Geol‐ ogy and Recovery Efficiency,2022,29(5):133-140.
参考文献 30
王付勇,曾繁超,赵久玉.低渗透/致密油藏驱替-渗吸数学模型及其应用[J].石油学报,2020,41(11):1 396-1 405.WANG Fuyong,ZENG Fanchao,ZHAO Jiuyu.A mathematical model of displacement and imbibition of low permeability/tight reservoir and its application [J].Acta Petrolei Sinica,2020,41(11):1 396-1 405.
参考文献 31
AGHABARARI Amirhossein,GHAEDI Mojtaba,RIAZI Masoud.采用新标度方程预测再渗吸作用下天然裂缝性储集层重力泄油采收率[J].石油勘探与开发,2020,47(6):1 212-1 219.AGHABARARI Amirhossein,GHAEDI Mojtaba,RIAZI Masoud.Prediction of oil recovery in naturally fractured reser‐ voirs subjected to reinfiltration during gravity drainage using a new scaling equation [J].Petroleum Exploration and Develop‐ ment,2020,47(6):1 212-1 219.
参考文献 32
蔡建超.多孔介质自发渗吸关键问题与思考[J].计算物理,2021,38(5):505-512.CAI Jianchao.Some key issues and thoughts on spontaneous im‐ bibition in porous media [J].Chinese Journal of Computational Physics,2021,38(5):505-512.
参考文献 33
黎明,廖晶,王肃,等.鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例[J].石油实验地质,2022,44(6):971-980.LI Ming,LIAO Jing,WANG Su,et al.Imbibition characteris‐ tics and influencing factors of reservoirs with ultra-low permea‐ bility of Ordos Basin:a case study of third member of Triassic Yanchang Formation in Weibei Oil Field [J].Petroleum Geology & Experiment,2022,44(6):971-980.
参考文献 34
江昀,许国庆,石阳,等.致密岩心带压渗吸规律实验研究[J].石油实验地质,2021,43(1):144-153.JIANG Yun,XU Guoqing,SHI Yang,et al.Forced imbibition in tight sandstone cores [J].Petroleum Geology & Experiment,2021,43(1):144-153.
参考文献 35
LUCAS R.Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten [J].Kolloid-Zeitschrift,1918,1(23):15-22.
参考文献 36
WASHBURN E W.The dynamics of capillary flow [J].Physical Review,1921,3(17):273-283.
参考文献 37
王俊捷,寇继生,蔡建超,等.基于Tolman长度的 Lucas-Wash‐ burn渗吸模型改进及数值模拟[J].计算物理,2021,38(5):521-533. WANG Junjie,KOU Jisheng,CAI Jianchao,et al.Tolman length-based modified Lucas-Washburn capillary-driven model and numerical simulation [J].Chinese Journal of Computational Physics,2021,38(5):521-533.
参考文献 38
O'LOUGHLIN M,WILK K,PRIEST C,et al.Capillary rise dy‐ namics of aqueous glycerol solutions in glass capillaries:A criti‐ cal examination of the Washburn equation [J].Journal of Colloid and Interface Science,2013,411:257-264.
参考文献 39
POPESCU M N,RALSTON J,SEDEV R.Capillary rise with velocity-dependent dynamic contact angle [J].Langmuir,2008,24(21):12 710-12 716.
参考文献 40
HANDY L L.Determination of effective capillary pressures for porous media from imbibition data [J].Transactions of the AIME,1960,219(1):75-80.
参考文献 41
李爱芬,凡田友,赵琳.裂缝性油藏低渗透岩心自发渗吸实验研究[J].油气地质与采收率,2011,18(5):67-69,77.LI Aifen,FAN Tianyou,ZHAO Lin.Experimental study of spontaneous imbibition in low permeability core,fractured reser‐ voir [J].Petroleum Geology and Recovery Efficiency,2011,18(5):67-69,77.
参考文献 42
王家禄,刘玉章,陈茂谦,等.低渗透油藏裂缝动态渗吸机理实验研究[J].石油勘探与开发,2009,36(1):86-90.WANG Jialu,LIU Yuzhang,CHEN Maoqian,et al.Experimen‐ tal study on dynamic imbibition mechanism of low permeability reservoirs [J].Petroleum Exploration and Development,2009,36(1):86-90.
参考文献 43
韦青,李治平,王香增,等.裂缝性致密砂岩储层渗吸机理及影响因素——以鄂尔多斯盆地吴起地区长8储层为例[J].油气地质与采收率,2016,23(4):102-107.WEI Qing,LI Zhiping,WANG Xiangzeng,et al.Mechanism and influence factors of imbibition in fractured tight sandstone reservoir:An example from Chang 8 reservoir of Wuqi area in Ordos Basin [J].Petroleum Geology and Recovery Efficiency,2016,23(4):102-107.
参考文献 44
濮御,王秀宇,濮玲.致密储层静态渗吸实验[J].大庆石油地质与开发,2016,35(6):159-163.PU Yu,WANG Xiuyu,PU Ling.Static imbibition experiment of tight reservoir [J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2016,35(6):159-163.
参考文献 45
吴润桐,杨胜来,谢建勇,等.致密油气储层基质岩心静态渗吸实验及机理[J].油气地质与采收率,2017,24(3):98-104.WU Runtong,YANG Shenglai,XIE Jianyong,et al.Experi‐ ment and mechanism of spontaneous imbibition of matrix core in tight oil and gas reservoirs [J].Petroleum Geology and Recovery Efficiency,2017,24(3):98-104.
参考文献 46
谷潇雨,蒲春生,黄海,等.渗透率对致密砂岩储集层渗吸采油的微观影响机制[J].石油勘探与开发,2017,44(6):948-954.GU Xiaoyu,PU Chunsheng,HUANG Hai,et al.Micro-influ‐ encing mechanism of permeability on spontaneous imbibition re‐ covery for tight sandstone reservoirs [J].Petroleum Exploration and Development,2017,44(6):948-954.
参考文献 47
王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dy‐ namic imbibition principles and mechanism of tight oil reser‐ voirs [J].Petroleum Geology and Recovery Efficiency,2019,26(3):92-98.
参考文献 48
梁成钢,罗群,张金风,等.致密砂岩储层层理缝与构造缝渗吸差异分析——以吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2020,27(4):104-110.LIANG Chenggang,LUO Qun,ZHANG Jinfeng,et al.Analy‐sis of imbibition difference between bedding fractures and struc‐ tural fractures in tight sandstone reservoir:A case study in Luca‐ ogou Formation in Jimsar Depression [J].Petroleum Geology and Recovery Efficiency,2020,27(4):104-110.
参考文献 49
周小航,陈冬霞,夏宇轩,等.鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素[J].地球科学,2022,47(8):3 045-3 055.ZHOU Xiaohang,CHEN Dongxia,XIA Yuxuan,et al.Sponta‐ neous imbibition characteristics and influencing factors of Chang 7 shale oil reservoirs in Longdong area,Ordos Basin [J].Earth Science,2022,47(8):3 045-3 055.
参考文献 50
朱秀川,胡钦红,蒙冕模,等.页岩储层渗吸过程中水的微观分布及其气测渗透率动态响应特征[J]石油学报,2022,43(4):533-547.ZHU Xiuchuan,HU Qinhong,MENG Mianmo,et al.Micro‐ scopic distribution of water in the imbibition progress of shale reservoir and dynamic response characteristics of its gas logging permeability [J].Acta Petrolei Sinica,2022,43(4):533-547.
参考文献 51
曲岩涛,戴志坚,李桂梅,等.岩心分析方法:GB/T 29172— 2012[S].北京:石油工业出版社,2012.QU Yantao,DAI Zhijian,LI Guimei,et al.Practices for core analysis:GB/T 29172-2012 [S].Beijing:Petroleum Industry Press,2012.
参考文献 52
罗燕颖,吴迪,杜环虹,等.岩样核磁共振参数实验室测量规范:SY/T 6490—2014[S].北京:石油工业出版社,2014.LUO Yanying,WU Di,DU Huanhong,et al.Specification for measurement of rock NMR parameter in laboratory:SY/T 6490-2014 [S].Beijing:Petroleum Industry Press,2014.
参考文献 53
李楚雄,申宝剑,卢龙飞,等.松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术[J].油气藏评价与开发,2022,2(3):468-476.LI Chuxiong,SHEN Baojian,LU Longfei,et al.Pore structure characterization of Shahezi Formation shale in Songliao Basin:Based on low-field nuclear magnetic resonance technology[J].Reservoir Evaluation and Development,2022,2(3):468-476.
参考文献 54
孙中良,李志明,申宝剑,等.核磁共振技术在页岩油气储层评价中的应用[J].石油实验地质,2022,44(5):930-940.SUN Zhongliang,LI Zhiming,SHEN Baojian,et al.NMR tech‐ nology in reservoir evaluation for shale oil and gas[J].Petroleum Geology & Experiment,2022,44(5):930-940.
参考文献 55
冯动军,肖开华.恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J].石油实验地质,2021,43(2):368-376.FENG Dongjun,XIAO Kaihua.Constant velocity mercury injec‐ tion and nuclear magnetic resonance in evaluation of tight sand‐ stone reservoirs in western Sichuan Basin[J].Petroleum Geology &Experiment,2021,43(2):368-376.
参考文献 56
陈瑶,张宫,郑国庆,等.T2—Pc二维核磁共振岩心测试技术与应用[J].石油实验地质,2021,43(3):549-556.CHEN Yao,ZHANG Gong,ZHENG Guoqing,et al.Core testing technology with T2-Pc two-dimensional nuclear magnetic reso‐ nance and its application[J].Petroleum Geology & Experiment,2021,43(3):549-556.
目录contents

    摘要

    渗吸提采(IEOR)是高效开发具有“三低”特性致密油资源的关键技术。在储层压裂、返排、后续开发等阶段,压裂液与油藏中的岩石、流体相互作用后产生渗吸效应,研究稳态及非稳态压裂液渗吸机理对现场开发具有重要指导意义。为此,首先提出了稳态及非稳态渗吸概念,在模拟高温高压环境的基础上,利用核磁共振技术与物理模拟实验结合,定量表征了不同条件的压裂液渗吸特征差异。结果表明:压裂液稳态渗吸作用尺度为 0.01~51.52 ms,非稳态渗吸作用尺度为 0.01~27.75 ms,且在渗吸初期,二者的渗吸速率最快,渗吸作用优先在小孔(0.01~ 1.00 ms)中进行,随着反应时间的进行,再进入中孔(1.00~10.00 ms),最后为大孔(>10.00 ms);非稳态渗吸效率整体高于稳态渗吸,但是非稳态渗吸整体较早趋于稳定,小孔是压裂液渗吸效率的主要贡献者,并最先趋于稳定,其次为中孔,最后为大孔;双重介质的渗吸效率虽整体优于单一介质,但各孔喉的渗吸稳定时间相对滞后;非稳态渗吸的渗吸效率与储层渗透率、储层品质因子呈正相关性,且随着渗透率和储层品质的提升,中孔对渗吸的贡献逐步上升,由小孔主导型逐步变为中孔逼近型,最终为中孔主导型。

    Abstract

    Enhanced oil recovery by imbibition(IEOR)is the key technology to effectively develop tight reservoirs with“three lows”characteristics. The fracturing fluid interacts with the rock and fluid in the reservoirs to produce an im‐ bibition effect in the stages of reservoir fracturing,flowback,and subsequent development. Studying the imbibition mechanisms of steady and unsteady fracturing fluid has important guiding significance for field development. Therefore, the concepts of steady and unsteady imbibition are first put forward in this paper. On the basis of simulating high-temper‐ ature and high-pressure environments,the differences in imbibition characteristics of fracturing fluid under different con‐ ditions are quantitatively characterized by combining nuclear magnetic resonance(NMR)technology with physical sim‐ ulation experiments. The results show that the scales of the steady imbibition effects of fracturing fluid are 0.01–51.52 ms,and those of the unsteady imbibition effects of fracturing fluid are 0.01–27.75 ms. In the early stage of imbibition, the imbibition rates of both kinds of imbibition are the fastest,and the imbibition effects preferentially appear in small pores(0.01–1.00 ms). As the reaction continues,they appear in mesopores(1.00–10.00 ms)and then in macropores (>10.00 ms). The unsteady imbibition efficiency is higher than the steady imbibition efficiency,but the unsteady imbibi‐ tion tends to be stable earlier. Small pores are the main contributors to the imbibition efficiency of fracturing fluid,and tend to be stable at first,followed by mesopores and macropores. Although the imbibition efficiency of double media is better than that of single media as a whole,the imbibition stability time of each pore throat is relatively lagging. The un‐ steady imbibition efficiency is positively correlated with reservoir permeability and reservoir quality indicator. As perme‐ ability and reservoir quality improve,the contribution of mesopores to imbibition gradually increases,and the meso‐ pores gradually replace dominant small pores and finally occupy a leading position.

  • 油气资源作为我国三大战略储备之一,是促进经济可持续发展、维护社会稳定、保证国家能源安全的重要支柱。长久以来,我国原油对外依存度居高不下,截至2021年,我国原油进口量达到5.13×108 t,对外依存度为 72%。面对如此严峻的问题,进一步深化致密油开采技术及机理研究,突破致密油资源的传统理论认知及技术瓶颈势在必行[1-2]

  • 致密油作为非常规油气资源的重要组成部分,现已成为全世界石油勘探开发行业的热点研究对象。据资料显示,全世界的致密油资源储量丰富,主要集中于美、俄、中、澳等国家,总储量约为 9.294× 1011 t,可采储量约为 4.6×1010 t。我国致密油资源主要集中于鄂尔多斯盆地、准噶尔盆地、吐哈盆地、四川盆地等,致密油地质储量约为200×108 t [3-6]。然而,致密油开发面对众多严峻挑战,例如:地质成藏条件极为复杂,储层物性、可动性差,原油黏度、脆性矿物含量高,天然能量、气油比低等[7-10]。目前,针对此类油藏的主流开发方式为水力压裂储层改造技术,以高压流体打碎储层内致密岩石,从而形成渗流缝网,提高油藏渗流能力[11-16]。据资料显示,中外压裂液返排率普遍低于 30%,存留在地层内的大量压裂液会与地层中的各相流体、岩石接触,产生渗吸效应[17-25]

  • 渗吸作用作为高效开发致密油藏的重要机理之一,一直是中外学者的研究焦点[26-34]。早在 20 世纪初,LUCAS 等基于 Hagen-Poiseuille 定律与 YoungLaplace 方程建立了最为经典的 LW 数学模型[35-36]。然而该模型以单一静态接触角进行描述,在小孔径下的计算存在较大偏差,存在众多缺陷。后续大量学者在此基础上进行改进[37-40]。同时,众多学者也以物理模拟的手段进一步研究渗吸作用的内在机理。如,李爱芬等利用体积法研究了温度、渗透率、润湿性等因素对静态渗吸的影响[41];王家禄等利用体积法计算油水量,考察了基质润湿性、油水黏度比等因素对两相渗流的动态渗吸影响[42];韦青等以渗吸仪开展了两相静态渗吸实验,探寻比表面、润湿性及界面张力与渗吸作用之间的关系[43];濮御等通过称重法研究了各条件下的两相静态渗吸规律[44];吴润桐等利用称重法探寻了不同渗透率条件下的油水、气水两相静态渗吸规律,并提出了层渗吸理论[45];谷潇雨等以体积法开展了两相静态渗吸实验,并以核磁共振技术测定了渗吸作用的最终状态,明确了渗透率对致密储层的微观影响机制[46];王秀宇等通过测量不同条件下的出油量,明确各因素对油水两相动态渗吸的影响[47];梁成钢等以称重法开展了静态渗吸实验,对比了层理缝与构造缝间的渗吸特征差异[48];周小航等利用核磁共振技术开展了单相静态渗吸实验,明确了源储配置关系对渗吸的控制作用[49];朱秀川等以核磁共振技术结合单相静态渗吸实验,厘清了不同含水饱和度阶段的微观分布特征[50]

  • 前人研究多集中于称重法、体积法及核磁共振技术开展常温常压下的静态单相及油水两相渗吸实验。首先,由于常规实验及传统评价方式的制约,出油量的计算仅能测量上浮油滴的体积,黏附于岩心表面的油量体积无法测量,造成测量结果严重滞后及失真,测量误差大。其次,真实油藏条件多为高温高压状态,相关环境因素也应考虑。另外,核磁共振技术以识别单相流氢核信号为准,在多相流中测量的结果往往是两相的叠加,存在局限性。目前的渗吸概念主要以开发角度为导向,以流体的流动状态分为静态及动态渗吸 2 类,静态渗吸是以外界流体为静止不动的状态进行定义,而动态渗吸一般指外部环境为流动状态下的渗吸反应。笔者从油藏压裂、返排、开发角度出发,考虑各阶段压力场变化,以整体外部状态或环境因素分类,分为稳定及不稳定状态,提出稳态及非稳态渗吸概念。具体来说,在油藏压裂阶段,压力达到岩石破裂压力后,储层被压裂,此时压力状态总体呈波动式先升后降,整体状态是不稳定的,此时渗吸效应就已产生。压裂返排阶段,整体压力状态为衰竭式下降,依然是不稳定的。而后续开发阶段,随着天然能量的补充,压力状态又呈现波动式先升后降,此时的状态依然是不稳定的。这些不稳定状态下的渗吸过程,即非稳态渗吸。外部环境或状态稳定下的渗吸过程,则为稳态渗吸。

  • 基于上述考虑,笔者运用核磁共振技术结合室内物理模拟实验,以压裂液信号变化量表征高温高压环境下稳态及非稳态渗吸作用下不同条件的流体运移规律,定量表征了不同孔径下的压裂液渗吸特征差异,考察了渗透率、储层品质因子(RQI)、孔径、渗吸时长、稳态及非稳态环境等因素对压裂液渗吸效率的影响,以期为现场运用压裂液渗吸提高采收率理论提供指导及可行性方案。

  • 1 实验器材与方法

  • 1.1 实验材料

  • 为满足实验需要,选取相同孔隙度级别、不同渗透率级别的吐哈盆地中侏罗统三间房组天然岩心 6 块,各岩心参数见表1(单一介质为无裂缝的岩心,双重介质指岩心具有微裂缝,双重介质的渗透率以基质渗透率进行标注),由吐哈油田勘探开发研究院提供;实验用压裂液为JSF乳液型清洁压裂液,由吐哈油田勘探开发研究院提供;为消除油信号对检测结果的影响,实验用模拟油为氟油(无氢),黏度为 5.23 mPa·s,由中国石油勘探开发研究院提供;为屏蔽水信号对检测结果的影响,利用 Mn2+ 溶液进行处理,具体选用氯化锰试剂,由上海阿拉丁化学试剂有限公司提供;实验用模拟地层水根据现场水型配制,所用试剂包括氯化钠、氯化钾、氯化钙、氯化镁、碳酸氢钠等,由上海阿拉丁化学试剂有限公司提供,水型为CaCl2型,总矿化度约为22 000 mg/L。

  • 表1 岩心信息及实验数据

  • Table1 Core information and experimental data

  • 1.2 实验设备

  • 实验所用主体装置为 SYS-Ⅲ型多级超高温岩心流动设备;活塞式耐压容器由江苏南通华兴石油科研仪器有限公司制造,耐压70 MPa;围压泵、注入泵均为美国进口高精 ISCO260D 型双柱塞泵,泵体容积为 266 mL,压力可控范围为 0~7 500 psi,双泵连续流动流速范围为 0.001~80 mL/min,精度可达 0.5%;核磁测试设备为北京斯派克科技发展有限公司生产的 SPEC 型核磁共振岩心分析仪,射频放大器为 300 W,最小回波间隔为 0.1 ms,精度为±0.1%,扫描次数为64次。

  • 1.3 实验流程

  • 本次实验执行石油天然气行业标准 GB / T29172—2012 及 SY/T6490—2014 [51-52],实验装置见图1,具体操作及流程如下:①钻取岩心样品,两端切平、打磨,进行编号处理;②将岩心样品置于洗油仪中,加入苯及酒精的混合溶液进行洗油;③待洗油结束后,将岩心样品置于恒温箱中进行烘干处理,设定温度为 105℃,保持 48 h,随后取出测干重,并气测渗透率;④按照研究区的水型配制实验用模拟地层水,先将岩心样品置于真空容器中,利用真空泵抽至-0.1 MPa,再将模拟地层水倒吸进入容器中,饱和 72 h后取出;⑤利用ISCO双柱塞泵以恒定流速0.05mL/min 驱替饱和模拟地层水,注入量达到 2~3 PV 时停止,取出测孔隙度及核磁共振T2谱;⑥再以恒定流速0.05 mL/min驱替Mn2+ 溶液,以屏蔽水信号对实验结果的影响,注入量为 2~3 PV,随后以恒定流速 0.05 mL/min驱替饱和氟油,以排除岩心中的油相信号,注入量为 2~3 PV 时停止,建立束缚水;⑦随后开展稳态及非稳态渗吸实验,稳态渗吸过程中,将岩心置于充满压裂液的高压容器中,并保持压力 14 MPa不变,每隔12 h测核磁共振T2谱;非稳态渗吸过程中,首先将岩心置于充满压裂液的高压容器中,压力设置为 14 MPa,再以 0.01 MPa/min 衰竭压力,至 10 MPa 后停止,再以 0.01 MPa/min 增加压力,至 14MPa后停止,以此循环,并在不同时间点测核磁共振 T2谱。

  • 图1 核磁共振信号采集装置及数据处理设备

  • Fig.1 NMR signal acquisition device and data processing equipment

  • 1.4 测试原理

  • 低场核磁共振技术能无损并有效识别储层内流体分布状态,其原理主要是检测流体内的氢信号,获得信号幅度与横向弛豫时间(T2)的规律[53-56]T2值与岩石孔隙结构具有确定的对应关系,即:

  • 1T2=ρSV+1TBρSV=ρ1frc
    (1)
  • 基于上述原理,笔者根据 T2值将孔喉区间分为 3类:小孔喉区间为0.01 ms<T2<1.00 ms,中孔喉为 1.00 ms≤T2<10.00 ms,大孔喉为 T2≥10.00 ms。利用曲线积分的方式定量计算不同区间下的渗吸效率。以定量计算中孔喉在 24 h的渗吸效率为例,计算原理见图2,计算式为:

  • R=S2S1×100%
    (2)
  • 图2 不同孔喉区间内渗吸效果计算原理

  • Fig.2 Calculation principles of imbibition effects in different pore throat sections

  • 2 实验结果分析与讨论

  • 2.1 单一及双重介质稳态渗吸特征差异

  • 将X1及X2号岩心不同渗吸时间的T2谱进行对比(图3)发现,整体上在渗吸初期曲线幅度变化大,主要集中于0.01~1.00 ms,随着时间的增加,曲线整体向右扩展,幅度变化减小,峰值逐步右移,X1峰值由0.35 ms右移至1.33 ms,X2峰值由0.37 ms右移至 1.33 ms。实验结果表明:在稳态渗吸过程中,压裂液渗吸作用在初期最为显著。渗吸初期阶段,小孔的渗吸反应最为显著,随着时间的增加,中孔、大孔对渗吸作用的贡献逐步上升。

  • 为进一步明确稳态渗吸过程中单一及双重介质不同尺度孔喉区间的渗吸效果差异,对不同尺度孔喉区间进行分析(图4),整体上双重介质的最终渗吸效率(36.65%)优于单一介质(28.85%),且二者初期的渗吸作用显著。二者的共性为小孔在整个渗吸过程中始终占据渗吸作用的主导地位,其渗吸效果最先趋于稳定,其次为中孔,最后为大孔。差异在于双重介质各尺度孔喉的渗吸效果虽整体优于单一介质,但各孔喉的渗吸稳定时间相对滞后。其机理主要为双重介质的多相流接触面积更大,且拥有优势渗流通道,孔喉间的连通性更强,在同等动力作用下能够将更多的压裂液吸入多孔介质中,促进压裂液进入储层深部,使各相液流间产生置换作用。

  • 图3 X1和X2号岩心不同渗吸时间的T2曲线

  • Fig.3 NMR T2 curves of cores X1 and X2 at different imbibition time

  • 2.2 单一及双重介质非稳态渗吸特征差异

  • 将X3及X4号岩心不同渗吸时间的T2谱进行对比(图5)发现,与稳态渗吸特征类似,单一及双重介质非稳态渗吸特征均表现为整体曲线分布范围随反应时间逐渐拓宽、右移,曲线幅度比稳态渗吸实验增幅更为显著。其中,X3号岩心的曲线峰值由初期的 0.41 ms 右移至 0.94 ms,分布范围由初期的 0.01~3.74 ms 拓展至 0.01~7.14 ms,X4 号岩心的曲线峰值由初期的 0.42 ms 右移至 1.04 ms,分布范围由初期的 0.01~2.99 ms 拓展至 0.01~9.31 ms。二者均表现出在 0.01~1.00 ms 范围内的曲线变化最为显著。

  • 图4 X1和X2号岩心不同时间下各尺度孔喉渗吸效果差异

  • Fig.4 Differences of imbibition effects of different pore throats at different time of cores X1 and X2

  • 图5 X3和X4号岩心不同渗吸时间的T2曲线

  • Fig.5 NMR T2 curves of cores X3 and X4 at different imbibition time

  • 为进一步明确非稳态渗吸过程中各尺度孔喉的渗吸特征差异,对不同尺度孔喉区间的渗吸效果进行对比分析(图6),整体上与稳态渗吸实验结果一致,双重介质的最终渗吸效率(52.77%)优于单一介质(46.98%),且渗吸初期的速率最快。不同的是单一介质在 84 h渗吸效率趋于稳定,双重介质的渗吸稳定时间相对滞后,为108 h。从不同尺度孔喉渗吸特征分析,二者的共性与稳态渗吸实验类似,均为小孔的渗吸作用始终在整个渗吸过程中占据主导地位,并且最先趋于稳定状态,其次为中孔。不同的是,双重介质中不同尺度孔喉的渗吸效率虽整体优于单一介质,但各孔喉的渗吸稳定时间整体滞后。其中,单一介质中小孔的渗吸稳定时间为60 h,中孔为96 h,双重介质中小孔的渗吸稳定时间则为72 h,中孔为120 h。综合整体的非稳态渗吸特征分析,非稳态的渗吸效率远远高于稳态的。这主要是因为,首先,研究区微纳米孔隙发育,这就使储层自身拥有较高的毛细管力。其次高温促使流体黏滞力降低,渗流阻力得以减小。并且,由于压裂液自身的特性,一方面,能够有效降低界面张力,减小了流固体系间的黏附力,从而减小渗流阻力。另一方面,压裂液会促使岩石表面润湿性改变,使得岩石表面更加亲水,增强了毛细管力。最重要的一点是,非稳态环境下,由于压力不断变化,促使岩石自身结构发生改变,岩石孔隙结构具有可压缩性,在不断压缩的过程中促使本身的孔隙结构内原本的小孔及中孔拥有更小的孔喉半径,从而获得更高的毛细管力,孔隙内部会吸入更多的流体,从而扩大了流体与流体之间、流体与固体之间的接触面积,进而扩大了微观上的波及体积。从整体来看,非稳态环境进一步增强了毛细管力,即有效驱动力,从而增强了渗吸作用。

  • 图6 X3和X4岩心不同时间下各尺度孔喉渗吸效果差异

  • Fig.6 Differences of imbibition effects of different pore throats at different time of cores X3 and X4

  • 2.3 不同渗透率/储层品质的非稳态渗吸特征差异

  • 将 X4,X5及 X6号岩心不同渗吸时间的 T2谱进行对比(图5b,图7)发现,整体上曲线均在初期阶段变化显著,主要集中于0.01~1.00 ms,随着渗吸时间的增加,曲线整体向右扩展,幅度变化减小,峰值右移。其中,X5 号岩心的曲线峰值由初期的 0.43 ms 右移至 2.19 ms,分布范围最终拓展至 0.01~16.29 ms。X6号岩心的曲线峰值由初期的0.48 ms右移至 2.73 ms,分布范围由初期的 0.01~6.05 ms 拓展至 0.01~27.34 ms。二者的实验结果均显示小孔范围内的曲线变化最为显著,其次为中孔。

  • 为进一步明确非稳态渗吸过程中不同渗透率及不同储层品质下各尺度孔喉的渗吸特征差异,进一步对比分析(图6b,图8)发现,整体上非稳态下的渗吸效率整体偏高,为 52.77%~61.12%,渗吸稳定时间为 108~120 h。小孔及中孔占渗吸主要贡献,小孔的渗吸贡献最先趋于稳定,为 48~72 h。随渗透率增加及 RQI 的提升,小孔的渗吸稳定时间逐渐提前,于 48 h 趋于稳定,中孔的渗吸稳定时间由 120 h 提前至96 h。并且,随着渗透率的增加,中孔的渗吸贡献逐渐超越小孔,由原来的小孔主导渗吸作用,逐步变为中孔渗吸逼近型,最终变为中孔主导型。综合整体数据分析,非稳态渗吸作用与渗透率、RQI呈正相关性,即渗透率越大、RQI 值越高,整体的渗吸效率越高。这主要是因为:一方面研究区小孔及中孔最为发育,相比较而言,大孔并不发育,微、纳米孔隙含量整体偏高,这本身为渗吸作用得天独厚的固有条件;另一方面,小孔孔径比中孔及大孔孔径小得多,因此其毛细管力要大得多,毛细管力作为驱油的主要动力,使小孔最后的渗吸效果要比其他孔隙的好得多,这也是流体优先进入较小孔隙的重要原因,即渗吸作用优先在小孔中进行。而后续出现的中孔占据主要地位,不难看出,随着孔隙连通性的进一步增强,中孔虽然在有效驱动力方面弱于小孔,但是其具备更好的连通性,即其需要克服的流动阻力低于小孔,因此连通性也是影响渗吸作用的关键因素。

  • 图7 X5和X6号岩心不同渗吸时间的核磁共振T2曲线

  • Fig.7 NMR T2 curves of cores X5 and X6 at different imbibition time

  • 图8 X5和X6号岩心不同时间下各尺度孔喉渗吸效果差异

  • Fig.8 Differences of imbibition effects of different pore throats at different time of cores X5 and X6

  • 3 结论

  • 压裂液稳态渗吸作用尺度为0.01~51.52 ms,非稳态渗吸作用尺度为0.01~27.75 ms,且在渗吸初期的渗吸速率最快,渗吸作用优先在小孔(0.01~1.00 ms)中进行,再进入中孔(1.00~10.00 ms),最后为大孔(>10.00 ms)。非稳态渗吸的最终渗吸效率整体高于稳态渗吸,但是非稳态渗吸整体较早趋于稳定,无论在稳态还是非稳态渗吸过程中,小孔是压裂液渗吸效果的主要贡献者,最先趋于稳定,其次为中孔,最后为大孔。双重介质的渗吸效率虽整体优于单一介质,但各孔喉的渗吸稳定时间相对滞后,单一介质中的小孔多在 60~96 h趋于稳定,中孔在 84~120 h 趋于稳定,双重介质中的小孔多在 60~120 h 趋于稳定,中孔在 108~120 h 趋于稳定。非稳态渗吸的渗吸效率与储层渗透率、储层品质因子呈正相关性,且随着渗透率的增加、储层品质的提升,中孔对渗吸的贡献逐步上升,由小孔主导型,逐步变为中孔逼近型,最终为中孔主导型。

  • 符号解释

  • rc——孔隙半径,μm;

  • R——渗吸效率,%;

  • S——孔隙表面积;

  • S1——初始渗吸曲线的总下覆面积;

  • S2——1.00~10.00 ms 尺度下 24 h 的渗吸曲线下覆面积;

  • TB——体弛豫时间,ms;

  • T2——表面弛豫时间,ms;

  • V——孔隙体积;

  • 𝜌 ——表面弛豫率,μm/ms。

  • 参考文献

    • [1] 渠沛然.我国原油对外依存度首次下降[N].中国能源报,2022-02-21(014).QU Peiran.China dependence on foreign crude oil declined for the first time [N].China Energy News,2022-02-21(014).

    • [2] 朱维耀,岳明,刘昀枫,等.中国致密油藏开发理论研究进展[J].工程科学学报,2019,41(9):1 103-1 114.ZHU Weiyao,YUE Ming,LIU Junfeng,et al.Research prog‐ ress on tight oil exploration in China [J].Chinese Journal of En‐ gineering,2019,41(9):1 103-1 114.

    • [3] 邹才能,张国生,杨智,等.非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J].石油勘探与开发,2013,40(4):385-399,454.ZOU Caineng,ZHANG Guosheng,YANG Zhi,et al.Geologi‐ cal concepts,characteristics,resource potential and key tech‐ niques of unconventional hydrocarbon:On unconventional pe‐ troleum geology [J].Petroleum Exploration and Development,2013,40(9):385-399,454.

    • [4] 邱振,邹才能,李建忠,等.非常规油气资源评价进展与未来展望[J].天然气地球科学,2013,24(2):238-246.QIU Zhen,ZOU Caineng,LI Jianzhong,et al.Unconventional petroleum resources assessment:Progress and future prospects [J].Natural Gas Geoscience,2013,24(2):238-246.

    • [5] 庞正炼,邹才能,陶士振,等.中国致密油形成分布与资源潜力评价[J].中国工程科学,2012,14(7):60-67.PANG Zhenglian,ZOU Caineng,TAO Shizhen,et al.Forma‐ tion,distribution and resource evaluation of tight oil in China [J].Strategic Study of CAE,2012,14(7):60-67.

    • [6] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187.ZOU Caineng,ZHU Rukai,WU Songtao,et al.Types,Charac‐ teristics,genesis and prospects of conventional and unconven‐ tional hydrocarbon accumulations:taking tight oil and tight gas in China as an instance [J].Acta Petrolei Sinica,2012,33(2):173-187.

    • [7] 贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.JIA Chengzao,ZOU Caineng,LI Jianzhong,et al.Assessment criteria,main types,basic features and resource prospects of the tight oil in China [J].Acta Petrolei Sinica,2012,33(3):343-350.

    • [8] ZOU Caineng,ZHU Rukai,LIU K,et al.Tight gas sandstone reservoirs in China:characteristics and recognition criteria [J].Journal of Petroleum Science and Engineering,2012,88-89(2):82-91.

    • [9] SU Yang,ZHA Ming,JIANG Lin,et al.Pore structure and flu‐ id distribution of tight sandstone by the combined use of SEM,MICP and X-ray micro-CT [J].Journal of Petroleum Science and Engineering,2022,208PE-109241:2-11.

    • [10] WANG Leizheng,YU Wei.Mechanistic simulation study of gas Puff and Huff process for Bakken tight oil fractured reservoir [J].Fuel,2019,239(1):1 179-1 193.

    • [11] ZHANG Junfeng,BI Haibin,XU Hao,et al.New progress and reference significance of overseas tight oil exploration and devel‐ opment [J].Acta Petrolei Sinica,2015,36(2):127-137.

    • [12] 康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477.KANG Yili,TIAN Jian,LUO Pingya,et al.Technical bottle‐ neck and development strategies of enhancing recovery for tight oil reservoirs [J].Acta Petrolei Sinica,2020,41(4):467-477.

    • [13] MARCO F,PETER I,PHILIP B,et al.The role of rock matrix permeability in controlling hydraulic fracturing in sandstones [J].Rock Mechanics and Rock Engineering,2021,54:5 269-5 294.

    • [14] KROEPSCH A C,MANILOFF P T,ADGATE J L,et al.Envi‐ ronmental justice in unconventional oil and natural gas drilling and production:A critical review and research Agenda [J].Envi‐ ronmental Science & Technology,2019,53(12):6 601-6 615.

    • [15] DAVID Wheeler,MACGREGOR M,ATHERTON F,et al.Hy‐ draulic fracturing-Integrating public participation with an inde‐ pendent review of the risks and benefits [J].Energy Policy,2015,85:299-308.

    • [16] HOU X,ZHU Y,CHEN S,et al.Investigation on pore struc‐ ture and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements [J].Journal of Petroleum Science and Engineering,2019,187:106757.

    • [17] 邹才能,丁云宏,卢拥军,等“.人工油气藏”理论、技术及实践 [J].石油勘探与开发,2017,44(1):144-154.ZOU Caineng,DING Yunhong,LU Yongjun,et al.Concept,technology and practice of“man-made reservoirs”development [J].Petroleum Exploration and Development,2017,44(1):144-154.

    • [18] 徐润滋,齐银,余兴国,等.基于核磁共振技术的压裂液防膨剂防膨效果评价[J].大庆石油地质与开发,2020,39(2):80-85.XU Runzi,QI Yin,YU Xingguo,et al.Evaluation of the antiswelling effect of the fracturing-fluid anti-swelling agent based on nuclear magnetic resonance technique [J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):80-85.

    • [19] 吴奇,胥云,张守良,等.非常规油气藏体积改造技术核心理论与优化设计关键[J].石油学报,2014,35(4):706-714.WU Qi,XU Yun,ZHANG Shouliang,et al.The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs [J].Acta Petrolei Sinica,2014,35(4):706-714.

    • [20] 王永辉,卢拥军,李永平,等.非常规储层压裂改造技术进展及应用[J].石油学报,2012,33(S1):149-158.WANG Yonghui,LU Yongjun,LI Yongping,et al.Progress and application of fracturing technology in unconventional reser‐ voir [J].Acta Petrolei Sinica,2012,33(S1):149-158.

    • [21] 吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术——内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.WU Qi,XU Yun,WANG Xiaoquan,et al.Volume fracturing technology of unconventional reservoirs:Connotation,optimi‐ zation design and implementation [J].Petroleum Exploration and Development,2012,39(3):352-358.

    • [22] 张广清,陈勉.定向射孔水力压裂复杂裂缝形态[J].石油勘探与开发,2009,36(1):103-107.ZHANG Guangqing,CHEN Mian.Complex fracture shapes in hydraulic fracturing with orientated perforations [J].Petroleum Exploration and Development,2009,36(1):103-107.

    • [23] KING G E.Thirty years of gas-shale fracturing:What have we learned?[C].SPE Annual Technical Conference and Exhibition,Florence,Italy,September 2010,SPE-133456-MS.

    • [24] PAGELS M,WILLBERG D M,EDELMAN E,et al.Quantify‐ ing fracturing fluid damage on reservoir rock to optimize produc‐ tion [C].SPE/AAPG/SEG Unconventional Resources Technolo‐ gy Conference,Denver,Colorado,USA,2013:URTEC1578948-MS.

    • [25] 余海棠,邓雄伟,刘艳梅,等.致密油储层渗吸驱油用纳米流体研究[J].断块油气田,2022,29(5):604-608.YU Haitang,DENG Xiongwei,LIU Yanmei,et al.Research of nanofluids suitable for imbibition and oil displacement in tight oil reservoirs [J].Fault-Block Oil and Gas Field,2022,29(5):604-608.

    • [26] TIAN Weibing,WU Keliu,CHEN Zhangxin,et al.Effect of dynamic contact angle on spontaneous capillary-liquid-liquid im‐ bibition by molecular kinetic theory [J].SPEJ,2021,26(4):2 324-2 339.

    • [27] 刘继梓,巩联浩,卜广平,等.致密砂岩油藏高温高压动态渗吸特征及影响因素[J].特种油气藏,2021,28(4):142-149.LIU Jizi,GONG Lianhao,BU Guangping,et al.Characteris‐ tics and influencing factors of dynamic imbibition at high tem‐ perature and high pressure in tight sandstone reservoir [J].Spe‐ cial Oil & Gas Reservoirs,2021,28(4):142-149.

    • [28] 刘博峰,张庆九,陈鑫,等.致密油储层压裂液渗吸特征及水锁损害评价[J].断块油气田,2021,28(3):318-322.LIU Bofeng,ZHANG Qingjiu,CHEN Xin,et al.Imbibition characteristics of fracturing fluid in the tight oil reservoir and wa‐ ter lock damage evaluation [J].Fault-Block Oil and Gas Field,2021,28(3):318-322.

    • [29] 林魂,宋西翔,罗超,等.致密砂岩油藏裂缝与基质间渗吸特征及主控因素[J].油气地质与采收率,2022,29(5):133-140.LIN Hun,SONG Xixiang,LUO Chao,et al.Dynamic imbibi‐ tion characteristics between fractures and matrix in tight sand‐ stone reservoirs and main controlling factor [J].Petroleum Geol‐ ogy and Recovery Efficiency,2022,29(5):133-140.

    • [30] 王付勇,曾繁超,赵久玉.低渗透/致密油藏驱替-渗吸数学模型及其应用[J].石油学报,2020,41(11):1 396-1 405.WANG Fuyong,ZENG Fanchao,ZHAO Jiuyu.A mathematical model of displacement and imbibition of low permeability/tight reservoir and its application [J].Acta Petrolei Sinica,2020,41(11):1 396-1 405.

    • [31] AGHABARARI Amirhossein,GHAEDI Mojtaba,RIAZI Masoud.采用新标度方程预测再渗吸作用下天然裂缝性储集层重力泄油采收率[J].石油勘探与开发,2020,47(6):1 212-1 219.AGHABARARI Amirhossein,GHAEDI Mojtaba,RIAZI Masoud.Prediction of oil recovery in naturally fractured reser‐ voirs subjected to reinfiltration during gravity drainage using a new scaling equation [J].Petroleum Exploration and Develop‐ ment,2020,47(6):1 212-1 219.

    • [32] 蔡建超.多孔介质自发渗吸关键问题与思考[J].计算物理,2021,38(5):505-512.CAI Jianchao.Some key issues and thoughts on spontaneous im‐ bibition in porous media [J].Chinese Journal of Computational Physics,2021,38(5):505-512.

    • [33] 黎明,廖晶,王肃,等.鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例[J].石油实验地质,2022,44(6):971-980.LI Ming,LIAO Jing,WANG Su,et al.Imbibition characteris‐ tics and influencing factors of reservoirs with ultra-low permea‐ bility of Ordos Basin:a case study of third member of Triassic Yanchang Formation in Weibei Oil Field [J].Petroleum Geology & Experiment,2022,44(6):971-980.

    • [34] 江昀,许国庆,石阳,等.致密岩心带压渗吸规律实验研究[J].石油实验地质,2021,43(1):144-153.JIANG Yun,XU Guoqing,SHI Yang,et al.Forced imbibition in tight sandstone cores [J].Petroleum Geology & Experiment,2021,43(1):144-153.

    • [35] LUCAS R.Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten [J].Kolloid-Zeitschrift,1918,1(23):15-22.

    • [36] WASHBURN E W.The dynamics of capillary flow [J].Physical Review,1921,3(17):273-283.

    • [37] 王俊捷,寇继生,蔡建超,等.基于Tolman长度的 Lucas-Wash‐ burn渗吸模型改进及数值模拟[J].计算物理,2021,38(5):521-533. WANG Junjie,KOU Jisheng,CAI Jianchao,et al.Tolman length-based modified Lucas-Washburn capillary-driven model and numerical simulation [J].Chinese Journal of Computational Physics,2021,38(5):521-533.

    • [38] O'LOUGHLIN M,WILK K,PRIEST C,et al.Capillary rise dy‐ namics of aqueous glycerol solutions in glass capillaries:A criti‐ cal examination of the Washburn equation [J].Journal of Colloid and Interface Science,2013,411:257-264.

    • [39] POPESCU M N,RALSTON J,SEDEV R.Capillary rise with velocity-dependent dynamic contact angle [J].Langmuir,2008,24(21):12 710-12 716.

    • [40] HANDY L L.Determination of effective capillary pressures for porous media from imbibition data [J].Transactions of the AIME,1960,219(1):75-80.

    • [41] 李爱芬,凡田友,赵琳.裂缝性油藏低渗透岩心自发渗吸实验研究[J].油气地质与采收率,2011,18(5):67-69,77.LI Aifen,FAN Tianyou,ZHAO Lin.Experimental study of spontaneous imbibition in low permeability core,fractured reser‐ voir [J].Petroleum Geology and Recovery Efficiency,2011,18(5):67-69,77.

    • [42] 王家禄,刘玉章,陈茂谦,等.低渗透油藏裂缝动态渗吸机理实验研究[J].石油勘探与开发,2009,36(1):86-90.WANG Jialu,LIU Yuzhang,CHEN Maoqian,et al.Experimen‐ tal study on dynamic imbibition mechanism of low permeability reservoirs [J].Petroleum Exploration and Development,2009,36(1):86-90.

    • [43] 韦青,李治平,王香增,等.裂缝性致密砂岩储层渗吸机理及影响因素——以鄂尔多斯盆地吴起地区长8储层为例[J].油气地质与采收率,2016,23(4):102-107.WEI Qing,LI Zhiping,WANG Xiangzeng,et al.Mechanism and influence factors of imbibition in fractured tight sandstone reservoir:An example from Chang 8 reservoir of Wuqi area in Ordos Basin [J].Petroleum Geology and Recovery Efficiency,2016,23(4):102-107.

    • [44] 濮御,王秀宇,濮玲.致密储层静态渗吸实验[J].大庆石油地质与开发,2016,35(6):159-163.PU Yu,WANG Xiuyu,PU Ling.Static imbibition experiment of tight reservoir [J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2016,35(6):159-163.

    • [45] 吴润桐,杨胜来,谢建勇,等.致密油气储层基质岩心静态渗吸实验及机理[J].油气地质与采收率,2017,24(3):98-104.WU Runtong,YANG Shenglai,XIE Jianyong,et al.Experi‐ ment and mechanism of spontaneous imbibition of matrix core in tight oil and gas reservoirs [J].Petroleum Geology and Recovery Efficiency,2017,24(3):98-104.

    • [46] 谷潇雨,蒲春生,黄海,等.渗透率对致密砂岩储集层渗吸采油的微观影响机制[J].石油勘探与开发,2017,44(6):948-954.GU Xiaoyu,PU Chunsheng,HUANG Hai,et al.Micro-influ‐ encing mechanism of permeability on spontaneous imbibition re‐ covery for tight sandstone reservoirs [J].Petroleum Exploration and Development,2017,44(6):948-954.

    • [47] 王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dy‐ namic imbibition principles and mechanism of tight oil reser‐ voirs [J].Petroleum Geology and Recovery Efficiency,2019,26(3):92-98.

    • [48] 梁成钢,罗群,张金风,等.致密砂岩储层层理缝与构造缝渗吸差异分析——以吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2020,27(4):104-110.LIANG Chenggang,LUO Qun,ZHANG Jinfeng,et al.Analy‐sis of imbibition difference between bedding fractures and struc‐ tural fractures in tight sandstone reservoir:A case study in Luca‐ ogou Formation in Jimsar Depression [J].Petroleum Geology and Recovery Efficiency,2020,27(4):104-110.

    • [49] 周小航,陈冬霞,夏宇轩,等.鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素[J].地球科学,2022,47(8):3 045-3 055.ZHOU Xiaohang,CHEN Dongxia,XIA Yuxuan,et al.Sponta‐ neous imbibition characteristics and influencing factors of Chang 7 shale oil reservoirs in Longdong area,Ordos Basin [J].Earth Science,2022,47(8):3 045-3 055.

    • [50] 朱秀川,胡钦红,蒙冕模,等.页岩储层渗吸过程中水的微观分布及其气测渗透率动态响应特征[J]石油学报,2022,43(4):533-547.ZHU Xiuchuan,HU Qinhong,MENG Mianmo,et al.Micro‐ scopic distribution of water in the imbibition progress of shale reservoir and dynamic response characteristics of its gas logging permeability [J].Acta Petrolei Sinica,2022,43(4):533-547.

    • [51] 曲岩涛,戴志坚,李桂梅,等.岩心分析方法:GB/T 29172— 2012[S].北京:石油工业出版社,2012.QU Yantao,DAI Zhijian,LI Guimei,et al.Practices for core analysis:GB/T 29172-2012 [S].Beijing:Petroleum Industry Press,2012.

    • [52] 罗燕颖,吴迪,杜环虹,等.岩样核磁共振参数实验室测量规范:SY/T 6490—2014[S].北京:石油工业出版社,2014.LUO Yanying,WU Di,DU Huanhong,et al.Specification for measurement of rock NMR parameter in laboratory:SY/T 6490-2014 [S].Beijing:Petroleum Industry Press,2014.

    • [53] 李楚雄,申宝剑,卢龙飞,等.松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术[J].油气藏评价与开发,2022,2(3):468-476.LI Chuxiong,SHEN Baojian,LU Longfei,et al.Pore structure characterization of Shahezi Formation shale in Songliao Basin:Based on low-field nuclear magnetic resonance technology[J].Reservoir Evaluation and Development,2022,2(3):468-476.

    • [54] 孙中良,李志明,申宝剑,等.核磁共振技术在页岩油气储层评价中的应用[J].石油实验地质,2022,44(5):930-940.SUN Zhongliang,LI Zhiming,SHEN Baojian,et al.NMR tech‐ nology in reservoir evaluation for shale oil and gas[J].Petroleum Geology & Experiment,2022,44(5):930-940.

    • [55] 冯动军,肖开华.恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J].石油实验地质,2021,43(2):368-376.FENG Dongjun,XIAO Kaihua.Constant velocity mercury injec‐ tion and nuclear magnetic resonance in evaluation of tight sand‐ stone reservoirs in western Sichuan Basin[J].Petroleum Geology &Experiment,2021,43(2):368-376.

    • [56] 陈瑶,张宫,郑国庆,等.T2—Pc二维核磁共振岩心测试技术与应用[J].石油实验地质,2021,43(3):549-556.CHEN Yao,ZHANG Gong,ZHENG Guoqing,et al.Core testing technology with T2-Pc two-dimensional nuclear magnetic reso‐ nance and its application[J].Petroleum Geology & Experiment,2021,43(3):549-556.

  • 参考文献

    • [1] 渠沛然.我国原油对外依存度首次下降[N].中国能源报,2022-02-21(014).QU Peiran.China dependence on foreign crude oil declined for the first time [N].China Energy News,2022-02-21(014).

    • [2] 朱维耀,岳明,刘昀枫,等.中国致密油藏开发理论研究进展[J].工程科学学报,2019,41(9):1 103-1 114.ZHU Weiyao,YUE Ming,LIU Junfeng,et al.Research prog‐ ress on tight oil exploration in China [J].Chinese Journal of En‐ gineering,2019,41(9):1 103-1 114.

    • [3] 邹才能,张国生,杨智,等.非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J].石油勘探与开发,2013,40(4):385-399,454.ZOU Caineng,ZHANG Guosheng,YANG Zhi,et al.Geologi‐ cal concepts,characteristics,resource potential and key tech‐ niques of unconventional hydrocarbon:On unconventional pe‐ troleum geology [J].Petroleum Exploration and Development,2013,40(9):385-399,454.

    • [4] 邱振,邹才能,李建忠,等.非常规油气资源评价进展与未来展望[J].天然气地球科学,2013,24(2):238-246.QIU Zhen,ZOU Caineng,LI Jianzhong,et al.Unconventional petroleum resources assessment:Progress and future prospects [J].Natural Gas Geoscience,2013,24(2):238-246.

    • [5] 庞正炼,邹才能,陶士振,等.中国致密油形成分布与资源潜力评价[J].中国工程科学,2012,14(7):60-67.PANG Zhenglian,ZOU Caineng,TAO Shizhen,et al.Forma‐ tion,distribution and resource evaluation of tight oil in China [J].Strategic Study of CAE,2012,14(7):60-67.

    • [6] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187.ZOU Caineng,ZHU Rukai,WU Songtao,et al.Types,Charac‐ teristics,genesis and prospects of conventional and unconven‐ tional hydrocarbon accumulations:taking tight oil and tight gas in China as an instance [J].Acta Petrolei Sinica,2012,33(2):173-187.

    • [7] 贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.JIA Chengzao,ZOU Caineng,LI Jianzhong,et al.Assessment criteria,main types,basic features and resource prospects of the tight oil in China [J].Acta Petrolei Sinica,2012,33(3):343-350.

    • [8] ZOU Caineng,ZHU Rukai,LIU K,et al.Tight gas sandstone reservoirs in China:characteristics and recognition criteria [J].Journal of Petroleum Science and Engineering,2012,88-89(2):82-91.

    • [9] SU Yang,ZHA Ming,JIANG Lin,et al.Pore structure and flu‐ id distribution of tight sandstone by the combined use of SEM,MICP and X-ray micro-CT [J].Journal of Petroleum Science and Engineering,2022,208PE-109241:2-11.

    • [10] WANG Leizheng,YU Wei.Mechanistic simulation study of gas Puff and Huff process for Bakken tight oil fractured reservoir [J].Fuel,2019,239(1):1 179-1 193.

    • [11] ZHANG Junfeng,BI Haibin,XU Hao,et al.New progress and reference significance of overseas tight oil exploration and devel‐ opment [J].Acta Petrolei Sinica,2015,36(2):127-137.

    • [12] 康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477.KANG Yili,TIAN Jian,LUO Pingya,et al.Technical bottle‐ neck and development strategies of enhancing recovery for tight oil reservoirs [J].Acta Petrolei Sinica,2020,41(4):467-477.

    • [13] MARCO F,PETER I,PHILIP B,et al.The role of rock matrix permeability in controlling hydraulic fracturing in sandstones [J].Rock Mechanics and Rock Engineering,2021,54:5 269-5 294.

    • [14] KROEPSCH A C,MANILOFF P T,ADGATE J L,et al.Envi‐ ronmental justice in unconventional oil and natural gas drilling and production:A critical review and research Agenda [J].Envi‐ ronmental Science & Technology,2019,53(12):6 601-6 615.

    • [15] DAVID Wheeler,MACGREGOR M,ATHERTON F,et al.Hy‐ draulic fracturing-Integrating public participation with an inde‐ pendent review of the risks and benefits [J].Energy Policy,2015,85:299-308.

    • [16] HOU X,ZHU Y,CHEN S,et al.Investigation on pore struc‐ ture and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements [J].Journal of Petroleum Science and Engineering,2019,187:106757.

    • [17] 邹才能,丁云宏,卢拥军,等“.人工油气藏”理论、技术及实践 [J].石油勘探与开发,2017,44(1):144-154.ZOU Caineng,DING Yunhong,LU Yongjun,et al.Concept,technology and practice of“man-made reservoirs”development [J].Petroleum Exploration and Development,2017,44(1):144-154.

    • [18] 徐润滋,齐银,余兴国,等.基于核磁共振技术的压裂液防膨剂防膨效果评价[J].大庆石油地质与开发,2020,39(2):80-85.XU Runzi,QI Yin,YU Xingguo,et al.Evaluation of the antiswelling effect of the fracturing-fluid anti-swelling agent based on nuclear magnetic resonance technique [J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):80-85.

    • [19] 吴奇,胥云,张守良,等.非常规油气藏体积改造技术核心理论与优化设计关键[J].石油学报,2014,35(4):706-714.WU Qi,XU Yun,ZHANG Shouliang,et al.The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs [J].Acta Petrolei Sinica,2014,35(4):706-714.

    • [20] 王永辉,卢拥军,李永平,等.非常规储层压裂改造技术进展及应用[J].石油学报,2012,33(S1):149-158.WANG Yonghui,LU Yongjun,LI Yongping,et al.Progress and application of fracturing technology in unconventional reser‐ voir [J].Acta Petrolei Sinica,2012,33(S1):149-158.

    • [21] 吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术——内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.WU Qi,XU Yun,WANG Xiaoquan,et al.Volume fracturing technology of unconventional reservoirs:Connotation,optimi‐ zation design and implementation [J].Petroleum Exploration and Development,2012,39(3):352-358.

    • [22] 张广清,陈勉.定向射孔水力压裂复杂裂缝形态[J].石油勘探与开发,2009,36(1):103-107.ZHANG Guangqing,CHEN Mian.Complex fracture shapes in hydraulic fracturing with orientated perforations [J].Petroleum Exploration and Development,2009,36(1):103-107.

    • [23] KING G E.Thirty years of gas-shale fracturing:What have we learned?[C].SPE Annual Technical Conference and Exhibition,Florence,Italy,September 2010,SPE-133456-MS.

    • [24] PAGELS M,WILLBERG D M,EDELMAN E,et al.Quantify‐ ing fracturing fluid damage on reservoir rock to optimize produc‐ tion [C].SPE/AAPG/SEG Unconventional Resources Technolo‐ gy Conference,Denver,Colorado,USA,2013:URTEC1578948-MS.

    • [25] 余海棠,邓雄伟,刘艳梅,等.致密油储层渗吸驱油用纳米流体研究[J].断块油气田,2022,29(5):604-608.YU Haitang,DENG Xiongwei,LIU Yanmei,et al.Research of nanofluids suitable for imbibition and oil displacement in tight oil reservoirs [J].Fault-Block Oil and Gas Field,2022,29(5):604-608.

    • [26] TIAN Weibing,WU Keliu,CHEN Zhangxin,et al.Effect of dynamic contact angle on spontaneous capillary-liquid-liquid im‐ bibition by molecular kinetic theory [J].SPEJ,2021,26(4):2 324-2 339.

    • [27] 刘继梓,巩联浩,卜广平,等.致密砂岩油藏高温高压动态渗吸特征及影响因素[J].特种油气藏,2021,28(4):142-149.LIU Jizi,GONG Lianhao,BU Guangping,et al.Characteris‐ tics and influencing factors of dynamic imbibition at high tem‐ perature and high pressure in tight sandstone reservoir [J].Spe‐ cial Oil & Gas Reservoirs,2021,28(4):142-149.

    • [28] 刘博峰,张庆九,陈鑫,等.致密油储层压裂液渗吸特征及水锁损害评价[J].断块油气田,2021,28(3):318-322.LIU Bofeng,ZHANG Qingjiu,CHEN Xin,et al.Imbibition characteristics of fracturing fluid in the tight oil reservoir and wa‐ ter lock damage evaluation [J].Fault-Block Oil and Gas Field,2021,28(3):318-322.

    • [29] 林魂,宋西翔,罗超,等.致密砂岩油藏裂缝与基质间渗吸特征及主控因素[J].油气地质与采收率,2022,29(5):133-140.LIN Hun,SONG Xixiang,LUO Chao,et al.Dynamic imbibi‐ tion characteristics between fractures and matrix in tight sand‐ stone reservoirs and main controlling factor [J].Petroleum Geol‐ ogy and Recovery Efficiency,2022,29(5):133-140.

    • [30] 王付勇,曾繁超,赵久玉.低渗透/致密油藏驱替-渗吸数学模型及其应用[J].石油学报,2020,41(11):1 396-1 405.WANG Fuyong,ZENG Fanchao,ZHAO Jiuyu.A mathematical model of displacement and imbibition of low permeability/tight reservoir and its application [J].Acta Petrolei Sinica,2020,41(11):1 396-1 405.

    • [31] AGHABARARI Amirhossein,GHAEDI Mojtaba,RIAZI Masoud.采用新标度方程预测再渗吸作用下天然裂缝性储集层重力泄油采收率[J].石油勘探与开发,2020,47(6):1 212-1 219.AGHABARARI Amirhossein,GHAEDI Mojtaba,RIAZI Masoud.Prediction of oil recovery in naturally fractured reser‐ voirs subjected to reinfiltration during gravity drainage using a new scaling equation [J].Petroleum Exploration and Develop‐ ment,2020,47(6):1 212-1 219.

    • [32] 蔡建超.多孔介质自发渗吸关键问题与思考[J].计算物理,2021,38(5):505-512.CAI Jianchao.Some key issues and thoughts on spontaneous im‐ bibition in porous media [J].Chinese Journal of Computational Physics,2021,38(5):505-512.

    • [33] 黎明,廖晶,王肃,等.鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例[J].石油实验地质,2022,44(6):971-980.LI Ming,LIAO Jing,WANG Su,et al.Imbibition characteris‐ tics and influencing factors of reservoirs with ultra-low permea‐ bility of Ordos Basin:a case study of third member of Triassic Yanchang Formation in Weibei Oil Field [J].Petroleum Geology & Experiment,2022,44(6):971-980.

    • [34] 江昀,许国庆,石阳,等.致密岩心带压渗吸规律实验研究[J].石油实验地质,2021,43(1):144-153.JIANG Yun,XU Guoqing,SHI Yang,et al.Forced imbibition in tight sandstone cores [J].Petroleum Geology & Experiment,2021,43(1):144-153.

    • [35] LUCAS R.Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten [J].Kolloid-Zeitschrift,1918,1(23):15-22.

    • [36] WASHBURN E W.The dynamics of capillary flow [J].Physical Review,1921,3(17):273-283.

    • [37] 王俊捷,寇继生,蔡建超,等.基于Tolman长度的 Lucas-Wash‐ burn渗吸模型改进及数值模拟[J].计算物理,2021,38(5):521-533. WANG Junjie,KOU Jisheng,CAI Jianchao,et al.Tolman length-based modified Lucas-Washburn capillary-driven model and numerical simulation [J].Chinese Journal of Computational Physics,2021,38(5):521-533.

    • [38] O'LOUGHLIN M,WILK K,PRIEST C,et al.Capillary rise dy‐ namics of aqueous glycerol solutions in glass capillaries:A criti‐ cal examination of the Washburn equation [J].Journal of Colloid and Interface Science,2013,411:257-264.

    • [39] POPESCU M N,RALSTON J,SEDEV R.Capillary rise with velocity-dependent dynamic contact angle [J].Langmuir,2008,24(21):12 710-12 716.

    • [40] HANDY L L.Determination of effective capillary pressures for porous media from imbibition data [J].Transactions of the AIME,1960,219(1):75-80.

    • [41] 李爱芬,凡田友,赵琳.裂缝性油藏低渗透岩心自发渗吸实验研究[J].油气地质与采收率,2011,18(5):67-69,77.LI Aifen,FAN Tianyou,ZHAO Lin.Experimental study of spontaneous imbibition in low permeability core,fractured reser‐ voir [J].Petroleum Geology and Recovery Efficiency,2011,18(5):67-69,77.

    • [42] 王家禄,刘玉章,陈茂谦,等.低渗透油藏裂缝动态渗吸机理实验研究[J].石油勘探与开发,2009,36(1):86-90.WANG Jialu,LIU Yuzhang,CHEN Maoqian,et al.Experimen‐ tal study on dynamic imbibition mechanism of low permeability reservoirs [J].Petroleum Exploration and Development,2009,36(1):86-90.

    • [43] 韦青,李治平,王香增,等.裂缝性致密砂岩储层渗吸机理及影响因素——以鄂尔多斯盆地吴起地区长8储层为例[J].油气地质与采收率,2016,23(4):102-107.WEI Qing,LI Zhiping,WANG Xiangzeng,et al.Mechanism and influence factors of imbibition in fractured tight sandstone reservoir:An example from Chang 8 reservoir of Wuqi area in Ordos Basin [J].Petroleum Geology and Recovery Efficiency,2016,23(4):102-107.

    • [44] 濮御,王秀宇,濮玲.致密储层静态渗吸实验[J].大庆石油地质与开发,2016,35(6):159-163.PU Yu,WANG Xiuyu,PU Ling.Static imbibition experiment of tight reservoir [J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2016,35(6):159-163.

    • [45] 吴润桐,杨胜来,谢建勇,等.致密油气储层基质岩心静态渗吸实验及机理[J].油气地质与采收率,2017,24(3):98-104.WU Runtong,YANG Shenglai,XIE Jianyong,et al.Experi‐ ment and mechanism of spontaneous imbibition of matrix core in tight oil and gas reservoirs [J].Petroleum Geology and Recovery Efficiency,2017,24(3):98-104.

    • [46] 谷潇雨,蒲春生,黄海,等.渗透率对致密砂岩储集层渗吸采油的微观影响机制[J].石油勘探与开发,2017,44(6):948-954.GU Xiaoyu,PU Chunsheng,HUANG Hai,et al.Micro-influ‐ encing mechanism of permeability on spontaneous imbibition re‐ covery for tight sandstone reservoirs [J].Petroleum Exploration and Development,2017,44(6):948-954.

    • [47] 王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dy‐ namic imbibition principles and mechanism of tight oil reser‐ voirs [J].Petroleum Geology and Recovery Efficiency,2019,26(3):92-98.

    • [48] 梁成钢,罗群,张金风,等.致密砂岩储层层理缝与构造缝渗吸差异分析——以吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2020,27(4):104-110.LIANG Chenggang,LUO Qun,ZHANG Jinfeng,et al.Analy‐sis of imbibition difference between bedding fractures and struc‐ tural fractures in tight sandstone reservoir:A case study in Luca‐ ogou Formation in Jimsar Depression [J].Petroleum Geology and Recovery Efficiency,2020,27(4):104-110.

    • [49] 周小航,陈冬霞,夏宇轩,等.鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素[J].地球科学,2022,47(8):3 045-3 055.ZHOU Xiaohang,CHEN Dongxia,XIA Yuxuan,et al.Sponta‐ neous imbibition characteristics and influencing factors of Chang 7 shale oil reservoirs in Longdong area,Ordos Basin [J].Earth Science,2022,47(8):3 045-3 055.

    • [50] 朱秀川,胡钦红,蒙冕模,等.页岩储层渗吸过程中水的微观分布及其气测渗透率动态响应特征[J]石油学报,2022,43(4):533-547.ZHU Xiuchuan,HU Qinhong,MENG Mianmo,et al.Micro‐ scopic distribution of water in the imbibition progress of shale reservoir and dynamic response characteristics of its gas logging permeability [J].Acta Petrolei Sinica,2022,43(4):533-547.

    • [51] 曲岩涛,戴志坚,李桂梅,等.岩心分析方法:GB/T 29172— 2012[S].北京:石油工业出版社,2012.QU Yantao,DAI Zhijian,LI Guimei,et al.Practices for core analysis:GB/T 29172-2012 [S].Beijing:Petroleum Industry Press,2012.

    • [52] 罗燕颖,吴迪,杜环虹,等.岩样核磁共振参数实验室测量规范:SY/T 6490—2014[S].北京:石油工业出版社,2014.LUO Yanying,WU Di,DU Huanhong,et al.Specification for measurement of rock NMR parameter in laboratory:SY/T 6490-2014 [S].Beijing:Petroleum Industry Press,2014.

    • [53] 李楚雄,申宝剑,卢龙飞,等.松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术[J].油气藏评价与开发,2022,2(3):468-476.LI Chuxiong,SHEN Baojian,LU Longfei,et al.Pore structure characterization of Shahezi Formation shale in Songliao Basin:Based on low-field nuclear magnetic resonance technology[J].Reservoir Evaluation and Development,2022,2(3):468-476.

    • [54] 孙中良,李志明,申宝剑,等.核磁共振技术在页岩油气储层评价中的应用[J].石油实验地质,2022,44(5):930-940.SUN Zhongliang,LI Zhiming,SHEN Baojian,et al.NMR tech‐ nology in reservoir evaluation for shale oil and gas[J].Petroleum Geology & Experiment,2022,44(5):930-940.

    • [55] 冯动军,肖开华.恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J].石油实验地质,2021,43(2):368-376.FENG Dongjun,XIAO Kaihua.Constant velocity mercury injec‐ tion and nuclear magnetic resonance in evaluation of tight sand‐ stone reservoirs in western Sichuan Basin[J].Petroleum Geology &Experiment,2021,43(2):368-376.

    • [56] 陈瑶,张宫,郑国庆,等.T2—Pc二维核磁共振岩心测试技术与应用[J].石油实验地质,2021,43(3):549-556.CHEN Yao,ZHANG Gong,ZHENG Guoqing,et al.Core testing technology with T2-Pc two-dimensional nuclear magnetic reso‐ nance and its application[J].Petroleum Geology & Experiment,2021,43(3):549-556.