-
随着能源需求的不断增加,砾岩油气藏受到越来越多的关注,特别是在新疆准噶尔盆地玛湖凹陷,其砾岩储层发育突出,现已发现石油地质储量 20× 108 t [1]。砾岩储层普遍埋藏较深,具有物性较差、孔隙度和渗透率较低、岩性复杂、强非均质性等特点,自然产能低[2-5],需要通过“井工厂+体积压裂”组合工艺形成复杂的裂缝网络以提高经济效益[6-8]。然而,由于砾岩储层中存在随机嵌入的砾石,载荷作用下砾石表面出现应力集中现象,显著影响局部力学响应[9]。高强度砾石引起的应力干扰使原始裂缝的扩展发生偏转,形成更复杂的裂缝[10-14]。
-
对于常规砂岩储层,裂缝一般沿着最大主应力方向扩展,呈双翼状;对于砾岩储层,强非均质性导致强度和应力分布不均匀,裂缝形成和扩展存在高度不确定性。邹雨时等对人造砾岩进行了室内真三轴压裂实验,发现界面性质对裂缝的生长路径影响很大,观察到裂缝与砾石之间的多种相互作用模式,包括止裂、穿砾、绕砾和穿砾且绕砾等[15-17]。LIU 等通过真三轴压裂实验结合计算机断层扫描和声发射 (AE)监测砾岩中裂缝的形成,发现在高应力差环境下,裂缝极大可能穿过砾石,形成较为简单平整的裂缝面[18]。李连崇等[13]、LI 等[19]、张子麟等[20] 通过岩石破裂过程分析系统(rock failure process analysis sys‐ tem,RFPA)进行水力裂缝扩展模拟,发现裂缝遇到砾石后发生局部偏转,导致裂缝路径曲折复杂;但在较高的水平应力差影响下,裂缝沿着最大主应力的方向扩展,在宏观上形成了较为平直的裂缝。 ZHANG 等利用颗粒流程序( particle flow code, PFC)研究了地应力差异、砾石强度和粒度分布的影响,得出了相似的结论[21]。余东合等[23]、RUI 等[10] 通过自编渗流-应力-损伤(flow-stress-damage,FSD)模型研究了基质渗透率、压裂液黏度和排量对裂缝遇到砾石时的扩展形态和裂缝总长度的影响。
-
中外学者对于砾岩储层中压裂裂缝的扩展行为机理研究主要集中在砾石宏观分布的影响上,对于单个砾石研究较少,导致裂缝遇单个砾石的扩展规律认识不清。而实际上,裂缝在砾岩储层中扩展是由多个遇单砾行为相互协同的结果,首先需要对裂缝遇单个砾石的扩展机理进行分析。此外,水力裂缝遇砾扩展行为涉及渗流-应力-损伤的多场耦合,裂缝形态是三者耦合作用的最终结果,裂缝遇砾扩展过程中,渗流场、应力场以及裂缝形态的变化规律仍不清楚。因此,在细观尺度上将砾岩视为砾石、基质和胶结面组成的三相复合材料,基于全局黏聚力单元建立二维渗流-应力-损伤全耦合模型,模拟多场耦合下裂缝遇单个砾石的扩展行为;通过对多点、线进行应力、流体压力监测,分析裂缝扩展过程中,渗流场、应力场以及裂缝形态的变化规律,研究裂缝遇砾扩展机理,旨在为砾岩储层压裂设计提供一定的理论依据。
-
1 基于全局黏聚力单元的裂缝扩展模型
-
1.1 数学模型
-
建立了在流体压力作用下岩石介质中的裂缝扩展模型(图1)。y轴为一竖直井筒,左侧为储层压裂裂缝,右侧为压裂裂缝模拟单元。裂缝单元内充满高压流体,在流体压力作用下,裂缝单元不同部位有着不同的响应:蓝色网格为已经破裂的区域(图1b),裂缝顶部的网格点A为即将破裂区(图1a)。在黏聚力单元的裂缝扩展模型中,用于计算的理论主要包括两部分:孔隙与裂缝中的流体流动方程以及黏聚力单元的牵引分离准则。
-
图1 基于全局黏聚力单元的裂缝扩展模型示意
-
Fig.1 Fracture propagation model based on global cohesion element
-
对于黏度为 μ 的牛顿流体,裂缝内的压裂液流动可以近似为平行板之间的流动,裂缝内流体流速 qf可以由压力梯度和局部裂缝宽度确定[23]:
-
裂缝内流体满足质量守恒,其连续方程为[24]:
-
裂缝中的流体滤失表示为单元中流体的法向流动[25],即图1b中黏聚力单元的上表面和下表面的流体滤失,其计算方程为:
-
根据达西定律,多孔介质中的流体扩散满足[26]:
-
根据有效应力原理引入 biot 系数 α,总应力 σi,j 可由有效应力σ′ i,j表示为:
-
基于虚功原理,岩石多孔介质中变形平衡方程可写为[26]:
-
单位体积 dV 中流体总质量的变化率与穿过单位面积 dS 的流体质量流速相等,可得出某时刻 t 流体质量连续性方程[27]:
-
在平面应变条件下,岩石发生Ⅰ型断裂的临界断裂能GIC可由岩石Ⅰ型断裂韧性KIC、弹性模量E以及泊松比v确定[28]:
-
单元发生损伤后,应力分量可由损伤系数 D 获得[29]:
-
单元整体损伤系数D的表达式为[27]:
-
δm可表示为:
-
当单元发生剪切滑移,利用最大拉应力和摩尔库伦理论进行判定[27]:
-
1.2 全局黏聚力单元模型
-
基于 Abaqus 平台通过 Fortran 编程语言编写插件,实现在任意 2 个相邻四边形块体单元之间嵌入黏聚力单元,得到流-固耦合的全局黏聚力单元模型 (图2)。通过该模型可以将有限元法和离散元法耦合起来,模拟砾岩中流体驱动裂缝的萌生、扩展、勾通和分叉。模型中多个块体单元之间通过黏聚力单元连接,通过设定不同参数来表征砾岩的非均质性,包括高强度砾石、低强度基质以及胶结弱面等。块体单元之间的断裂是通过黏聚力单元的破坏失效实现的,为裂缝扩展提供了潜在路径。
-
图2 全局黏聚力单元模型
-
Fig.2 Global cohesion element model
-
1.3 模型验证
-
MA 等采用边长为 30 cm 的立方体人造砾岩进行室内真三轴压裂实验,研究了砾石分布对压裂裂缝扩展的影响[16]。为了验证模型的可靠性,依据 MA 等给出的实验参数[16],建立 2D 砾岩模型,通过确定数值模拟中裂缝遇到砾石的扩展形态和扩展规律是否与物理实验一致,来验证模型的准确性。建立模型尺寸为0.3 m×0.3 m,包含48 269个实体单元和 98 188 个黏聚力单元;颗粒半径为 5~20 mm,共 223块砾石随机嵌入试样中。模拟输入的最小主应力为 5 MPa,主应力差为 10 MPa;流体注入排量为 20 mL/min;基质、砾石和胶结面物理参数如表1 所示。
-
对比裂缝在砾岩中扩展形态的数值模拟与室内实验结果(图3)发现,数值模拟得到的结果无论在宏观还是细观都与物理实验有较好的一致性。宏观上,数值模拟和室内实验的砾岩试样压裂裂缝形态主要受应力状态和砾石的控制。裂缝遇到砾石后发生局部偏转,导致裂缝路径曲折复杂。但在较高的水平应力差影响下,裂缝沿着最大主应力的方向扩展,在宏观上形成了较为平直的裂缝。细观上,数值模拟中裂缝遇到砾石出现了止裂、穿砾、绕砾、裂缝分叉等扩展行为,这与MA等的物理实验结果一致。此外,MA 等还观察到压裂后的砾岩岩体中存在多个裂缝带以及裂缝内部脱落的砾石颗粒[16],这些现象都能够通过模型模拟出来。模拟中水力裂缝扩展形态与室内实验结果具有很好的一致性。基于全局黏聚力单元的裂缝扩展模型不仅可以准确模拟砾岩岩体中水力裂缝的扩展,还可以捕捉扩展过程中裂缝与砾石之间的微观相互作用。综上,利用全局黏聚力单元的裂缝扩展模型来研究水力裂缝遇砾行为是可行的。
-
表1 模型物理参数(引用并据文献[16]修改)
-
Table1 Physical parameters of model (Quoted and modified according to literature [16])
-
2 多场耦合作用下裂缝遇砾扩展行为
-
2.1 算例分析
-
用于模拟裂缝遇砾扩展行为的压裂区域是长为 0.24 m、宽为 0.12 m 的长方形(图4b)。为避免边界效应,根据 Saint-Venant 原理,将压裂区域嵌入在边长为1.2 m的二维网格正方形模型中心区域,即满足模型尺寸为压裂区域的5倍大小(图4a)。由于模型尺寸远大于目标压裂区域,水力压裂对固定边界应力分布的干扰很小。模型由 193 776 个块体单元和 386 992 个黏聚力单元组成,最小单元尺寸为 0.000 4 m,最大为 0.02 m。模型设定的岩石基本物理参数、施加应力条件以及压裂液性质如表2所示。注入点位于压裂区域中心,压裂液注入速度为0.072 m3 /min;施加水平方向最大主应力为 21 MPa,最小主应力为15 MPa。
-
压裂液注入时长 t 分别为 0.432 2,0.543 5, 0.680 4 s的裂缝形态、流体流速场、流体压力场以及应力场分布(图5)表明裂缝遇砾发生了穿砾行为。根据t为0.432 2 s的流体流速场、流体压力场以及应力场可以看到:当裂缝扩展至砾石,由于砾石具有低渗透高强度的特性,裂缝尖端附近的应力场与渗流场明显受砾石遮挡的影响。为了更好地研究裂缝扩展至砾石过程中,应力场和渗流场的相互耦合作用关系,分析两者变化规律,对监测点P在不同注入时长的水平方向应力S11、竖直方向应力S22以及流体压力pp进行提取;以监测点P0作为无砾石对照组,如图4c所示。
-
图3 裂缝在砾岩中扩展形态的数值模拟与室内实验结果对比
-
Fig.3 Comparison of numerical simulation and laboratory results of fracture propagation geometry in conglomerate rocks
-
图4 网格模型、目标压裂区域以及监测区域
-
Fig.4 Mesh model, target fracturing region, and monitor regio
-
图6为不同注入时长下监测线 L和 L0的应力和流体压力分布,以及监测点 P 和 P0处的变化率。需要注意的是,根据弹性力学约定此处拉应力为正,压应力为负。可以看到,随着裂缝不断向砾石靠近,P 和 P0处的水平方向应力 S11与竖直方向应力 S22都在减小,而流体压力 pp在不断增加。通过与无砾石的对照组比较发现:在高弹性模量、低渗透砾石的阻挡作用下,裂缝前端区域的水平与竖直方向应力都有减小的趋势,而流体压力不断增加。出现这种现象是由于压裂液在多孔介质渗透过程中,由于砾石的低渗透性,引起基质岩体中流体流速明显受阻,裂缝预扩展区域发生憋压现象,流体压力不断增加。根据有效应力原理,在原有地应力场不变的前提下,流体压力的增加导致有效应力的减小。由图6d 可以得到,流体压力 pp 相较于对照组平均增加了 9.8%, S11 平均减小了 1.85%,S22 平均减小了 1.73%。相较于原地应力场,现地应力场存在一定的应力释放现象,裂缝尖端压裂环境发生了改变[24]。
-
提取了作用在砾石表面即胶结面的应力分布,其中包括S11,S22以及τs(剪应力)。受到裂缝向两侧的挤压作用以及砾石憋压效应,由应力叠加后作用在砾石表面的应力分布(图7)可以看到,S11 在砾石表面圆心角 φ 为 0°~22°和 338°~360°(图4c)范围内变化较大;S22在φ为0°~60°和300°~360°范围内都有较为明显的应力释放现象。除此之外还发现,随着裂缝前端不断地向砾石扩展,砾石表面逐渐出现了剪应力集中的现象(图7c)。在砾石表面 φ 为 11°和 349°的位置,剪应力集中的现象最为明显,以注入时长为 0.43 s 为例,作用在 φ 为 11°和 349°处的剪应力最大,达到 0.5 MPa。当裂缝逐渐靠近砾石,剪应力集中现象越发明显,增加胶结面弱面破坏的可能性。
-
为了研究裂缝扩展过程中应力场对裂缝破坏损伤作用机理,对裂缝遇砾行为进行局部放大分析(图8)。裂缝尖端的静水压力较高,在砾石入口处产生了分支裂缝,但裂缝仍穿透砾石,主裂缝不偏斜(图8a)。在裂缝扩展至砾石表面,即注入时长为0.543 5 s时,裂缝张开导致上下单元发生位移,对胶结面形成剪应力载荷(图8b),胶结面单元发生剪切损伤,造成No.285928单元破坏并失效(图8c);由于施加在胶结面上的剪切能量不足,胶结面上相邻单元No.140146未能破坏,裂缝无法继续(图8d);砾石由于受到的张应力达到其极限抗张强度,发生张性破坏(图8e)。综上,裂缝遇砾的扩展行为是一个涉及渗流-应力-裂缝损伤的多场耦合作用复杂现象。
-
图5 不同注入时长的裂缝形态、流体流速场、流体压力场以及应力场分布
-
Fig.5 Fracture geometry, fluid velocity fields, fluid pressure fields, and stress field distribution under different injection duration
-
图6 不同注入时长下监测线L和L0的应力、流体压力分布以及变化率
-
Fig.6 Stresses,fluid pressure distribution,and rates of change of monitoring lines L and L0 under different injection duration
-
图7 不同注入时长下的砾石表面应力分布
-
Fig.7 Gravel surface stress distribution under different injection duration
-
图8 裂缝遇砾扩展行为剖析示意
-
Fig.8 Analysis of propagation behavior of fractures when encountering gravel
-
2.2 渗透率对裂缝遇砾行为的影响
-
岩石渗透率不仅影响岩石孔隙中的流动特性,还影响孔隙压力变化和压裂液漏失系数。相同排量下,低渗透油藏压裂液漏失系数低于高渗透油藏,导致缝内静水压力高,压裂液对裂缝尖端的载荷作用增大。为研究渗透率对裂缝遇砾行为的影响,建立了不同砾石渗透率的遇砾模型。为了控制变量,维持基质渗透率Km = 0.1 mD不变,通过改变砾石与基质渗透率比(Kg /Km = 0.1,0.2,0.4,0.6,0.8,1.0)的方式,改变砾石渗透率。
-
提取了注入时长为0.432 2 s时刻作用在监测线 L 上的应力与流体压力,并以无砾石实验组监测线 L0作为对照组,得到不同 Kg /Km下监测点 P 点处应力和流体压力的变化率(图9)。从图9d 中可以看到,当砾石渗透率最小时,即 Kg /Km = 0.1 时,砾石对流体流动的阻挡作用最明显,裂缝在砾石表面的憋压作用显著。此时,相较于无砾石对照组,在相同位置处的流体压力 pp 提高了 13%,而 S11 与 S22 分别减小了 10.1% 和 12.8%。这是由于砾石相较于基质的低渗透性,导致裂缝尖端存在憋压现象,相较于无砾石对照组,流体压力明显升高。根据有效应力原理,流体压力的增加导致了该处有效应力减小的趋势。
-
从不同渗透率条件下作用在砾石胶结面的剪应力分布(图10a)可以看到,受砾石渗透率影响,砾石表面的剪应力分布差异明显,在砾石表面φ为33°和 327°处,出现剪应力集中现象。当Kg /Km = 1.0时,即砾石渗透率最高,砾石表面应力集中处 τs 为 0.48 MPa;随着砾石渗透率降低,当 Kg /Km = 0.1 时,裂缝尖端的憋压作用最显著,相同位置处的 τs 为 0.61 MPa,提升幅度达28.3%。
-
由不同渗透率下的裂缝遇砾行为(图10b)可见,砾石渗透率对裂缝遇到砾石的扩展行为影响很大。随着砾石渗透率的降低,裂缝遇砾行为由穿砾向穿砾-绕砾转变,即砾石渗透率越低,裂缝偏斜的可能性越大。这与 RUI的研究结论一致,不同的是 RUI在研究中改变了基质的渗透性[10]。
-
图9 不同砾石渗透率下的应力、流体压力(t =0.432 2 s)
-
Fig.9 Stresses and fluid pressures under different gravel permeability (t = 0.432 2 s)
-
2.3 弹性模量对裂缝遇砾行为的影响
-
在其他参数不变的条件下,维持基质弹性模量 Em = 36 GPa 不变,改变砾石弹性模量 Eg,满足 Eg /Em = 1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0。
-
由监测线L和L0上的应力与流体压力分布以及变化率(图11)可以看到,受砾石高弹性模量特性影响,裂缝尖端靠近砾石位置(P 点)的 S11相较于无砾石对照组减小了 0.65%,并且随着砾石弹性模量的增加,S11 减小幅度增大,最大减小了 5.8%(图11d)。和 S11相比,S22受砾石弹性模量差异的影响较小,这说明砾石对主应力的屏蔽作用与裂缝的扩展方向有关。由于砾石本身相较于基质具有低渗透特性,裂缝尖端区域同样出现了憋压现象,造成 P 点的流体压力明显大于无砾石对照组。虽然实验中没有对砾石渗透性进行改变,但可以看到不同的实验组中监测点P的流体压力在不同弹性模量条件下仍有一定差异(图11c):随着砾石弹性模量的增加,P 点的流体压力有增大的趋势,由4%增至6.8%(图11d)。造成这种现象可能是应力-渗流耦合作用造成的:由于砾石的弹性模量增加,其抗形变能力也有一定提升; 高压流体作为裂缝扩展的能量供给,在砾石前端聚集而出现流体压力增大。
-
图10 不同渗透率的砾石表面剪应力分布以及遇砾情况
-
Fig.10 Distribution of shear stresses on gravel surfaces and behavior of fractures encountering gravel under different permeability
-
图11 不同弹性模量下砾石的应力、流体压力分布及变化率(t=0.432 2 s)
-
Fig.11 Stresses, fluid pressure distribution, and rates of change of gravel under different elastic moduli (t = 0.432 2 s)
-
从图12a可以看到,不同弹性模量的情况下,作用在砾石表面的剪应力分布差异明显,并在砾石表面 φ 为 33°和 327°处,出现剪应力集中现象。当 Eg /Em = 1.0时,砾石弹性模量最低,胶结面出现剪应力集中,τs 达 0.51 MPa;随着砾石弹性模量增至 Eg /Em = 3.0,相同位置处的 τs为 0.82 MPa,提升幅度达60.7%。
-
由不同弹性模量的裂缝遇砾行为(图12b)可以看到,砾石的弹性模量差异对裂缝遇砾扩展行为影响很大。随着弹性模量的增加,裂缝遇砾行为由穿砾向穿砾-绕砾再向绕砾转变,即砾石弹性模量越高,裂缝偏斜的可能性越大。裂缝在弹性模量较高的砾石附近易发生转向、扭结或产生分支,导致主裂缝局部弯曲,这与许多学者的研究结论一致[10,16-18]。
-
图12 不同弹性模量的砾石表面剪应力分布以及遇砾情况
-
Fig.12 Distribution of shear stresses on gravel surfaces and behavior of fractures encountering gravel under different elastic moduli
-
3 结论
-
裂缝遇砾扩展行为是一个涉及渗流-应力-损伤多场耦合作用的复杂现象。基于全局黏聚力单元的裂缝扩展模型可以准确模拟砾岩岩体中水力裂缝的宏观扩展,捕捉扩展过程中裂缝与砾石之间的细观相互作用。
-
砾石的渗透性和弹性模量对裂缝遇砾行为的作用机理不同,主要分为由于砾石低渗透特性造成憋压现象以及由于砾石高弹性模量特性造成应力屏蔽现象两方面。
-
砾石低渗透特性导致多孔介质中流体传导受阻,造成憋压现象引起裂缝前端流体压力增加,有效应力减小,同时导致砾石表面出现剪应力集中。在相同条件下,砾石渗透率降低,胶结面剪应力增加,裂缝遇砾行为将由穿砾向穿砾-绕砾转变。
-
砾石高弹性模量特性导致裂缝前端的应力场受到屏蔽,引起最大水平主应力大幅度减小;由于压力-渗流耦合作用使得流体压力有较小幅度的增加,砾石表面出现剪应力集中。在相同条件下,砾石的弹性模量增大,一方面提高砾石的抗变形能力,另一方面加剧了作用在胶结弱面的剪应力集中,造成裂缝遇砾行为将由穿砾向穿砾-绕砾再向绕砾转变。
-
符号解释
-
cl ——滤失系数,m/(Pa·s);
-
dz ——单元初始厚度,m;
-
D——单元整体损伤系数,无量纲;
-
E——弹性模量,MPa;
-
Eg——砾石弹性模量,MPa;
-
Em——基质弹性模量,GPa;
-
f——单元体积力,N/m3;
-
Gc——混合模式断裂能,N/m;
-
GIC——岩石发生Ⅰ型断裂的临界断裂能,N/m;
-
I——单位矩阵;
-
K——渗透率,mD;
-
Kg——砾石渗透率,mD;
-
Km——基质渗透率,mD;
-
KIC——I型断裂韧性,Pa·m0.5 ;
-
L——监测线长度,m;
-
nw——岩石孔隙度;
-
pb——下表面流体压力,Pa;
-
pf ——裂缝内流体压力,Pa;
-
∇pf ——压力梯度,Pa/m;
-
pm——裂缝附近地层孔隙压力,Pa;
-
pn ′ ——裂缝尖端周向应力,Pa;
-
pp——流体压力,Pa;
-
pt ——上表面流体压力,Pa;
-
pw——地层孔隙压力,Pa;
-
qf ——裂缝内流体流速,m2 /s;
-
ql ——流体滤失,m2 /s;
-
qm——多孔介质中的流体流速,m2 /s;
-
r——极坐标半径,m;
-
S——面力作用的单元面积,m2;
-
S11——水平方向应力,Pa;
-
S22——竖直方向应力,Pa;
-
t——注入时长,s;
-
tl ——液体作用在单元面积上的法向力,Pa;
-
Tmax——抗张或抗剪强度,Pa;
-
v——泊松比,无量纲;
-
vw——穿过单位面积的流体流速,m2 /s;
-
V——单位体积,m3;
-
w——裂缝开度,m;
-
xi ——裂缝扩展长度,m;
-
α——biot系数,无量纲;
-
β——极坐标角,(°);
-
δ——单元位移,m;
-
δ0——单元初始损伤发生的位移,m;
-
δf ——单元完全破坏发生的位移,m;
-
δm——单元有效位移,m;
-
δ0 m——单元初始损伤发生的有效位移,m;
-
δf m——单元完全破坏发生的有效位移,m;
-
δn,δs和δt ——n,s和t方向的位移分量,m;
-
δv——虚速度场,m/s;
-
δε——虚应变率,s-1;
-
φ——圆心角,(°);
-
η——摩擦系数;
-
μ——流体动力黏度,Pa·s;
-
ρw——流体密度,kg/m3;
-
σ——应力分量,Pa;
-
——单位未损伤时所对应的极限应力,Pa;
-
σi,j ——作用于多孔介质内的总应力,Pa;
-
σ′ i,j ——作用于多孔介质内的有效应力,Pa;
-
σn,σs和 σt ——作用在单元上在 n,s和 t方向的牵引力, Pa;
-
σ0 n,σ0 s 和σ0 t——单元在n,s和t方向的极限强度,Pa;
-
σβx——沿β-x方向应力,Pa;
-
σh——最小主应力,MPa;
-
σH——最大主应力,MPa;
-
σv——垂向应力,MPa;
-
τmax——单元接触面极限剪应力,Pa;
-
τ′ ——摩擦剪应力,Pa;
-
τs ——作用在胶结面上的剪应力,Pa;
-
——麦考利括号,表示法向压缩状态不会引发损坏。
-
参考文献
-
[1] 贾承造,邹才能,杨智,等.陆相油气地质理论在中国中西部盆地的重大进展[J].石油勘探与开发,2018,45(4):546-560.JIA Chengzao,ZOU Caineng,YANG Zhi,et al.Significant progress of continental petroleum geology theory in basins of Central and Western China[J].Petroleum Exploration and Devel‐ opment,2018,45(4):546-560.
-
[2] 李晓梅,李洲,邓振龙,等.基于反演多参数体约束地质建模的水平井预警技术——以玛湖地区致密砂砾岩油藏为例[J].油气地质与采收率,2021,28(5):57-63.LI Xiaomei,LI Zhou,DENG Zhenlong,et al.Early warning technology by geological modeling based on multiparameter con‐ strained inversion for horizontal wells:a case of tight conglomer‐ ate reservoirs in Mahu area[J].Petroleum Geology and Recovery Efficiency,2021,28(5):57-63.
-
[3] 邓羽,刘红岐,孙杨沙,等.砂砾岩储层孔隙结构特征及定量评价[J].断块油气田,2021,(3):340-345.DENG Yu,LIU Hongqi,SUN Yangsha,et al.Pore structure characteristics and quantitative evaluation of glutenite reservoir [J].Fault-Block Oil and Gas Field,2021,(3):340-345.
-
[4] 王然,郑孟林,杨森,等.玛南斜坡区上乌尔禾组弱胶结砂砾岩储层特征及控制因素[J].特种油气藏,2022,29(1):23-30.WANG Ran,ZHENG Menglin,YANG Sen,et al.Characteris‐ tics and controlling factors of weakly cemented glutenite reser‐ voir in Permian Upper Urho Formation,south slope of Mahu Sag[J].Special Oil & Gas Reservoirs,2022,29(1):23-30.
-
[5] 王志远,张烈辉,谭龙,等.砾岩储集层聚合物驱油机理与控制因素实验研究[J].油气藏评价与开发,2020,10(3):109-114.WANG Zhiyuan,ZHANG Liehui,TAN Long,et al.Study on mechanism and controlling factors of polymer flooding in con‐ glomerate reservoir[J].Reservoir Evaluation and Development,2020,10(3):109-114.
-
[6] 张金成,孙连忠,王甲昌,等.“井工厂”技术在我国非常规油气开发中的应用[J].石油钻探技术,2014,42(1):21-25.ZHANG Jincheng,SUN Lianzhong,WANG Jiachang,et al.Application of multi-well pad in unconventional oil and gas de‐ velopment in China[J].Petroleum Drilling Techniques,2014,42(1):21-25.
-
[7] 雷洋洋,王辉,武鑫,等.砾岩致密油藏直井重复压裂裂缝形态分析[J].油气藏评价与开发,2021,11(5):782-792.LEI Yangyang,WANG Hui,WU Xin,et al.Analysis of frac‐ ture geometry for refractured vertical wells in tight conglomerate reservoir[J].Reservoir Evaluation and Development,2021,11(5):782-792.
-
[8] 鲁文婷,王亮,杨升峰,等.玛湖油田致密砾岩油藏压裂数值模拟研究[J].特种油气藏,2021,28(3):94-98.LU Wenting,WANG Liang,YANG Shengfeng,et al.Numeri‐ cal simulation on fracturing in tight conglomerate reservoir of Mahu Oilfield[J].Special Oil & Gas Reservoirs,2021,28(3):94-98.
-
[9] 刘笑傲,邹德永,王庆,等.基于离散元法的砾岩地层三棱齿切削破岩数值模拟[J].特种油气藏,2022,29(4):149-155.LIU Xiaoao,ZOU Deyong,WANG Qing,et al.Numerical sim‐ ulation of rock breaking by triangular prismatic cutter in con‐ glomerate formation based on discrete element method[J].Spe‐ cial Oil & Gas Reserviors,2022,29(4):149-155
-
[10] RUI Zhenhua,GUO Tiankui,FENG Qiang,et al.Influence of gravel on the propagation pattern of hydraulic fracture in the glu‐ tenite reservoir[J].Journal of Petroleum Science and Engineer‐ ing,2018,165:627-639.
-
[11] 熊健,唐勇,刘向君,等.应用微CT技术研究砂砾岩孔隙结构特征——以玛湖凹陷百口泉组储集层为例[J].新疆石油地质,2018,39(2):236-243.XIONG Jian,TANG Yong,LIU Xiangjun,et al.Using microCT scanning technology to study characteristics of pore struc‐ tures in sandy conglomerate:a case from Baikouquan Formation in Mahu Sag,Junggar Basin[J].Xinjiang Petroleum Geology,2018,39(2):236-243.
-
[12] 张代燕,户海胜,王英伟.准噶尔盆地三叠系百口泉组特低渗砂砾岩储层孔喉结构定量表征 [J].特种油气藏,2021,28(4):23-29.ZHANG Daiyan,HU Haisheng,WANG Yingwei.Quantitative characterization of pore throat structure of reservoir with extralow permeability in Triassic Baikouquan Formation in Junggar Basin[J].Special Oil & Gas Reservoirs,2021,28(4):23-29.
-
[13] 李连崇,李根,孟庆民,等.砂砾岩水力压裂裂缝扩展规律的数值模拟分析[J].岩土力学,2013,34(5):1 501-1 507.LI Lianchong,LI Gen,MENG Qingmin,et al.Numerical simu‐ lation of propagation of hydraulic fractures in glutenite formation [J].Rock and Soil Mechanics,2013,34(5):1 501-1 507.
-
[14] 张文,高阳,梁利喜,等.砾岩油藏岩石力学特征及其对压裂改造的影响[J].断块油气田,2021,28(4):541-545.ZHANG Wen,GAO Yang,LIANG Lixi,et al.Rock mechanics characteristics of conglomerate reservoir and its effects on frac‐ turing treatment[J].Fault-Block Oil and Gas Field,2021,28(4):541-545.
-
[15] 邹雨时,石善志,张士诚,等.致密砾岩加砂压裂与裂缝导流能力实验——以准噶尔盆地玛湖致密砾岩为例[J].石油勘探与开发,2021,48(6):1 202-1 209.ZOU Yushi,SHI Shanzhi,ZHANG Shicheng,et al.Experimen‐ tal modeling of sanding fracturing and conductivity of propped fractures in conglomerate:a case study of tight conglomerate of Mahu Sag in Junggar Basin,NW China[J].Petroleum Explora‐ tion and Development,2021,48(6):1 202-1 209.
-
[16] MA Xinfang,ZOU Yushi,LI Ning,et al.Experimental study on the mechanism of hydraulic fracture growth in a glutenite res‐ ervoir[J].Journal of Structural Geology,2017,97:37-47.
-
[17] 孟庆民,张士诚,郭先敏,等.砂砾岩水力裂缝扩展规律初探 [J].石油天然气学报,2010,32(4):119-123.MENG Qingmin,ZHANG Shicheng,GUO Xianmin,et al.A primary investigation on propagation mechanism for hydraulic fractures in glutenite formation[J].Journal of Oil and Gas Tech‐ nology,2010,32(4):119-123.
-
[18] LIU Peng,JU Yang,RANJITH P G,et al.Experimental investi‐ gation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in un‐ conventional reservoir rocks[J].Journal of Natural Gas Science and Engineering,2016,35(Part A):541-554.
-
[19] LI Lianchong,MENG Qingmin,WANG Shanyong,et al.A nu‐ merical investigation of the hydraulic fracturing behavior of con‐ glomerate in glutenite formation[J].Acta Geotechnica,2013,8(6):597-618.
-
[20] 张子麟,陈勇,张全胜,等.致密砂砾岩压裂裂缝遇砾扩展模式的数值模拟研究[J].油气地质与采收率,2019,26(4):132-138.ZHANG Zilin,CHEN Yong,ZHANG Quansheng,et al.Numeri‐ cal simulation on propagation mode of hydraulic fracture ap‐ proaching gravels in tight glutenite[J].Petroleum Geology and Recovery Efficiency,2019,26(4):132-138.
-
[21] ZHANG Guodong,SUN Shuangshuang,CHAO Kun,et al.In‐ vestigation of the nucleation,propagation and coalescence of hy‐ draulic fractures in glutenite reservoirs using a coupled fluid flow-DEM approach[J].Powder Technology,2019,354:301-313.
-
[22] 余东合,徐康泰,车航,等.基于细观损伤多相耦合的砂砾岩水力压裂裂缝扩展数值模拟[J].石油钻采工艺,2016,38(3):352-358.YU Donghe,XU Kangtai,CHE Hang,et al.Numerical simula‐ tion on hydraulic fracture propagation in glutenite reservoir based on microscopic damage multiphase coupling[J].Oil Drill‐ ing & Production Technology,2016,38(3):352-358.
-
[23] BOBARU F,ZHANG Guanfeng.Why do cracks branch?A peri‐ dynamic investigation of dynamic brittle fracture[J].Internation‐ al Journal of Fracture,2015,196(1-2):59-98.
-
[24] 连志龙,张劲,吴恒安,等.水力压裂扩展的流固耦合数值模拟研究[J].岩土力学,2008,29(11):3 021-3 026.LIAN Zhilong,ZHANG Jing,WU Heng’an,et al.A simula‐ tion study of hydraulic fracturing propagation with a solid-fluid coupling model[J].Rock and Soil Mechanics,2008,29(11):3 021-3 026.
-
[25] LECAMPION B,BUNGER A P,KEAR J,et al.Interface debonding driven by fluid injection in a cased and cemented well‐ bore:modeling and experiments[J].International Journal of Greenhouse Gas Control,2013,18:208-223.
-
[26] 龚迪光,曲占庆,李建雄,等.基于abaqus平台的水力裂缝扩展有限元模拟研究[J].岩土力学,2016,37(5):1 512-1 520.GONG Diguang,QU Zhanqing,LI Jianxiong,et al.Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J].Rock and Soil Mechanics,2016,37(5):1 512-1 520.
-
[27] WANG Hanyi.Hydraulic fracture propagation in naturally frac‐ tured reservoirs:complex fracture or fracture networks[J].Jour‐ nal of Natural Gas Science and Engineering,2019,68:102911.
-
[28] 李军,翟文宝,陈朝伟,等.基于零厚度内聚力单元的水力裂缝随机扩展方法研究[J].岩土力学,2021,42(1):265-279.LI Jun,ZHAI Wenbao,CHEN Zhaowei,et al.Research on ran‐ dom propagation method of hydraulic fracture based on zerothickness cohesive element[J].Rock and Soil Mechanics,2021,42(1):265-279.
-
[29] GUO Jianchun,ZHAO Xing,ZHU Haiyan,et al.Numerical simulation of interaction of hydraulic fracture and natural frac‐ ture based on the cohesive zone finite element method[J].Journal of Natural Gas Science and Engineering,2015,25:180-188.
-
[30] 赵善坤,齐庆新,李云鹏,等.煤矿深部开采冲击地压应力控制技术理论与实践[J].煤炭学报,2020,45(S2):626-636.ZHAO Shankun,QI Qingxin,LI Yunpeng,et al.Theory and practice of rockburst stress control technology in deep coal mine [J].Journal of China Coal Society,2020,45(S2):626-636.
-
摘要
砾石的随机分布使砾岩储层具有高度非均质性,显著影响局部力学响应,难以控制和预测水力压裂裂缝的扩展。水力压裂裂缝的遇砾扩展机制仍不清楚,使得水力压裂的设计和有效实施充满挑战。基于全局黏聚力单元,在 Abaqus平台建立了渗流-应力-损伤多场耦合的二维裂缝扩展模型;在细观尺度上将砾岩视为砾石、基质和胶结面组成的三相复合材料,进行压裂裂缝遇砾扩展行为机理研究。结果表明,水力裂缝遇砾发生穿砾、绕砾、穿砾且绕砾等现象;砾石的渗透性和弹性模量对裂缝遇砾行为影响的作用机理不同:砾石的低渗透性造成憋压现象,裂缝尖端流体压力提高了13%,水平与竖直方向有效应力分别减小了10.1%和12.8%;砾石的高弹性模量造成应力的屏蔽现象,裂缝尖端与砾石间的区域水平方向有效应力减小了5.8%。砾石的低渗透性与高弹性模量都会造成胶结面上发生剪应力集中,增加了胶结弱面破坏的可能性,造成裂缝遇砾发生偏转。
Abstract
The random distribution of gravel makes conglomerate reservoirs highly heterogeneous,which significantly affects the local mechanical response and makes it difficult to control and predict the propagation of fractures caused by hydraulic fracturing. The propagation mechanism of fractures caused by hydraulic fracturing when encountering gravel remains unclear,which makes the design and effective implementation of hydraulic fracturing challenging. In this pa‐ per,based on the global cohesion element,a two-dimensional(2D)fracture propagation model with flow-stress-dam‐ age multi-field coupling is established on the Abaqus platform. The conglomerate rocks are regarded as a three-phase composite material composed of gravels,matrix,and cemented surfaces on a mesoscopic scale,and the propagation mechanism of fractures caused by hydraulic fracturing when encountering gravel is studied. The results show that frac‐ tures caused by hydraulic fracturing penetrate and bypass gravel in conglomerate reservoirs. The permeability and elastic modulus of gravel have different effects on the behavior of fractures encountering gravel. The low permeability of gravel causes the pressure holding,and the fluid pressures at the crack tips increase by 13%;the effective stresses in horizontal and vertical directions decrease by 10.1% and 12.8%,respectively. The high elastic modulus of gravel results in stress shielding,and the effective stresses in the horizontal direction of the area between the tip and the gravel are reduced by 5.8%. The low permeability and high elastic modulus of gravel both cause shear stress concentration on the cemented sur‐ face,which increases the possibility of damage to the weak cemented surface and makes fractures bypass gravel.