en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

樊康杰(1997—),男,甘肃平凉人,在读硕士研究生,从事提高油气采收率研究。E-mail:2054266795@qq.com。

中图分类号:TE343

文献标识码:A

文章编号:1009-9603(2023)03-0128-08

DOI:10.13673/j.pgre.202204032

参考文献 1
胡向阳,袁伟,汤翟,等.基于岩石物理相的泥质砂岩储层含水饱和度计算方法[J].地球物理学进展,2018,33(2):808-814.HU Xiangyang,YUAN Wei,TANG Di,et al.Calculation meth‐ od of shaly sands reservoir water saturation based on petrophysi‐ cal facies[J].Progress in Geophysics,2018,33(2):808-814.
参考文献 2
胡德胜,范彩伟,朱红涛,等.涠西南凹陷流一段高位体系域湖底扇沉积特征及勘探意义[J].中国石油勘探,2020,25(5):23-31.HU Desheng,FAN Caiwei,ZHU Hongtao,et al.Sedimentary characteristics and exploration significance of sub-lacustrine fan of highstand system tract in the first member of Liushagang Formation in the Weixinan Sag[J].China Petroleum Explora‐ tion,2020,25(5):23-31.
参考文献 3
叶青,查玉强,李凤颖,等.文昌海相水驱砂岩油藏驱油效率新认识[J].海洋石油,2016,36(2):41-45.YE Qing,ZHA Yuqiang,LI Fengying,et al.New understanding of water displacement efficiency in water flooded sandstone res‐ ervoirs of Wenchang Oilfield[J].Offshore Oil,2016,36(2):41-45.
参考文献 4
唐洪明,文鑫,张旭阳,等.层间非均质砾岩油藏水驱油模拟实验[J].西南石油大学学报:自然科学版,2014,36(5):129-135.TANG Hongming,WEN Xin,ZHANG Xuyang,et al.Water-oil displacing modeling experiment of interlayer heterogeneous con‐ glomerate reservoir[J].Journal of Southwest Petroleum Univer‐ sity:Science & Technology Edition,2014,36(5):129-135.
参考文献 5
孟灵.砂岩油藏提高水驱油效率实验及理论研究[D].秦皇岛:燕山大学,2019.MENG Ling.Experiment and theoretical study on improving wa‐ ter displacement efficiency of sandstone reservoir[D].Qinhuang‐ dao:Yanshan University,2019.
参考文献 6
魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mech‐ anism of viscosity reducer flooding in heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(2):131-136.
参考文献 7
孙雷,魏瑾,李浩,等.WS17-2低渗砂砾岩油藏注水/注气长岩心驱替效果评价及方案优选[J].油气藏评价与开发,2017,7(6):26-33.SUN Lei,WEI Jin,LI Hao,et al.Evaluation and scheme optimi‐ zation of displacement effects of long core water flooding and gas flooding in WS17-2 low permeability glutenite reservoir[J].Reservoir Evaluation and Development,2017,7(6):26-33.
参考文献 8
魏瑾.乌石凹陷低渗水敏储层渗流特征及水驱效果实验研究 [D].成都:西南石油大学,2018.WEI Jin.Experiment study on percolacation characteristics and effect of water flooding in Wushi Sag low permeability water sensitive reservoir[D].Chengdu:Southwest Petroleum Universi‐ ty,2018.
参考文献 9
邓玄,张乔良,杨山,等.文昌油田驱油效率综合研究及应用 [J].石油地质与工程,2017,31(6):91-94.DENG Xuan,ZHANG Qiaoliang,YANG Shan,et al.Compre‐ hensive research and application of oil displacement efficiency in Wenchang Oilfield[J].Petroleum Geology and Engineering,2017,31(6):91-94.
参考文献 10
武兴,王安成,巩联浩,等.致密砂岩油藏吞吐水驱开发微观孔隙动用特征[J].大庆石油地质与开发,2021,40(4):145-153.WU Xing,WANG Ancheng,GONG Lianhao,et al.Micro-pore producing characteristics of tight sandstone oil reservoir dis‐ placed by huff-puff waterflooding[J].Petroleum Geology & Oil‐ field Development in Daqing,2021,40(4):145-153.
参考文献 11
覃达.砾岩油藏CO2驱改善驱油效果实验研究[D].成都:西南石油大学,2019.QIN Da.Experimental study on improvement of oil displace‐ ment efficiency by CO2 flooding in conglomerate reservoir[D].Chengdu:Southwest Petroleum University,2019.
参考文献 12
宋宏志,杨二龙,李田靓,等.海上油田水驱后气水交替驱室内实验和数值模拟研究[J].当代化工,2021,50(5):1 171-1 175.SONG Hongzhi,YANG Erlong,LI Tianliang,et al.Laboratory experiment and numerical simulation study of gas-water alter‐ nate flooding after water flooding in offshore oil fields[J].Con‐ temporary Chemical Industry,2021,50(5):1 171-1 175.
参考文献 13
魏峰,李跃林,邓玄,等.文昌A油田驱油效率新认识及应用研究[J].石油地质与工程,2017,31(4):74-76,80.WEI Feng,LI Yuelin,DENG Xuan,et al.New understandings of oil displacement efficiency and its application in Wenchang A oilfield[J].Petroleum Geology and Engineering,2017,31(4):74-76,80.
参考文献 14
符静宇,何宏,付平,等.渗透率级差对多层非均质油藏水驱油影响规律研究[J].能源化工,2018,39(5):31-36.FU Jingyu,HE Hong,FU Ping,et al.Study on influence regulari‐ ty of permeability contrast on water flooding in multilayer het‐ erogeneous reservoirs[J].Energy Chemical Industry,2018,39(5):31-36.
参考文献 15
武毅,石利华,阴艳芳,等.辽河油田注水开发技术与实践[J].特种油气藏,2020,27(6):40-46.WU Yi,SHI Lihua,YIN Yanfang,et al.Technologies and prac‐ tice of water-flooding development in Liaohe Oilfield[J].Spe‐ cial Oil & Gas Reservoirs,2020,27(6):40-46.
参考文献 16
刘鋆石,王健,杨志冬,等.稠油油藏CO2泡沫启动残余油机制的可视化实验[J].油田化学,2021,38(1):80-84.LIU Junshi,WANG Jian,YANG Zhidong,et al.Experimental study on mechanism of CO2 foam starting residual heavy oil[J].Oilfield Chemistry,2021,38(1):80-84.
参考文献 17
崔丽静.赵凹油田安棚深层系储层精细对比及物性特征研究 [D].武汉:中国地质大学(武汉),2006.CUI Lijing.Reservoir accurate correlation and properties charac‐ teristics of Anpeng deep series at Zhao’ao Oilfield[D].Wuhan:China University of Geosciences(Wuhan),2006.
参考文献 18
张忠民.杏树岗油田A块剩余油分布研究[D].杭州:浙江大学,2006.ZHANG Zhongmin.A study on the remaining oil distribution of block A in Xingshugang Oilfield[D].Hangzhou:Zhejiang Uni‐ versity,2006.
参考文献 19
张同凯,赵凤兰,侯吉瑞,等.非均质条件下二元体系微观驱油机理研究[J].石油钻采工艺,2010,32(6):84-88.ZHANG Tongkai,ZHAO Fenglan,HOU Jirui,et al.Research on binary system flooding mechanism under the heterogeneous con‐ dition using microscopic model[J].Oil Drilling & Production Technology,2010,32(6):84-88.
参考文献 20
汪周华,赵华臻,朱光亚,等.孔隙型生物礁灰岩油藏水驱剩余油赋存特征[J].断块油气田,2021,28(3):392-396.WANG Zhouhua,ZHAO Huazhen,ZHU Guangya,et al.Storage characteristics of residual oil in water drive of porous bioclastic limestone reservoir[J].Fault-Block Oil and Gas Field,2021,28(3):392-396.
参考文献 21
张新旺,郭和坤,沈瑞,等.基于核磁共振技术水驱油剩余油分布评价[J].实验室研究与探索,2017,36(9):17-21.ZHANG Xinwang,GUO Hekun,SHEN Rui,et al.Microscopic experimental study on water displacement oil based on nuclear magnetic resonance technology[J].Research and Exploration in Laboratory,2017,36(9):17-21.
参考文献 22
江昀,许国庆,石阳,等.致密岩心带压渗吸规律实验研究[J].石油实验地质,2021,43(1):144-153.JIANG Yun,XU Guoqing,SHI Yang,et al.Forced imbibition in tight sandstone cores[J].Petroleum Geology & Experiment,2021,43(1):144-153.
参考文献 23
李士奎,刘卫东,张海琴,等.低渗透油藏自发渗吸驱油实验研究[J].石油学报,2007,28(2):109-112.LI Shikui,LIU Weidong,ZHANG Haiqin,et al.Experimental study of spontaneous imbibition in low-permeability reservoir [J].Acta Petrolei Sinica,2007,28(2):109-112.
目录contents

    摘要

    涠洲11-4N油田涠洲组油藏已进入高、特高含水开发阶段,部分油组采出程度已经接近或超过已有探井实测驱油效率,在现有驱油效率认识下,油藏可挖潜潜力较小,需进一步开展涠洲组油藏高倍水驱下驱油效率研究。针对上述开发中存在的问题,开展了注入量为200 PV下的岩心水驱油实验;设计制作了微观可视化水驱油模型,直观描述高倍水驱油过程及残余油的分布规律;结合核磁共振技术开展岩心在线驱替实验,量化大、中、小等不同尺度孔隙中的驱油效率。实验结果表明,长岩心驱油效率可达73.2%,远超原有认识下的驱油效率;当并联长岩心渗透率级差较大时,首次提出在高、低渗透岩心进口端存在伯努利效应;微观水驱油过程中,注入水沿着中、高渗透通道快速突破,模型无水采出程度仅为18.6%,200 PV水驱后,低渗透区原油得到有效启动;核磁共振在线驱替实验结果表明,中孔隙对驱油效率的贡献最大,达45.63%。

    Abstract

    Reservoirs in Weizhou Formation of Weizhou11-4N Oilfield have entered the stage of high and ultra-high wa‐ ter cut,and the recoveries of some oil groups have approached or exceeded the measured oil displacement efficiency of existing exploratory wells. In view of the current oil displacement efficiency,reservoirs have less potential to be devel‐ oped,and studies on the oil displacement efficiency of reservoirs in Weizhou Formation under high-multiple water flood‐ ing shall be carried out. According to the above problems encountered in the development,a core water flooding experi‐ ment with an injection amount of 200 PV was conducted. A flat visual water flooding model was designed to visually de‐ scribe the high-multiple water flooding process and the distribution law of residual oil. In addition,nuclear magnetic res‐ onance(NMR)technology was used to facilitate online core water flooding experiments and quantify the oil displace‐ ment efficiency in pores at large,medium,and small scales. The experimental results showed that the oil displacement ef‐ ficiency of long cores reached 73.2%,which far exceeded the currently recognized oil displacement efficiency. When the permeability ratio of long cores in parallel was large,Bernoulli’s effect was proposed for the first time at the inlet end of cores with high and low permeability. During microscopic water flooding,the injected water broke through rapidly along channels with medium and high permeability,and the anhydrous recovery of the model was only 18.6%,and after a wa‐ ter flooding of 200 PV,the crude oil in low-permeability areas was effectively started. The results of online NMR dis‐ placement experiments showed the medium pores have contributed the most to the oil displacement efficiency,reaching 45.63%.

  • 涠洲 11-4N 油田涠洲组油藏为典型的断层及构造控制的复杂断块油藏,构造破碎,主要发育辫状河三角洲前缘水下分流河道和平原辫状河道,砂体规模大,储层多为中、细砂岩,岩石类型主要为岩屑石英砂岩[1-2]。储层物性较好,孔隙度为 15.1%~37.6%,平均为 25.2%,渗透率为 40.8~5 000.0 mD,平均为784.3 mD,属中高孔、中高渗透储层,油藏驱动类型为边、底水驱,以边水为主,天然能量充足,正常温压系统。涠洲组油藏探明石油地质储量为 1 594.63×104 m3,天然能量开发区块共13个,动用地质储量为 1 463.15×104 m3,截至 2021 年 11 月 14 日,累积产油量为 573.809×104 m3,采出程度为 38.4%,累积产液量为 1 493.97 × 104 m3,综合含水率为 86.9%,处于高-特高含水阶段。

  • 涠洲 11-4N 油田涠洲组油藏在生产中存在的主要问题是油田预测的采收率与驱油效率认识存在矛盾,需重新认识。涠洲组油藏已有 2 口探井实测驱油效率分别为 59.8% 和 61.6%,WZ11-4N-4井区涠洲组采出程度已达 57.7%,其中个别油组采出程度高达62.7%,超过实测驱油效率,预测采收率可达 67.8%。涠洲组油藏已进入开发后期,为进一步提高油藏开发效果,保证油田稳产,需重新研究并明确高倍水驱下的油藏驱油效率。

  • 基于相对渗透率曲线的驱油效率刻画和数值模拟精细化研究是油藏高效开发的基础,而传统的驱油效率测定方法多存在以下问题:以短岩心驱替为主[3],样本代表性有限;地层水注入量通常较低[4],无法反映高倍水驱过程中储层物性的变化;单根岩心驱替忽略了油藏非均质性对驱油效率的影响[5-6],导致驱替结果与实际生产情况差异较大,无法有效指导油田生产。对于上述问题,在短岩心水驱油的基础上,开展了单根长岩心和并联长岩心驱替实验,分析了 200 PV 高倍水驱下流体性质、非均质性对岩心驱油效率的影响;针对常规的驱替实验无法直观描述高倍水驱油过程及残余油的分布规律的问题,设计制作了微观可视化水驱油模型;开展核磁共振在线驱替实验,解决了驱替过程中岩心大、中、小等不同尺度孔隙中驱油效率难以量化的难题。将岩心驱替实验、微观可视化水驱油模型和核磁共振技术相结合,通过宏观与微观的结合,标定高倍水驱条件下油藏采收率,为油藏数值模拟精细化研究和下步挖潜提供一定的借鉴和指导。

  • 1 实验条件和方法

  • 1.1 实验材料及设备

  • 实验用油为 WZ11-4N-4井区 A2井原油(密度为 0.843 g/cm3,50℃下黏度为 3.8 mPa·s)和 WZ11-4NB-B21 井原油(密度为 0.905 g/cm3,50℃下黏度为 80 mPa·s),中海油湛江分公司提供;实验用水为 WZ11-4N-4井区A2井地层水,氯化钙水型,矿化度为 44 578 mg/L,中海油湛江分公司提供;WZ11-4N-4 井天然岩心,岩心参数见表1,中海油湛江分公司提供;重水D2O,99.8 atom%D,北京百灵威科技有限公司生产。

  • 实验设备主要包括:恒速恒压泵、BH-2型岩心抽空加压饱和装置、高温高压多功能岩心流动装置,海安石油科研仪器有限公司生产;MacroMR12-150H-I核磁共振分析仪,苏州纽迈电子科技有限公司生产。

  • 1.2 实验方法

  • 1.2.1 岩心水驱驱油效率测试

  • 短岩心拼接根据长岩心排序计算方法[7-8] 处理,依次分别将短岩心B-1—B-5,C-1—C-5,C-6—C11串联成30 cm左右的长岩心并记为L1,L2和L3,将地层水润湿的滤纸置于各短岩心之间以平衡末端效应带来的影响[9],拼接长岩心(L1)效果见图1;在单根长岩心 L1水驱驱油实验结束后,将 L2分别与 L1,L3并联进行水驱驱油实验。将设备按照图2 所示连接,实验温度为油藏温度 93.4℃,围压为油藏地层压力 16 MPa,单根岩心驱替速度设置为 0.5 mL/min,并联长岩心驱替速度为 1.0 mL/min,研究非均质性、地层水注入量及不同流体性质(原油黏度)对驱油效率的影响;为精确计量高倍水驱过程中岩心出油量,驱替末端接精度为0.01 mL的50 mL 滴定管,驱替过程中调节滴定管下端阀门使其排液速度与驱替速度一致。

  • 1.2.2 微观可视化水驱机理实验

  • 模拟油田五点井网 1/4单元设计制作了可视化模型,模型由上、下2层亚克力板和中间的硅胶切片制成,在孔隙中填入不同粒径的玻璃珠,划分出中、高渗透区域,模型长度为 250 mm、宽度为 250mm、厚度为 1 mm,耐压不超过 3 MPa,在地面温度 50℃下开展模拟实验,模型实物见图3。称量模型干重,饱和地层水,称量湿重,利用A2井原油建立束缚水饱和度,模型孔隙体积为 43.8 cm3,孔隙度为 21.7%,初始含油饱和度为 91.3%,设置驱替速度为 10 mL/min,用高清录像设备记录高倍水驱油过程,观察残余油的运移过程。

  • 表1 岩心基本参数

  • Table1 Basic parameters of cores

  • 图1 拼接长岩心

  • Fig.1 Long core splicing

  • 图2 水驱驱油实验流程

  • Fig.2 Flow of water flooding experiment

  • 图3 水驱可视化模型实物

  • Fig.3 Physical map of water flooding visualization model

  • 1.2.3 核磁共振在线驱替实验

  • 核磁共振扫描的是氢原子核信号,以往实验中所用地层水和原油中均含有大量氢元素,本实验选用重水代替地层水进行水驱油实验,使得核磁共振扫描得到的是原油在岩心中的分布。传统的核磁共振测试时需要每次将岩心从夹持装置中取出,使得岩心周遭的温压系统发生变化,从而对油水两相在岩心中的分布产生影响,在线驱替成功地解决了上述问题,提高了结果的可靠性[10-11]

  • 设置实验温度为油藏地面温度50℃,围压为地层压力16 MPa,利用氟油加环压,对取样原油(50℃ 时黏度为 3.8 mPa·s)进行脱气处理,饱和油后再以 0.5 mL/min 的速度进行重水驱替,水驱至 200 PV,在驱替中每固定注入量时测试一次T2曲线。T2谱图中,横坐标弛豫时间表征孔隙大小,弛豫时间与孔隙类型对应关系见表2,信号幅度和反演面积的大小代表含油量的多少。

  • 表2 弛豫时间与孔隙类型的对应关系

  • Table2 Relationship between relaxation time and pore type

  • 2 结果与讨论

  • 2.1 长、短岩心驱油效率

  • 2.1.1 单根长、短岩心驱油效率

  • 驱替实验中每注入 0.1 PV 地层水就测定一次驱油效率,无法得到任意注入量下的岩心驱油效率,因此有必要对实验数据进行拟合,选取地层水注入量为 0.1~2.0 PV,对实测数据点进行多项式拟合,结合拟合公式得到 0.55 PV 下的岩心驱油效率 (表3),并与 0.55 PV 下涠洲组油藏的采出程度 38.4% 进行对比。长、短岩心驱油效率随地层水注入量的增加而增加。原油在不同黏度下,最终驱油效率相差10%左右(图4);整体来看,长岩心驱油效率最高达到了73.2%,明显高于短岩心,更加贴近油田生产动态(表3),原因可能为:长岩心孔隙体积是短岩心的 3 倍左右,在驱替过程中因饱和油而存在于管线中的原油以及在计量时损耗的原油相对于采出油整体所占的比例很小,相对保证了驱油效率计算的准确性;长岩心较短岩心可提供更多的储层地质信息,能够反映油水两相在油藏中的真实流动状态[12-13]

  • 表3 驱替实验驱油效率

  • Table3 Oil displacement efficiency in water flooding experiments

  • 图4 不同黏度原油高倍水驱下驱油效率与地层水注入量的关系

  • Fig.4 Relationship between oil displacement efficiency and formation water injection volume for crude oil with different viscosities under high-multiple water flooding

  • 驱油效率与地层水注入量的关系曲线存在一个“拐点”(地层水注入量为 1.5 PV 时),在该点之前,单位体积注入水能够明显提高岩心驱油效率,超过该点后,驱油效率增长趋势变缓,可见在水驱 1.5 PV时,岩心就已被冲刷形成了高渗透通道,导致后续注入水低效循环;当地层水注入量达到一定程度时,增幅甚至趋近于0,表明继续增大地层水注入量对提高驱油效率作用有限。

  • 2.1.2 并联长岩心驱油效率

  • 由图5可知,当渗透率级差为3.76时,并联模型综合驱油效率达到 42%,其中,中渗透岩心无原油产出,驱油效率为 0%,而渗透率较高的岩心驱油效率较高,达到90%以上,远超单根长岩心驱油效率,原因可能在于:岩心平均渗透率不同,单根长岩心平均渗透率为 296.51 mD,并联模型高渗透岩心平均渗透率为 730.6 mD;单根长岩心驱替速度为 0.5 mL/min,并联长岩心因渗透率级差较大,注入水全部沿高渗透岩心驱出,从而使得高渗透岩心的驱替速度达到了 1.0 mL/min,注入速度的增大提高了岩心驱油效率;假设中渗透岩心中没有原油流向高渗透岩心,则中渗透岩心此时为封闭状态(岩心中没有流体的流进和流出),并联长岩心驱替可视为驱替速度为 1.0 mL/min的单根长岩心驱替,其驱油效率接近 99%,几乎被完全开发,而油藏的采收率无法达到 100%,因此判断存在中渗透岩心中的部分原油沿高渗透岩心采出的现象:注入水在高、中渗透岩心进口端流动时发生了伯努利效应,两者流速间的差距导致进口端存在一定的压差,使得中渗透岩心中部分原油被“吸”向高渗透岩心,进而提高了高渗透岩心驱油效率。

  • 图5 渗透率级差为3.76时并联岩心驱油效率和地层水注入量的关系

  • Fig.5 Relationship between oil flooding efficiency and formation water injection volume for cores in parallel under a permeability ratio of 3.76

  • 以渗透率级差为基本参数来定量表征油藏非均质性强度,渗透率级差越大,表明非均质性越强[14]。由图6可知,当渗透率级差为 1.53时,2根岩心均有原油采出,其中,渗透率较低的岩心驱油效率达到了 57.3%,渗透率较高的岩心驱油效率达到了 68.2%,长岩心并联模型综合驱油效率为 62.6%。由并联模型水驱油实验可以看出,驱油效率与油藏非均质性强度相关,当岩心渗透率级差越大时,低渗透储层的启动程度越低,模型综合驱油效率越低。为了进一步提高油藏整体开发水平,必须根据非均质性等特征对储层精细划分,同时对渗流较快的大孔道实施有效封堵等调控措施[15]

  • 图6 渗透率级差为1.53时并联岩心驱油效率和地层水注入量的关系(原油黏度为3.8 mPa·s)

  • Fig.6 Relationship between oil displacement efficiency and formation water injection volume for cores in parallel under a permeability ratio of 1.53 (with a crude oil viscosity of 3.8 mPa·s)

  • 2.2 可视化模型水驱油机理

  • 2.2.1 宏观波及范围变化

  • 从图7可以看出,水驱1.0 PV后,平面可视化模型高渗透区采收率最高,中渗透区原油大部分被采出,低渗透区原油动用程度最低,基本未被波及到。在水驱过程中,微观驱替模型因其非均质性的存在以及油水黏度差别较大,导致注入水沿着高、中渗透通道快速产出[16],模型出口端见水迅速,无水采出程度仅达到 18.6%,为充分描述水驱油过程和储层非均质性对水驱油的影响,可视化模型突出表现了储层非均质性强的特点,这也导致模型无水采收率远低于长岩心;注入水突破后,出口端产液,含水率迅速上升,形成水驱优势通道,且主要存在于模型的中上部(即平面模型中、高渗透区域),在地层水的冲刷下,存在于孔隙中的原油不断地以丝状向优势通道下游汇聚,或与下游油珠融合,或被继续冲刷而产出;当模型含水率达到 98% 时,采收率仅为 37.1%,模型低渗透区动用程度较低;在 200 PV 的地层水不断冲刷下,模型物性发生变化,低渗透区剩余油得到较大程度地启动,中、高渗透区的残余油大幅减少,最终采收率达到65.3%。

  • 2.2.2 残余油启动

  • 油藏在水驱后残余油整体可划分为 2 种形式:局部死油区内的油[17],如图8a 所示,可以看出死油占据了残余油的绝大部分,且均位于低渗透区;地层水掠过的区域中,因岩石润湿性和油水流度差异未被冲刷携带产出而残存的原油[18],残余油的形状千差万别(图8b—8f)。

  • 1.0 PV 水驱后,低渗透区(模型右下部区域)未被注入水波及到,原油未得到动用;由于油水黏度差异较大,模型中、高渗透区的残余油多以孤岛状、索状存在。水驱油过程在微观上是间歇性的,在地层水的不断注入下,呈现出压力增大、喷发、再蕴蓄和再释放的动态变化过程[19]。当 200 PV 极限水驱后,低渗透区的死油也被有效启动(图8a),大幅提高了模型整体的驱油效率;中、高渗透区各类残余油也不同程度地得到动用,表现为油滴变小(图8b, 8c)、油膜变薄(图8e)、片状区域面积减小(图8f) 等,说明高倍水驱能够有效启动残余油,提高油藏驱油效率。

  • 图7 水驱前后波及面积变化

  • Fig.7 Changes of swept areas before and after water flooding

  • 图8 高倍水驱后残余油的启动效果

  • Fig.8 Start-up effect of residual oil after high-multiple water flooding

  • 2.3 核磁共振在线驱替实验

  • 由实验结果(图9)可见,在饱和油束缚水状态下,中孔隙中聚集了较多的原油,占比为 35.39%,小、大孔隙占比次之,分别为 25.99% 和 23.32%,微孔隙占比最少,为 12.68%。0.1 PV 水驱后,原油 T2 曲线峰值均出现下降,反演面积减小,表明岩心中的原油已经部分被驱替,且主要来自于大、中孔隙[20];随着水驱的进行,大、中、小三类孔隙的原油进一步被动用,1.0 PV 水驱后,小、微孔隙中的原油不再减少,表明注入水开始沿着大、中孔道流出,同时,原油 T2曲线峰值也大幅下降,大、中孔隙原油动用程度共计达 18.40%;水驱进行到一定程度时,T2 曲线基本不再变化,200 PV 水驱后,地层油的信号强度减弱,水驱动用流体面积占总流体面积的 31.07%,岩心中各类孔隙对驱油效率均有贡献,大、中、小及微孔隙的驱油效率贡献率分别为 14.04%, 45.63%,28.64%,0.06%。核磁共振在线高倍水驱油实验结果表明,中孔隙对原油驱油效率的贡献最高,部分学者认为岩心在低速水驱时会发生近似自发渗吸现象,注入水在毛细管力的作用下优先进入中、小孔隙,从而提高中、小孔隙的动用程度[21-23]

  • 图9 水驱各阶段T2曲线对比

  • Fig.9 Comparison of T2 curves at different stages of water flooding

  • 3 结论

  • 明确了涠洲组油藏高倍水驱下的驱油效率,长岩心在 200 PV 极限水驱后驱油效率达到 73.2%,远超原有探井实测驱油效率;原油黏度和储层非均质性对油藏驱油效率影响较大,进行合理的储层划分为有效提升油藏开发效果奠定基础。

  • 并联岩心驱替中岩心进口端存在伯努利效应,中渗透岩心中原油在压差作用下流向高渗透岩心并被进一步冲刷带出。

  • 微观驱替过程中,注入水沿着中、高渗透通道快速窜流,模型见水时间短,无水采出程度较低;高倍水驱后,低渗透区原油也得到有效启动;核磁共振实验结果表明,中孔隙对原油驱油效率贡献率最高。

  • 参考文献

    • [1] 胡向阳,袁伟,汤翟,等.基于岩石物理相的泥质砂岩储层含水饱和度计算方法[J].地球物理学进展,2018,33(2):808-814.HU Xiangyang,YUAN Wei,TANG Di,et al.Calculation meth‐ od of shaly sands reservoir water saturation based on petrophysi‐ cal facies[J].Progress in Geophysics,2018,33(2):808-814.

    • [2] 胡德胜,范彩伟,朱红涛,等.涠西南凹陷流一段高位体系域湖底扇沉积特征及勘探意义[J].中国石油勘探,2020,25(5):23-31.HU Desheng,FAN Caiwei,ZHU Hongtao,et al.Sedimentary characteristics and exploration significance of sub-lacustrine fan of highstand system tract in the first member of Liushagang Formation in the Weixinan Sag[J].China Petroleum Explora‐ tion,2020,25(5):23-31.

    • [3] 叶青,查玉强,李凤颖,等.文昌海相水驱砂岩油藏驱油效率新认识[J].海洋石油,2016,36(2):41-45.YE Qing,ZHA Yuqiang,LI Fengying,et al.New understanding of water displacement efficiency in water flooded sandstone res‐ ervoirs of Wenchang Oilfield[J].Offshore Oil,2016,36(2):41-45.

    • [4] 唐洪明,文鑫,张旭阳,等.层间非均质砾岩油藏水驱油模拟实验[J].西南石油大学学报:自然科学版,2014,36(5):129-135.TANG Hongming,WEN Xin,ZHANG Xuyang,et al.Water-oil displacing modeling experiment of interlayer heterogeneous con‐ glomerate reservoir[J].Journal of Southwest Petroleum Univer‐ sity:Science & Technology Edition,2014,36(5):129-135.

    • [5] 孟灵.砂岩油藏提高水驱油效率实验及理论研究[D].秦皇岛:燕山大学,2019.MENG Ling.Experiment and theoretical study on improving wa‐ ter displacement efficiency of sandstone reservoir[D].Qinhuang‐ dao:Yanshan University,2019.

    • [6] 魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mech‐ anism of viscosity reducer flooding in heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(2):131-136.

    • [7] 孙雷,魏瑾,李浩,等.WS17-2低渗砂砾岩油藏注水/注气长岩心驱替效果评价及方案优选[J].油气藏评价与开发,2017,7(6):26-33.SUN Lei,WEI Jin,LI Hao,et al.Evaluation and scheme optimi‐ zation of displacement effects of long core water flooding and gas flooding in WS17-2 low permeability glutenite reservoir[J].Reservoir Evaluation and Development,2017,7(6):26-33.

    • [8] 魏瑾.乌石凹陷低渗水敏储层渗流特征及水驱效果实验研究 [D].成都:西南石油大学,2018.WEI Jin.Experiment study on percolacation characteristics and effect of water flooding in Wushi Sag low permeability water sensitive reservoir[D].Chengdu:Southwest Petroleum Universi‐ ty,2018.

    • [9] 邓玄,张乔良,杨山,等.文昌油田驱油效率综合研究及应用 [J].石油地质与工程,2017,31(6):91-94.DENG Xuan,ZHANG Qiaoliang,YANG Shan,et al.Compre‐ hensive research and application of oil displacement efficiency in Wenchang Oilfield[J].Petroleum Geology and Engineering,2017,31(6):91-94.

    • [10] 武兴,王安成,巩联浩,等.致密砂岩油藏吞吐水驱开发微观孔隙动用特征[J].大庆石油地质与开发,2021,40(4):145-153.WU Xing,WANG Ancheng,GONG Lianhao,et al.Micro-pore producing characteristics of tight sandstone oil reservoir dis‐ placed by huff-puff waterflooding[J].Petroleum Geology & Oil‐ field Development in Daqing,2021,40(4):145-153.

    • [11] 覃达.砾岩油藏CO2驱改善驱油效果实验研究[D].成都:西南石油大学,2019.QIN Da.Experimental study on improvement of oil displace‐ ment efficiency by CO2 flooding in conglomerate reservoir[D].Chengdu:Southwest Petroleum University,2019.

    • [12] 宋宏志,杨二龙,李田靓,等.海上油田水驱后气水交替驱室内实验和数值模拟研究[J].当代化工,2021,50(5):1 171-1 175.SONG Hongzhi,YANG Erlong,LI Tianliang,et al.Laboratory experiment and numerical simulation study of gas-water alter‐ nate flooding after water flooding in offshore oil fields[J].Con‐ temporary Chemical Industry,2021,50(5):1 171-1 175.

    • [13] 魏峰,李跃林,邓玄,等.文昌A油田驱油效率新认识及应用研究[J].石油地质与工程,2017,31(4):74-76,80.WEI Feng,LI Yuelin,DENG Xuan,et al.New understandings of oil displacement efficiency and its application in Wenchang A oilfield[J].Petroleum Geology and Engineering,2017,31(4):74-76,80.

    • [14] 符静宇,何宏,付平,等.渗透率级差对多层非均质油藏水驱油影响规律研究[J].能源化工,2018,39(5):31-36.FU Jingyu,HE Hong,FU Ping,et al.Study on influence regulari‐ ty of permeability contrast on water flooding in multilayer het‐ erogeneous reservoirs[J].Energy Chemical Industry,2018,39(5):31-36.

    • [15] 武毅,石利华,阴艳芳,等.辽河油田注水开发技术与实践[J].特种油气藏,2020,27(6):40-46.WU Yi,SHI Lihua,YIN Yanfang,et al.Technologies and prac‐ tice of water-flooding development in Liaohe Oilfield[J].Spe‐ cial Oil & Gas Reservoirs,2020,27(6):40-46.

    • [16] 刘鋆石,王健,杨志冬,等.稠油油藏CO2泡沫启动残余油机制的可视化实验[J].油田化学,2021,38(1):80-84.LIU Junshi,WANG Jian,YANG Zhidong,et al.Experimental study on mechanism of CO2 foam starting residual heavy oil[J].Oilfield Chemistry,2021,38(1):80-84.

    • [17] 崔丽静.赵凹油田安棚深层系储层精细对比及物性特征研究 [D].武汉:中国地质大学(武汉),2006.CUI Lijing.Reservoir accurate correlation and properties charac‐ teristics of Anpeng deep series at Zhao’ao Oilfield[D].Wuhan:China University of Geosciences(Wuhan),2006.

    • [18] 张忠民.杏树岗油田A块剩余油分布研究[D].杭州:浙江大学,2006.ZHANG Zhongmin.A study on the remaining oil distribution of block A in Xingshugang Oilfield[D].Hangzhou:Zhejiang Uni‐ versity,2006.

    • [19] 张同凯,赵凤兰,侯吉瑞,等.非均质条件下二元体系微观驱油机理研究[J].石油钻采工艺,2010,32(6):84-88.ZHANG Tongkai,ZHAO Fenglan,HOU Jirui,et al.Research on binary system flooding mechanism under the heterogeneous con‐ dition using microscopic model[J].Oil Drilling & Production Technology,2010,32(6):84-88.

    • [20] 汪周华,赵华臻,朱光亚,等.孔隙型生物礁灰岩油藏水驱剩余油赋存特征[J].断块油气田,2021,28(3):392-396.WANG Zhouhua,ZHAO Huazhen,ZHU Guangya,et al.Storage characteristics of residual oil in water drive of porous bioclastic limestone reservoir[J].Fault-Block Oil and Gas Field,2021,28(3):392-396.

    • [21] 张新旺,郭和坤,沈瑞,等.基于核磁共振技术水驱油剩余油分布评价[J].实验室研究与探索,2017,36(9):17-21.ZHANG Xinwang,GUO Hekun,SHEN Rui,et al.Microscopic experimental study on water displacement oil based on nuclear magnetic resonance technology[J].Research and Exploration in Laboratory,2017,36(9):17-21.

    • [22] 江昀,许国庆,石阳,等.致密岩心带压渗吸规律实验研究[J].石油实验地质,2021,43(1):144-153.JIANG Yun,XU Guoqing,SHI Yang,et al.Forced imbibition in tight sandstone cores[J].Petroleum Geology & Experiment,2021,43(1):144-153.

    • [23] 李士奎,刘卫东,张海琴,等.低渗透油藏自发渗吸驱油实验研究[J].石油学报,2007,28(2):109-112.LI Shikui,LIU Weidong,ZHANG Haiqin,et al.Experimental study of spontaneous imbibition in low-permeability reservoir [J].Acta Petrolei Sinica,2007,28(2):109-112.

  • 参考文献

    • [1] 胡向阳,袁伟,汤翟,等.基于岩石物理相的泥质砂岩储层含水饱和度计算方法[J].地球物理学进展,2018,33(2):808-814.HU Xiangyang,YUAN Wei,TANG Di,et al.Calculation meth‐ od of shaly sands reservoir water saturation based on petrophysi‐ cal facies[J].Progress in Geophysics,2018,33(2):808-814.

    • [2] 胡德胜,范彩伟,朱红涛,等.涠西南凹陷流一段高位体系域湖底扇沉积特征及勘探意义[J].中国石油勘探,2020,25(5):23-31.HU Desheng,FAN Caiwei,ZHU Hongtao,et al.Sedimentary characteristics and exploration significance of sub-lacustrine fan of highstand system tract in the first member of Liushagang Formation in the Weixinan Sag[J].China Petroleum Explora‐ tion,2020,25(5):23-31.

    • [3] 叶青,查玉强,李凤颖,等.文昌海相水驱砂岩油藏驱油效率新认识[J].海洋石油,2016,36(2):41-45.YE Qing,ZHA Yuqiang,LI Fengying,et al.New understanding of water displacement efficiency in water flooded sandstone res‐ ervoirs of Wenchang Oilfield[J].Offshore Oil,2016,36(2):41-45.

    • [4] 唐洪明,文鑫,张旭阳,等.层间非均质砾岩油藏水驱油模拟实验[J].西南石油大学学报:自然科学版,2014,36(5):129-135.TANG Hongming,WEN Xin,ZHANG Xuyang,et al.Water-oil displacing modeling experiment of interlayer heterogeneous con‐ glomerate reservoir[J].Journal of Southwest Petroleum Univer‐ sity:Science & Technology Edition,2014,36(5):129-135.

    • [5] 孟灵.砂岩油藏提高水驱油效率实验及理论研究[D].秦皇岛:燕山大学,2019.MENG Ling.Experiment and theoretical study on improving wa‐ ter displacement efficiency of sandstone reservoir[D].Qinhuang‐ dao:Yanshan University,2019.

    • [6] 魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mech‐ anism of viscosity reducer flooding in heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(2):131-136.

    • [7] 孙雷,魏瑾,李浩,等.WS17-2低渗砂砾岩油藏注水/注气长岩心驱替效果评价及方案优选[J].油气藏评价与开发,2017,7(6):26-33.SUN Lei,WEI Jin,LI Hao,et al.Evaluation and scheme optimi‐ zation of displacement effects of long core water flooding and gas flooding in WS17-2 low permeability glutenite reservoir[J].Reservoir Evaluation and Development,2017,7(6):26-33.

    • [8] 魏瑾.乌石凹陷低渗水敏储层渗流特征及水驱效果实验研究 [D].成都:西南石油大学,2018.WEI Jin.Experiment study on percolacation characteristics and effect of water flooding in Wushi Sag low permeability water sensitive reservoir[D].Chengdu:Southwest Petroleum Universi‐ ty,2018.

    • [9] 邓玄,张乔良,杨山,等.文昌油田驱油效率综合研究及应用 [J].石油地质与工程,2017,31(6):91-94.DENG Xuan,ZHANG Qiaoliang,YANG Shan,et al.Compre‐ hensive research and application of oil displacement efficiency in Wenchang Oilfield[J].Petroleum Geology and Engineering,2017,31(6):91-94.

    • [10] 武兴,王安成,巩联浩,等.致密砂岩油藏吞吐水驱开发微观孔隙动用特征[J].大庆石油地质与开发,2021,40(4):145-153.WU Xing,WANG Ancheng,GONG Lianhao,et al.Micro-pore producing characteristics of tight sandstone oil reservoir dis‐ placed by huff-puff waterflooding[J].Petroleum Geology & Oil‐ field Development in Daqing,2021,40(4):145-153.

    • [11] 覃达.砾岩油藏CO2驱改善驱油效果实验研究[D].成都:西南石油大学,2019.QIN Da.Experimental study on improvement of oil displace‐ ment efficiency by CO2 flooding in conglomerate reservoir[D].Chengdu:Southwest Petroleum University,2019.

    • [12] 宋宏志,杨二龙,李田靓,等.海上油田水驱后气水交替驱室内实验和数值模拟研究[J].当代化工,2021,50(5):1 171-1 175.SONG Hongzhi,YANG Erlong,LI Tianliang,et al.Laboratory experiment and numerical simulation study of gas-water alter‐ nate flooding after water flooding in offshore oil fields[J].Con‐ temporary Chemical Industry,2021,50(5):1 171-1 175.

    • [13] 魏峰,李跃林,邓玄,等.文昌A油田驱油效率新认识及应用研究[J].石油地质与工程,2017,31(4):74-76,80.WEI Feng,LI Yuelin,DENG Xuan,et al.New understandings of oil displacement efficiency and its application in Wenchang A oilfield[J].Petroleum Geology and Engineering,2017,31(4):74-76,80.

    • [14] 符静宇,何宏,付平,等.渗透率级差对多层非均质油藏水驱油影响规律研究[J].能源化工,2018,39(5):31-36.FU Jingyu,HE Hong,FU Ping,et al.Study on influence regulari‐ ty of permeability contrast on water flooding in multilayer het‐ erogeneous reservoirs[J].Energy Chemical Industry,2018,39(5):31-36.

    • [15] 武毅,石利华,阴艳芳,等.辽河油田注水开发技术与实践[J].特种油气藏,2020,27(6):40-46.WU Yi,SHI Lihua,YIN Yanfang,et al.Technologies and prac‐ tice of water-flooding development in Liaohe Oilfield[J].Spe‐ cial Oil & Gas Reservoirs,2020,27(6):40-46.

    • [16] 刘鋆石,王健,杨志冬,等.稠油油藏CO2泡沫启动残余油机制的可视化实验[J].油田化学,2021,38(1):80-84.LIU Junshi,WANG Jian,YANG Zhidong,et al.Experimental study on mechanism of CO2 foam starting residual heavy oil[J].Oilfield Chemistry,2021,38(1):80-84.

    • [17] 崔丽静.赵凹油田安棚深层系储层精细对比及物性特征研究 [D].武汉:中国地质大学(武汉),2006.CUI Lijing.Reservoir accurate correlation and properties charac‐ teristics of Anpeng deep series at Zhao’ao Oilfield[D].Wuhan:China University of Geosciences(Wuhan),2006.

    • [18] 张忠民.杏树岗油田A块剩余油分布研究[D].杭州:浙江大学,2006.ZHANG Zhongmin.A study on the remaining oil distribution of block A in Xingshugang Oilfield[D].Hangzhou:Zhejiang Uni‐ versity,2006.

    • [19] 张同凯,赵凤兰,侯吉瑞,等.非均质条件下二元体系微观驱油机理研究[J].石油钻采工艺,2010,32(6):84-88.ZHANG Tongkai,ZHAO Fenglan,HOU Jirui,et al.Research on binary system flooding mechanism under the heterogeneous con‐ dition using microscopic model[J].Oil Drilling & Production Technology,2010,32(6):84-88.

    • [20] 汪周华,赵华臻,朱光亚,等.孔隙型生物礁灰岩油藏水驱剩余油赋存特征[J].断块油气田,2021,28(3):392-396.WANG Zhouhua,ZHAO Huazhen,ZHU Guangya,et al.Storage characteristics of residual oil in water drive of porous bioclastic limestone reservoir[J].Fault-Block Oil and Gas Field,2021,28(3):392-396.

    • [21] 张新旺,郭和坤,沈瑞,等.基于核磁共振技术水驱油剩余油分布评价[J].实验室研究与探索,2017,36(9):17-21.ZHANG Xinwang,GUO Hekun,SHEN Rui,et al.Microscopic experimental study on water displacement oil based on nuclear magnetic resonance technology[J].Research and Exploration in Laboratory,2017,36(9):17-21.

    • [22] 江昀,许国庆,石阳,等.致密岩心带压渗吸规律实验研究[J].石油实验地质,2021,43(1):144-153.JIANG Yun,XU Guoqing,SHI Yang,et al.Forced imbibition in tight sandstone cores[J].Petroleum Geology & Experiment,2021,43(1):144-153.

    • [23] 李士奎,刘卫东,张海琴,等.低渗透油藏自发渗吸驱油实验研究[J].石油学报,2007,28(2):109-112.LI Shikui,LIU Weidong,ZHANG Haiqin,et al.Experimental study of spontaneous imbibition in low-permeability reservoir [J].Acta Petrolei Sinica,2007,28(2):109-112.