-
随着全球经济不断发展,中外对能源的需求量逐渐增加,中国已经从石油出口国转变为世界最大的石油进口国。目前,中国每年进口的石油量占石油总消耗量的 60% 以上,为中国能源安全带来隐患,稳产增产是消除中国能源安全隐患的主要方法[1]。当前,原油采出程度仅为 30%~50%,大量原油以各种剩余油形式残留在地下。而中国注水开发油田主体已进入高含水期,为了挖掘油田剩余油潜力,进一步提高原油采出程度,提高采收率技术成为目前油田持续稳产的重要措施[2-4]。
-
聚合物驱是化学驱中应用最广泛的一项提高采收率技术,在油田现场已得到大规模工业化应用[5-7]。目前,油田常用聚合物主要是以部分水解聚丙烯酰胺(HPAM)为代表的合成类聚合物[8]。董文龙等研究了聚合物-表面活性剂二元复合体系的微观及宏观驱油特征,结果表明二元复合驱既能扩大波及面积,又能提高洗油效率,比聚合物驱提高采收率 3.03%~5.45%[9];但是这类聚合物存在用量高、剪切变稀、耐温耐盐性差等问题。此外,常规聚合物在高温高盐油藏环境黏度损失严重,无法适应 Ⅲ类高温高盐油藏条件[10]。因此开发稳定、高效、绿色驱油体系是聚合物驱技术今后研究的重要方向[11]。近几年,纳米技术和石油工程结合越来越紧密,其中纳米驱油剂的研发是热点。纤维素是自然界分布最广、含量最丰富的天然高分子聚合物[12]。通过物理或化学方法可将纤维素转化成具有纳米尺度的纳米纤维素,进而赋予其高强度、低密度、强韧性、易修饰等物理性质,是极具应用前景的HPAM 替代材料。魏兵等提出了将纳米纤维素作为新型驱油剂,将其与其他碱、表面活性剂等驱油剂进行复配使用可大幅度提高原油采收率[13]。相对于现有的驱油体系而言,纳米纤维素具有无污染、可降解等特点,能够有效避免二元复合驱中的色谱分离效应。而纳米纤维素的强亲水性则限制其作为驱油剂的应用。
-
为此,笔者通过对天然羧基纳米纤维带进行化学改性,构筑单组分驱油体系,评价了疏水改性程度对羧基纳米纤维带界面活性、乳化能力、润湿性及驱油性能的影响,为提高其耐盐性能,引入阳离子基团使其形成两性结构,进而评价两性-疏水改性羧基纳米纤维带的界面性能及驱油能力,以期大幅度提高Ⅲ类高温高盐稠油油藏采收率。
-
1 实验器材与方法
-
1.1 材料与仪器
-
实验材料包括羧基纳米纤维带 CCNF(天津木精灵试剂公司,质量分数为 1.16% 的水分散液)、氯化钠、溴化钠、氢氧化钠、次氯酸钠、盐酸(国药集团化学试剂有限公司,分析纯),TEMPO、无水乙醇、1-乙基(3-二甲基氨基丙基)碳二亚胺盐酸盐、N-羟基琥珀酰亚胺、十二胺、2,3-环氧丙基三甲基氯化铵 (上海阿拉丁生化科技股份有限公司,分析纯)。实验用水为室内模拟矿化水,根据胜利油田地层水中矿物组成用NaCl,MgCl2和CaCl2配制而成。实验用油为胜利油田脱水原油,在温度为70℃条件下的黏度为6 630 mPa·s。
-
实验仪器包括透射电子显微镜(JEOL JEM2100F)、光学显微镜(BMC512-IPL)、界面张力仪(TX-500C)、纳米粒度分析仪(Nano ZS Malvern UK)、旋转流变仪(Physica MCR301)等。
-
1.2 实验方法
-
1.2.1 纳米纤维带的改性
-
疏水羧基纳米纤维带的制备 为提高羧基纳米纤维带两亲性,通过羧基酰胺化反应对羧基纳米纤维带表面进行不同程度的疏水改性[14-15],记为 CCNF-1,CCNF-2,CCNF-3,CCNF-4和 CCNF-5。对照组未改性羧基纳米纤维带记为CCNF-0。具体改性流程为:①分别称取 5 份 CCNF60 g 置于 500 mL 烧杯中,加入去离子水 20 mL,用超声波进行分散并将 pH 值调到 4.5。 ② 分别加入 0.026 42, 0.052 84,0.132 1,0.158 5 和 0.185 0 g 的 1-乙基(3-二甲基氨基丙基)碳二亚胺盐酸盐和 0.017 45, 0.034 90,0.087 25,0.104 7 和 0.122 1 g 的 N-羟基琥珀酰亚胺作为催化剂进行搅拌使其充分溶解,活化纤维素上的羧基,并将 pH 值调整到 8~8.5。③分别取 0.023 22,0.046 45,0.116 1,0.139 3 和 0.162 6 g 的十二胺溶于 90 mL 的乙醇并加入烧杯中。④维持 pH值为8~8.5,在25℃恒温水浴中磁力搅拌反应24 h。⑤反应结束后,将所得产物转移到离心管中,用酒精离心洗涤产物 1~2 次,随后用去离子水离心洗涤产物 3 次。⑥对产物进行冷冻干燥,得到不同程度疏水改性的羧基纳米纤维带 CCNF-1,CCNF-2, CCNF-3,CCNF-4和CCNF-5。
-
两性-疏水羧基纳米纤维带的制备 为提高疏水改性羧基纳米纤维带的耐盐性,通过羟基和环氧基之间的开环反应将阳离子基团铵基接枝到疏水改性羧基纳米纤维带表面,使其形成两性结构[16]。具体改性流程为:①配制质量分数为 1% 的疏水改性羧基纳米纤维带溶液 100 mL,搅拌 2 h。②取 9 mL浓度为0.5 mol/L的氢氧化钠溶液加入上述溶液中,在温度为 60℃ 条件下水浴搅拌 1 h。 ③ 取 0.066 7 g的2,3-环氧丙基三甲基氯化铵溶于80 mL 水中,缓慢加入,在200 r/min转速下反应10 h。④加入稀盐酸溶液,调节pH值至1~2。⑤离心,去离子水洗涤3次,最终得到两性-疏水改性羧基纳米纤维带。
-
1.2.2 纳米纤维带的性能表征与驱油性能评价
-
Zeta电位分析 使用Zeta电位分析仪测量样品溶液的Zeta电位。测试样品质量分数为0.1%,测量之前进行超声分散。测量温度为 25℃,每组测量 5 个平行结果,并对5组测量结果求取平均值。
-
界面张力测定 原油与样品水分散液之间的界面张力通过旋转滴法在 TX-500C 型全量程旋转滴界面张力仪(American CNG Company)上直接测量。转速为6 000 r/min,实验温度为70℃,每隔30 s记录 1次数据,直至数值趋于稳定。
-
乳液制备 将 5 mL正辛烷与 5 mL质量分数为 0.2%纳米纤维带水分散液倒入玻璃瓶中,用细胞粉碎机超声 2 min 得到乳液。静置 2 h 后通过乳化指数(乳液体积占总体积的百分比)来考察乳液稳定性。利用光学显微镜观察乳液。从乳液/水相界面上方吸取乳液,用连续相稀释后滴在载玻片上,盖上盖玻片后进行观察。
-
体系黏度测定 用旋转黏度计测定油藏温度下 (70℃)疏水改性羧基和两性-疏水改性羧基纳米纤维带的黏度,用模拟地层水配制相应质量分数的样品溶液,在磁力搅拌器上以 300 r/min 的转速搅拌 15 min密封后置于恒温干燥箱内,在油藏温度下恒温 2 h。取出样品,迅速用黏度计在剪切速率为 10.22 s-1 下测定油藏温度下样品黏度。
-
岩心驱替 通过岩心驱替实验评价了 CCNF-0,CCNF-3 和 ACCNF-4 水分散液的驱油效果。将岩心洗油、烘干并称重,然后饱和模拟地层水,计算岩心的孔隙体积。将岩心饱和储层原油后在油藏温度下老化24 h。以0.5 mL/min的驱替速度进行水驱,直至岩心出口端采出液的含水率高于 98%。以 0.5 mL/min 的驱替流速注入 0.8 PV 的 CCNF-0, CCNF-3和ACCNF-4水分散液,然后继续水驱至岩心出口端采出液的含水率达到 98%,计算最终采收率和化学驱采收率,记录实验过程中不同阶段的驱替压力、采出液含水率和采收率。
-
2 实验结果分析
-
2.1 不同改性类型纳米纤维带结构表征
-
2.1.1 红外光谱分析
-
从不同改性类型纳米纤维带的红外光谱(FT-IR)(图1)可见,羧基纳米纤维带在 1 600 cm-1 处有一个较为明显的吸收峰,对应为羧酸根(—COO-)中羰基(C=O)吸收峰[17]。说明通过 TEMPO 氧化法可以成功将羧基纳米纤维带表面部分羟基氧化为羧基,为后续羧基纳米纤维带改性提供反应位点。
-
图1 不同改性类型纳米纤维带的红外光谱
-
Fig.1 FTIR spectra of different modified nanofiber strips
-
在疏水改性过程中,羧基纳米纤维带表面羧基和十二胺之间会发生酰胺化反应,表面羧基转变为酰胺基。因此,若羧基纳米纤维带疏水改性成功,其原本羧基中C=O对应(1 600 cm-1)吸收峰会向左偏移为酰胺基中 C=O 对应的吸收峰(1 730 cm-1)[18]。疏水改性后的羧基纳米纤维带在 1 730 cm-1 处出现了新吸收峰,而 1 600 cm-1 处—COO-中 C=O 的吸收峰发生明显的衰减。上述现象表明:十二胺可以通过其与羧基纳米纤维带表面羧基之间的酰胺化反应接枝到羧基纳米纤维带表面。两性-疏水改性羧基纳米纤维带在 1 478 和 1 405 cm-1 处的吸收峰则归因于 2,3-环氧丙基三甲基氯化铵中—CH3和 C—N 键的伸缩振动[16],证明了两性-疏水纳米纤维带的成功改性。
-
2.1.2 热重分析
-
分别测定原始羧基纳米纤维带、疏水改性羧基纳米纤维带和两性-疏水改性羧基纳米纤维带的热重曲线(TGA)(图2)。温度低于 200℃的重量损失主要因羧基纳米纤维带吸附水和层间水的蒸发[19]。十二胺会引起羧基纳米纤维带疏水性的提高,从而降低了吸附水和层间水含量,且降低了此阶段羧基纳米纤维带的失重。随着两性改性的进行,羧基纳米纤维带亲水性有所提高,吸附水和层间水含量有所增加,因此相比于疏水改性羧基纳米纤维带,两性-疏水改性羧基纳米纤维带在此阶段的失重有所增加。
-
图2 不同改性类型纳米纤维带的TGA变化
-
Fig.2 TGA curves of different modified nanofiber strips
-
在温度为250~300℃条件下,失重主要因不稳定的含氧基团分解产生CO,CO2和蒸汽,如羧基、羟基、环氧基和羰基[20-21]。疏水改性羧基纳米纤维带和两性-疏水改性羧基纳米纤维带在这个阶段重量损失较少是由于疏水基团和铵基的引入导致含氧基团的消耗。此外,与原始羧基纳米纤维带的 TGA 相比,疏水改性羧基纳米纤维带和两性-疏水改性羧基纳米纤维带在 400~500℃的额外失重归因于十二胺中碳链的分解[22]。上述3点热重曲线的差异从侧面反映出通过羧基的酰胺化反应,成功对羧基纳米纤维带进行了疏水改性,通过环氧基和羟基的开环反应成功对羧基纳米纤维带进行了两性改性。
-
2.1.3 Zeta电位表征
-
Zeta电位可以表征羧基纳米纤维带表面电荷分布,通常分子表面带有负电荷时,Zeta电位为负值,反之则为正值。不同改性类型纳米纤维带 Zeta 电位如图3所示,羧基纳米纤维带由于通过TEMPO氧化法将表面部分羟基氧化为羧基,致使其 Zeta电位呈负值,且 Zeta 电位绝对值大幅度上升,因此水溶性也明显增强,表明经过TEMPO氧化后,纳米纤维带可以成功改性为羧基纳米纤维带。
-
经过疏水改性后,Zeta 电位绝对值有一定幅度下降。这是由于疏水碳链在羧基纳米纤维带表面的接枝是通过羧基的酰胺化反应进行的,因此接枝疏水基团后表面羧基含量有一定程度下降,证明疏水碳链通过羧基酰胺化反应进行了疏水改性。
-
两性-疏水改性羧基纳米纤维带的 Zeta电位绝对值进一步下降,这是由于阳离子基团(铵基)引入造成的,由于铵基带正电,因此部分羧基的正电荷会被中和,导致 Zeta电位绝对值下降[16]。这也证明基于疏水改性羧基纳米纤维带,通过环氧基和羟基之间的开环反应成功进行了两性改性。
-
图3 不同改性类型纳米纤维带的Zeta电位
-
Fig.3 Zeta potential of different modified nanofiber strips
-
2.2 疏水改性羧基纳米纤维带界面性能分析
-
2.2.1 界面张力
-
通过界面张力测试评价不同疏水改性程度羧基纳米纤维带的界面活性(图4)。对于所有样品的界面张力随质量分数的增加而显著降低,随疏水改性程度的增加呈先降低后升高的趋势。当质量分数为 1.0% 时,CCNF-3 界面活性最好,可降低界面张力至0.03 mN/m。疏水改性程度不足或过度均会影响羧基纳米纤维带的亲水亲油平衡,不利于界面活性的提升。
-
图4 质量分数对不同疏水改性程度纳米纤维带界面张力的影响(70 °C)
-
Fig.4 Effect of concentration on interfacial tension of nanofiber strips with different hydrophobic modification degree(70 °C)
-
2.2.2 乳化性能
-
从温度为 70 °C 条件下,不同疏水改性程度纳米纤维带乳液液滴显微镜照片和乳化指数(图5)中可以看出,随着疏水改性程度的增加,乳液液滴粒径先增大后减小。CCNF-3乳液的粒径最小且粒径分布范围最小,对应的乳化指数为 96.89%。6 种不同疏水改性程度纳米纤维带乳化性能从大到小为: CCNF-3,CCNF-4,CCNF-5,CCNF-2,CCNF-1, CCNF-0。乳化是界面能增大的过程。通常来说,界面张力越低,乳化性能越好[23]。疏水改性羧基纳米纤维带的乳化性能和降低界面张力能力呈正相关。
-
图5 显微镜下的不同疏水改性程度纳米纤维带乳液液滴与乳化指数的变化
-
Fig.5 Microscope images of emulsion droplets and emulsification index of nanofiber strips with different hydrophobic modification degree
-
2.2.3 耐盐性能
-
在温度为70℃条件下,疏水改性羧基纳米纤维带界面张力随矿化度的变化(图6)可以看出,在矿化度为10 000~30 000 mg/L时,矿化度的增加有利于降低油水界面张力。随着矿化度的不断增加,疏水改性羧基纳米纤维带界面活性下降,油水界面张力增加。当矿化度增加到 100 000 mg/L 时,疏水改性羧基纳米纤维带的油水界面张力分别上升至3 4.32,14.67,11.58,5.14,7.35和9.20 mN/m。
-
图6 矿化度对不同疏水改性程度纳米纤维带界面张力的影响(70℃)
-
Fig.6 Effect of salinity on interfacial tension of nanofiber strips with different hydrophobic modification degree(70℃)
-
矿化度显著影响疏水改性羧基纳米纤维带的黏度(图7)。在温度为70℃,矿化度为50 000 mg/L 条件下,未疏水改性的羧基纳米纤维带 CCNF-0体系基本丧失了黏度(0.54 mPa·s)。CCNF-1,CCNF-2,CCNF-3,CCNF-4和CCNF-5体系的黏度分别为 1.54,1.92,2.32,3.17和3.85 mPa·s,且黏度随着疏水改性程度的增加而增加,推测疏水改性后黏度的提升与其表面碳链之间的疏水相互作用形成疏水缔合结构有关[24]。疏水改性程度越大,改性羧基纳米纤维带表面碳链之间的疏水缔合作用越强,疏水基团相互缠绕导致黏度上升越明显。矿化度对疏水改性羧基纳米纤维带的黏度和界面活性影响较大,在油藏条件下适应性较差。因此,有必要引入阳离子基团,使其形成两性结构,进一步提升疏水改性羧基纳米纤维带驱油体系的耐盐性能。
-
图7 矿化度对不同疏水改性程度纳米纤维带黏度的影响
-
Fig.7 Effect of salinity on viscosity of nanofiber strips with different hydrophobic modification degree
-
2.3 两性-疏水改性羧基纳米纤维带界面性能分析
-
2.3.1 界面张力
-
从两性-疏水改性羧基纳米纤维带界面张力随质量分数的变化(图8)可以看出,随着质量分数的增加,两性-疏水改性羧基纳米纤维带在油水界面排列趋于紧密,界面张力随着质量分数的增加而降低。由于两性改性之后引入阳离子基团,羧基纳米纤维带与水之间的相互作用会明显增强,使得两性-疏水改性羧基纳米纤维带的亲水性比疏水改性羧基纳米纤维带提高。因此,与疏水改性羧基纳米纤维带相比,相应疏水改性程度的两性-疏水改性羧基纳米纤维带亲水性增强,能分别降低界面张力至 1.36,0.85,0.34,0.18 和 0.54 mN/m。界面活性从高到低为:ACCNF-4,ACCNF-3,ACCNF-5, ACCNF-2,ACCNF-1。
-
图8 两性-疏水改性羧基纳米纤维带界面张力随质量分数的变化
-
Fig.8 Interfacial tension of amphoteric-hydrophobically modified nanofiber strips with concentrations
-
2.3.2 乳化性能
-
从显微镜下两性-疏水改性羧基纳米纤维带乳液液滴和乳化指数的变化(图9)可以看出,由于阳离子基团的引入增强了羧基纳米纤维带的亲水性,与疏水改性羧基纳米纤维带相比,具有相同疏水改性程度的两性-疏水改性羧基纳米纤维带界面活性相应降低,ACCNF-4表现出最好的乳化性能,乳化指数为96.33%。
-
2.3.3 耐盐性能
-
从两性-疏水改性羧基纳米纤维带的耐盐性能评价(图10)可以看出,随着矿化度的增大,两性-疏水改性羧基纳米纤维带的界面活性先增强后降低。由于分子中含有阳离子基团和阴离子基团,随着矿化度的增大,无机盐在水中电离的阳离子和阴离子浓度增大,这些离子与两性-疏水改性羧基纳米纤维带中的离子相互作用,使得两性-疏水改性羧基纳米纤维带中亲水基团之间的电荷斥力作用减弱,两性-疏水改性羧基纳米纤维带在油/水界面排列紧密,界面张力降低,界面活性增大[25-26];但当矿化度增加到 50 000 mg/L时,两性-疏水改性羧基纳米纤维带亲水基团附近与其所带电荷相反的无机离子浓度增大到一定值,电荷之间的作用达到平衡,继续增大矿化度对两性-疏水改性羧基纳米纤维带在油/水界面上的吸附性能影响较小,界面张力增加幅度较小。
-
图9 显微镜下的两性-疏水改性羧基纳米纤维带乳液液滴与乳化指数变化
-
Fig.9 Microscope images of emulsion droplets and emulsification index of amphoteric-hydrophobically modified nanofiber strips
-
图10 矿化度对两性-疏水改性羧基纳米纤维带界面张力的影响
-
Fig.10 Effect of salinity on interfacial tension of amphoteric-hydrophobically modified nanofiber strips
-
在温度为 70℃,矿化度为 0 mg/L 条件下,两性-疏水改性羧基纳米纤维带黏度与疏水改性羧基纳米纤维带黏度相比基本无变化,而在矿化度为 50 000 mg/L 下,两性-疏水改性羧基纳米纤维带黏度约为 25 mPa·s,显著高于疏水改性羧基纳米纤维带黏度(图11)。由于两性结构的引入,两性-疏水改性羧基纳米纤维带的阴、阳离子基团受溶液中金属阳离子影响,其分子内部相互作用力减弱甚至被屏蔽,纳米纤维带分子链舒展,分子动力学体积增大,两性-疏水改性羧基纳米纤维带的黏度表现出非常优异的耐盐性[27]。
-
2.3.4 驱油性能
-
在温度为70℃,矿化度为50 000 mg/L条件下,采用 CCNF-0,CCNF-3 和 ACCNF-4 这 3 种纳米纤维带进行岩心驱替实验,评价其驱油潜力。结果 (图12)表明,羧基纳米纤维带 CCNF-0虽亲水性较强,但其具有一定的黏度,能够通过降低水油流度比来提高采收率。疏水改性羧基纳米纤维带 CCNF-3 则主要通过降低界面张力、乳化携带达到提高采收率的效果,由于疏水改性羧基纳米纤维带的黏度和界面活性受矿化度影响较大,因此提高采收率效果并不显著。进一步两性改性,引入阳离子基团可提升两性-疏水改性羧基纳米纤维带的耐盐性能[28]。两性-疏水改性羧基纳米纤维带ACCNF-4 表现出优异的驱油性能,在高矿化度的条件下提高采收率可达21.45%。两性-疏水改性羧基纳米纤维带主要通过降低界面张力,降低水油流度比和乳化携带剥离油膜,从而显著提高采收率[29-30]。
-
图11 矿化度对两性-疏水改性羧基纳米纤维带黏度的影响
-
Fig.11 Effect of salinity on viscosity of amphoteric-hydrophobically modified nanofiber strips
-
3 结论
-
针对胜利油田Ⅲ类稠油油藏,开发了单组分疏水改性羧基纳米纤维带和两性-疏水改性羧基纳米纤维带驱油体系,系统研究了疏水改性和两性-疏水改性对羧基纳米纤维带驱油性能的影响。通过对原始羧基纳米纤维带进行疏水改性,其界面活性、乳化能力及增黏性能均显著提升。疏水改性程度越大,黏度越大。进一步两性改性显著提升了耐盐性能。在温度为 70℃,矿化度为 50 000 mg/L 条件下,原始羧基纳米纤维带基本丧失了黏度,而疏水改性羧基纳米纤维带黏度为 1.54~3.85 mPa·s,两性-疏水改性羧基纳米纤维带由于引入阳离子铵基基团,使得自身具有良好的耐盐性,在相同条件下,体系黏度为 18.46~27.31 mPa·s。室内岩心驱替实验结果表明,在温度为 70℃,矿化度为 50 000 mg /L 条件下,两性-疏水改性羧基纳米纤维带ACCNF-4 可提高采收率 18.91%,具有良好耐盐性能的单组分两性-疏水改性羧基纳米纤维带 ACCNF-4 具有较好的界面活性、乳化能力和增黏性能。
-
图12 不同改性类型纳米纤维带岩心驱油结果
-
Fig.12 Core displacement experiment results of different nanofiber strips
-
参考文献
-
[1] 罗腾,阿布力米提依明,吐尔逊马提木,等.BW 区原油活性物对化学驱界面张力的影响[J].新疆石油天然气,2022,18(3):54-59.LUO Teng,ABULIMITI Yiming,TUERXUN Matimu,et al.The effect of active substance in the crude oil of block BW on inter‐ facial tension during chemical flooding[J].Xinjiang Oil & Gas,2022,18(3):54-59.
-
[2] 王友启,周梅,聂俊.提高采收率技术的应用状况及发展趋势 [J].断块油气田,2010,17(5):628-631.WANG Youqi,ZHOU Mei,NIE Jun.Application status and de‐ velopment trend of EOR technology[J].Fault-Block Oil and Gas Field,2010,17(5):628-631.
-
[3] LI Qinzhi,PU Wanfen,WEI Bing,et al.Static adsorption and dy‐ namic retention of an anti-salinity polymer in low permeability sandstone core[J].Journal of Applied Polymer Science,2017,134(8):44487.
-
[4] 张辰君,金旭,袁彬,等.纳米驱油材料提高采收率研究进展、挑战及前景[J/OL].西南石油大学学报:自然科学版,http://kns.cnki.net/kcms/detail/51.1718.TE.20221019.1106.004.html,2022-10-20.ZHANG Chenjun,JIN Xu,YUAN Bin,et al.Research progress,challenge and prospect of nanoscale oil-displacing materials for enhanced oil recovery[J/OL].Journal of Southwest Petroleum University:Science & Technology Edition,http://kns.cnki.net/kcms/detail/51.1718.TE.20221019.1106.004.html,2022-10-20.
-
[5] 王锐,伦增珉,吕成远,等.中外提高采收率新技术研究现状及发展趋势[J].油气地质与采收率,2021,28(5):81-86.WANG Rui,LUN Zengmin,LÜ Chengyuan,et al.Research sta‐ tus and development trends of worldwide new technologies for enhanced oil recovery[J].Petroleum Geology and Recovery Effi‐ ciency,2021,28(5):81-86.
-
[6] 杨斌.聚合物降黏剂的性能及其提高采收率效果[J].油气地质与采收率,2021,28(6):107-113.YANG Bin.Properties of polymer viscosity reducer and its effect on enhanced oil recovery[J].Petroleum Geology and Recovery Efficiency,2021,28(6):107-113.
-
[7] 李义,刘平德,张松.表面活性聚合物驱油剂的合成及性能研究[J].石油与天然气化工,2021,50(6):81-86.LI Yi,LIU Pingde,ZHANG Song.Study of preparation and properties of surface-active polymers for oil displacement agent [J].Chemical Engineering of Oil & Gas,2021,50(6):81-86.
-
[8] 王哲,曹广胜,白玉杰,等.提高中国低渗透油藏采收率技术现状及展望[J/OL].特种油气藏,https://kns.cnki.net/kcms/detail/21.1357.te.20220810.1027.004.html,2022-08-12.WANG Zhe,CAO Guangsheng,BAI Yujie,et al.Current status and prospects of research on technologies for enhancing oil re‐ covery of low-permeability reservoirs in China[J/OL].Special Oil & Gas Reservoirs,https://kns.cnki.net/kcms/detail/21.1357.te.20220810.1027.004.html,2022-08-12.
-
[9] 董文龙,徐涛,李洪生,等.聚合物—表面活性剂二元复合体系微观及宏观驱油特征——以河南双河油田某区块为例[J].油气地质与采收率,2011,18(3):53-56.DONG Wenlong,XU Tao,LI Hongsheng,et al.Polymer-surfactant compound system characteristics of microscopic and macroscopic displacement—case of Shuanghe Oilfield,Henan Province[J].Pe‐troleum Geology andRecovery Efficiency,2011,18(3):53-56.
-
[10] 李宗阳,王业飞,曹绪龙,等.新型耐温抗盐聚合物驱油体系设计评价及应用[J].油气地质与采收率,2019,26(2):106-112.LI Zongyang,WANG Yefei,CAO Xulong,et al.Design evalua‐ tion and application of a novel temperature-resistant and salttolerant polymer flooding system[J].Petroleum Geology and Re‐ covery Efficiency,2019,26(2):106-112.
-
[11] 李吉,王江,吴文祥,等.新型表面活性聚合物驱油剂的研制及应用[J].断块油气田,2020,27(6):803-807.LI Ji,WANG Jiang,WU Wenxiang,et al.Development and ap‐ plication of novel surfac-active polymer flooding agent[J].Fault-Block Oil and Gas Field,2020,27(6):803-807.
-
[12] 魏兵,田庆涛,毛润雪,等.纳米纤维素材料在油气田开发中的应用与展望[J].油气地质与采收率,2020,27(2):98-104.WEI Bing,TIAN Qingtao,MAO Runxue,et al.Application and prospect of nano-cellulosic materials in the development of oil and gas field[J].Petroleum Geology and Recovery Efficiency,2020,27(2):98-104.
-
[13] 魏兵,蒲万芬,王崇阳.纳米纤维素在作为或制备驱油剂中的应用:CN201510519103.3[P].2015-11-18.WEI Bing,PU Wanfen,WANG Chongyang.Application of nano‐ cellulose as or in the preparation of oil displacement:CN201510519103.3[P].2015-11-18.
-
[14] 杨建校,章丽萍,左宋林,等.TEMPO 氧化法制备氧化纤维素纳米纤维[J].东北林业大学学报,2011,39(3):96-98,105.YANG Jianxiao,ZHANG Liping,ZUO Songlin,et al.Produc‐ tion of cellulose nanofibers by TEMPO oxidation approach[J].Journal of Northeast Forestry University,2011,39(3):96-98,105.
-
[15] GARS M L,DELVART A,ROGER P,et al.Amidation of TEM‐ PO-oxidized cellulose nanocrystals using aromatic aminated molecules[J].Colloid and Polymer Science,2020,298(6):603-617.
-
[16] WANG An,YUAN Zhaoyang,WANG Chunping,et al.Zwitter‐ ionic cellulose nanofibrils with high salt sensitivity and tolerance [J].Biomacromolecules,2020,21(4):1 471-1 479.
-
[17] GENG Wenhua,NAKAJIMA T,TAKANASHI H,et al.Analysis of carboxyl group in coal and coal aromaticity by Fourier trans‐ form infrared(FT-IR)spectrometry[J].Fuel,2009,88(1):139-144.
-
[18] NIU Qiuqi,YAN Hailong,MENG Qingran,et al.Hydrogen per‐ oxide plus ascorbic acid enhanced organic matter deconstruc‐ tions and composting performances via changing microbial com‐ munities[J].Journal of Environmental Management,2021,295(2):113126.
-
[19] VAZQUEZ A,LÓPEZ M,KORTABERRIA G,et al.Modifica‐ tion of montmorillonite with cationic surfactants.Thermal and chemical analysis including CEC determination[J].Applied Clay Science,2008,41(1/2):24-36.
-
[20] FENG Xiaobo,CAO Jingpei,ZHAO Xiaoyan,et al.Organic oxy‐ gen transformation during pyrolysis of Baiyinhua lignite[J].Jour‐ nal of Analytical and Applied Pyrolysis,2016,117:106-115.
-
[21] FOONG S Y,LIEW R K,LEE C L,et al.Strategic hazard mitiga‐ tion of waste furniture boards via pyrolysis:pyrolysis behavior,mechanisms,and value-added products[J].Journal of Hazard‐ ous Materials,2022,421:126774.
-
[22] MURADOV N,FIDALGO B,GUJAR AC,et al.Pyrolysis of fast-growing aquatic biomass-Lemna minor(duckweed):char‐ acterization of pyrolysis products[J].Bioresour Technol,2010,101(21):8 424-8 428.
-
[23] 伍晓林,侯兆伟,杨勇,等.古龙1号乳液体系研制及性能评价 [J].大庆石油地质与开发,2022,41(3):112-119.WU Xiaolin,HOU Zhaowei,YANG Yong,et al.Development and performance evaluation for Gulong 1# emulsion system[J].Petroleum Geology & Oilfield Development in Daqing,2022,41(3):112-119.
-
[24] 张照阳,管彬,毛金成,等.两性疏水改性瓜尔胶的实验研究 [J].精细石油化工,2021,38(1):17-22.ZHANG Zhaoyang,GUAN Bin,MAO Jincheng,et al.Experi‐ mental study on amphoteric hydrophobic modified guar gum[J].Speciality Petrochemicals,2021,38(1):17-22.
-
[25] 黄金,于洪洋,李锋,等.生物基两性离子型表面活性剂在不同驱油体系中的乳化稳定动力学[J].石油学报:石油加工,2022,38(6):1 347-1 356.HUANG Jin,YU Hongyang,LI Feng,et al.Emulsion-stabiliz‐ ing kinetics of bio-based zwitterionic surfactant in different oil flooding systems[J].Acta Petrolei Sinica:Petroleum Processing Section,2022,38(6):1 347-1 356.
-
[26] 赵玉,杜竞,许鸷宇,等.新型两性Gemini表面活性剂制备及表界面性能[J].石油与天然气化工,2022,51(3):111-116.ZHAO Yu,DU Jing,XU Zhiyu,et al.Preparation and surface performance of new amphoteric Gemini surfactants[J].Chemi‐ cal Engineering of Oil & Gas,2022,51(3):111-116.
-
[27] 刘欢“.温盐双响应型”聚合物驱油效果及作用机制研究[D].大庆:东北石油大学,2022.LIU Huan.Study on the oil displacement efficiency and mecha‐ nism of“temperature-salt dual-response”polymer[D].Daqing:Northeast Petroleum University,2022.
-
[28] 李长平,张金辉,陈浩宇,等.耐温耐盐新型表面活性剂在降压增注开采中的研究和应用现状[J].应用化工,2021,50(4):1 136-1 141,1 146.LI Changping,ZHANG Jinhui,CHEN Haoyu,et al.Application of new surfactants with temperature-resistant salt in oil field ex‐ ploitation[J].Applied Chemical Industry,2021,50(4):1 136-1 141,1 146.
-
[29] 史胜龙,王业飞,汪庐山,等.剪切作用对自发乳化驱油提高采收率的影响[J].油田化学,2016,33(2):295-299.SHI Shenglong,WANG Yefei,WANG Lushan,et al.Effect of shear action on enhanced oil recovery of spontaneous emulsifica‐ tion flooding[J].Oilfield Chemistry,2016,33(2):295-299.
-
[30] 郭亚兵,岳湘安,闫荣杰,等.油水乳化能力对油膜驱替的影响 [J].油气地质与采收率,2020,27(2):105-111.GUO Yabing,YUE Xiang’an,YAN Rongjie,et al.Effect of oilwater emulsification capability on oil film displacement[J].Pe‐ troleum Geology and Recovery Efficiency,2020,27(2):105-111.
-
摘要
针对油田常用聚合物驱油剂用量高、耐盐性能差、与表面活性剂复配使用易发生色谱分离现象等问题,选取天然高分子化合物羧基纳米纤维带为原料,制备了疏水改性羧基纳米纤维带(CCNF-n)和两性-疏水改性羧基纳米纤维带(ACCNF-n)单组分稠油驱油剂,评价了疏水改性程度和两性-疏水改性对羧基纳米纤维带界面活性、乳化能力及驱油性能的影响。结果表明:疏水改性程度的增加使得羧基纳米纤维带界面活性先提升后降低,而阳离子基团的引入增强了羧基纳米纤维带与水的相互作用,使得具有相同疏水改性程度的两性-疏水改性羧基纳米纤维带界面活性相应减小。在温度为70 °C,矿化度为50000 mg/L,质量分数为0.2%的条件下,疏水改性程度越大,纳米纤维带黏度越高,5种疏水改性羧基纳米纤维带黏度为1.54~3.85 mPa·s,而两性-疏水改性羧基纳米纤维带在相同条件下黏度为18.46~27.31 mPa·s,耐盐性能较强。岩心驱替结果表明,两性-疏水改性羧基纳米纤维带体系能够显著提高采收率(为18.91%)。
Abstract
Polymer flooding agents commonly used in oilfields have high consumption and poor salt resistance and tend to undergo chromatographic separation when compounded with surfactants. In view of these problems,the carboxyl nanofiber strips of the natural polymeric compound were selected as raw materials,and single-component flooding agents of hydrophobically modified nanofiber strips(CCNF-n)and amphoteric-hydrophobically modified nanofiber strips (ACCNF-n)were prepared for heavy oil. The effects of the hydrophobic modification degree and amphoteric-hydropho‐ bic modification on the interfacial activity,emulsification ability,and oil displacement performance of carboxyl nanofi‐ ber strips were evaluated. The results showed that the increament of hydrophobic modification degree first increased and then decreased the interfacial activity of carboxyl nanofiber strips,and the interaction between the carboxyl nanofiber strips and the water was enhanced due to the introduction of cationic groups,which made the interfacial activity of am‐ photeric-hydrophobically modified nanofiber strips with the same hydrophobic modification degree decrease correspond‐ ingly. Under the conditions of 70 ℃,salinity of 50000 mg/L,and mass fraction of 0.2%,the nanofiber strips with a greater hydrophobic modification degree indicates a higher viscosity. The viscosities of five hydrophobically modified nanofiber strips ranged from 1.54 to 3.85 mPa·s. Under the same conditions,the viscosities of the amphoteric-hydropho‐ bically modified nanofiber strips fluctuated between 18.46 mPa·s and 27.31 mPa·s,exhibiting excellent salt resistance. The results of core displacement experiments showed that the amphoteric-hydrophobically modified nanofiber strip sys‐ tem could significantly enhance the oil recovery(18.91%).