en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵健(1969—),男,陕西铜川人,教授级高级工程师,博士,从事油气田开发与提高采收率研究。E-mail:windly99999@163.com。

中图分类号:TE377

文献标识码:A

文章编号:1009-9603(2023)03-0145-07

DOI:10.13673/j.pgre.202211037

参考文献 1
霍刚.超稠油及深层稠油开采关键技术研究[D].北京:中国石油大学(北京),2007.HUO Gang.Research on key technologies for super heavy oil and deep heavy oil recovery [D].Beijing:China University of Petroleum(Beijing),2007.
参考文献 2
李伟,梁世君,姜均伟,等.吐鲁番坳陷鲁克沁稠油油藏形成及演化特征[J].石油学报,2006,27(6):14-18.LI Wei,LIANG Shijun,JIANG Junwei,et al.Formation and evolution characteristics of Lukeqin heavy oil reservoir in Tur‐ pan depression [J].Acta Petrolei Sinica,2006,27(6):14-18.
参考文献 3
黄兆海.深层稠油高盐水驱油藏深部化学调驱技术的应用——以吐哈油田鲁X区块为例[J].石油地质与工程,2021,35(6):110-113.HUANG Zhaohai.Application of deep chemical profile control and flooding technology in deep heavy oil and high salt water drive reservoirs—Taking Lux Block of Tuha Oilfield as an exam‐ ple [J].Petroleum Geology and Engineering,2021,35(6):110-113.
参考文献 4
朱永贤,张明敏,张凯,等.鲁克沁深层稠油油藏空气泡沫驱技术实践[J].石油钻采工艺,2022,44(3):348-353.ZHU Yongxian,ZHANG Mingmin,ZHANG Kai,et al.Prac‐ tice of air foam flooding technology in Lukeqin deep heavy oil reservoir [J].Petroleum Drilling and Production Technology,2022,44(3):348-353.
参考文献 5
孙永涛,李兆敏,孙玉豹,等.稠油耐高温乳化降黏剂AESO的合成及其性能[J].大庆石油地质与开发,2021,40(3):103-108.SUN Yongtao,LI Zhaomin,SUN Yubao,et al.Synthesis and properties of high-temperature emulsified viscosity reducer AE‐ SO for heavy oil [J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2021,40(3):103-108.
参考文献 6
高能,赵健,何嘉.减氧空气吞吐技术在鲁克沁深层稠油油藏的应用[J].新疆石油地质,2020,41(6):748-752.GAO Neng,ZHAO Jian,HE Jia,et al.Application of oxygen reducing air huff and puff technology in Lukeqin deep heavy oil reservoir [J].Xinjiang Petroleum Geology,2020,41(6):748-752.
参考文献 7
程柯扬,戚志林,田杰,等.稠油油藏高轮次吞吐储层变化规律——以HJ油田为例[J].油气藏评价与开发,2022,12(5):816-824.CHENG Keyang,QI Zhilin,TIAN Jie,et al.Change law of heavy oil reservoir with high cyclic huff and puff—taking HJ oil‐ field as an example [J].Reservoir Evaluation and Development,2022,12(5):816-824.
参考文献 8
木合塔尔,高成国,袁士宝,等.红浅1井区注蒸汽后火烧油层生产特征分析[J].大庆石油地质与开发,2021,40(4):73-79.MUHETAR,GAO Chengguo,YUAN Shibao,et al.Analysis of production characteristics of burning oil layer after steam in‐ jection in Hongqian 1 well block [J].Petroleum Geology & Oil‐ field Development in Daqing,2021,40(4):73-79.
参考文献 9
荆文波,张娜,孙欣华,等.鲁克沁油田深层稠油注水开发技术 [J].新疆石油地质,2013,34(2):199-201.JING Wenbo,ZHANG Na,SUN Xinhua,et al.Water injection development technology for deep heavy oil in Lukeqin Oilfield [J].Xinjiang Petroleum Geology,2013,34(2):199-201.
参考文献 10
关文龙,席长丰,陈亚平,等.稠油油藏注蒸汽开发后期转火驱技术[J].石油勘探与开发,2011,38(4):452-462.GUAN Wenlong,XI Changfeng,CHEN Yaping,et al.Fireflooding technologies in post-steam-injected heavy oil reservoirs [J].Petroleum Exploration and Development,2011,38(4):452-462.
参考文献 11
袁士宝,蒋海岩,王丽,等.稠油油藏蒸汽吞吐后转火烧油层适应性研究[J].新疆石油地质,2013,34(3):303-306.YUAN Shibao,JIANG Haiyan,WANG Li,et al.Research on adaptability to in-situ combustion in heavy oil reservoir after steam huff and puff [J].Xinjiang Petroleum Geology,2013,34(3):303-306.
参考文献 12
闫红星,杨俊印,姜文瑞,等.芳烃化合物在稠油火驱室内实验中的指示作用[J].石油实验地质,2022,44(5):914-921.YAN Hongxing,YANG Junyin,JIANG Wenrui,et al.The in‐ dicative role of aromatic compounds in heavy oil fire flooding laboratory experiment [J].Petroleum Geology & Experimental,2022,44(5):914-921.
参考文献 13
杨勇.胜利油田稠油开发技术新进展及发展方向[J].油气地质与采收率,2021,28(6):1-11.YANG Yong.New progress and development direction of heavy oil development technology in Shengli Oilfield [J].Petroleum Geology and Recovery Efficiency,2021,28(6):1-11.
参考文献 14
姜毅,喻高明,辛显康,等.辽河油田高3618区块火线预测及注采参数优化[J].新疆石油地质,2021,42(4):462-468.JIANG Yi,YU Gaoming,XIN Xiankang,et al.Fire front pre‐ diction and injection-production parameter optimization for Block Gao 3618,Liaohe oilfield [J].Xinjiang Petroleum Geolo‐ gy,2021,42(4):462-468.
参考文献 15
周立国.辽河油田稠油火烧工艺技术研究[D].大庆:东北石油大学,2014.ZHOU Liguo.A study on the research of the technology of heavy oil ISU in Liaohe oilfield [D].Daqing:Northeast Petro‐ leum University,2014.
参考文献 16
姜野.曙光采油厂杜66断区块空气注气开采安全风险分析[D].青岛:中国石油大学(华东),2017.JIANG Ye.Risk analysis of production based on air-injection in block Du 66 in Shuguang oilfield [D].Qingdao:China Universi‐ ty of Petroleum(East China),2017.
参考文献 17
蔡文斌,李友平,李淑兰,等.胜利油田火烧油层现场试验[J].特种油气藏,2007,62(3):88-90.CAI Wenbin,LI Youping,LI Shulan,et al.Field test of burning oil layer in Shengli Oilfield [J].Special Oil and Gas Reservoirs,2007,62(3):88-90.
参考文献 18
PANAIT-PATICA A,SERBAN D,ILIE N,et al.Suplacu de Barcau Field—A case history of a successful in-situ combustion exploitation [C]//Vienna:SPE Europec/EAGE Annual Confer‐ ence and Exhibition,2006.
参考文献 19
DAYAL H S,PANDEY V,MITRA S,et al.Monitoring of in-si‐ tu combustion process in southern part of Balol field through analysis of produced fluids [C]//Vienna:SPE Heavy Oil Confer‐ ence and Exhibition,2011.
参考文献 20
牛菊叶,沙帆,冯娟.理829井区注空气原油氧化速率影响因素的研究[J].当代化工,2019,48(9):1 926-1 929.NIU Juye,SHA Fan,FENG Juan,et al.Study on influencing factors of oxidation rate of crude oil in Li829 Well [J].Contem‐ porary Chemical Industry,2019,48(9):1 926-1 929.
参考文献 21
王伟伟.压力对轻质原油氧化动力学参数的影响[J].断块油气田,2020,27(1):109-112.WANG Weiwei.Influence of pressure on oxidation kinetics pa‐ rameters of light crude oil [J].Fault-Block Oil and Gas Field,2020,27(1):109-112.
参考文献 22
张庆轩,曲雪丽.压力对塔里木原油四组分热解性能的影响[J].应用化学,2017,34(10):1 202-1 208.ZHANG Qingxuan,QU Xueli.Effect of pressure on pyrolysis characteristics of four-components of Tarim crude oil [J].Chi‐ nese Journal of Applied Chemistry,2017,34(10):1 202-1 208.
参考文献 23
龙安林,祁青山,陈小龙,等.减氧空气辅助重力驱全直径岩心物理模拟——以青海油田尕斯库勒E13油藏为例[J].新疆石油地质,2021,42(5):565-571.LONG Anlin,QI Qingshan,CHEN Xiaolong,et al.Full-diame‐ ter physical simulation of oxygen-reducing air assisted gravity drainage:a case study of Gasikule E13 reservoir in Qinghai oil‐ field [J].Xinjiang Petroleum Geology,2021,42(5):565-571.
参考文献 24
师耀利,吕世瑶,施小荣,等.火驱油藏岩矿与原油演化特征[J].新疆石油地质,2018,39(6):696-700.SHI Yaoli,LÜ Shiyao,SHI Xiaorong,et al.Evolution of rocks and crude oil in reservoirs during fire flooding [J].Xinjiang Pe‐ troleum Geology,2018,39(6):696-700.
参考文献 25
李秋,何厚锋,关文龙,等.稠油油藏火驱驱替特征实验研究[J].油气地质与采收率,2021,28(6):79-86.LI Qiu,HE Houfeng,GUAN Wenlong,et al.Experimental study on the characteristics of fire drive displacement in heavy oil reservoirs [J].Petroleum Geology and Recovery Efficiency,2021,28(6):79-86.
参考文献 26
蒋海岩,李晓倩,高成国,等.火驱阶段特征对比与分析[J].油气藏评价与开发,2020,10(5):114-119.JIANG Haiyan,LI Xiaoqian,GAO Chengguo,et al.Compari‐ son and analysis of stage feature of in situ combustion [J].Reser‐ voir Evaluation and Development,2020,10(5):114-119.
参考文献 27
关文龙,宫宇宁,唐君实,等.多层油藏火驱开发模式探讨[J].特种油气藏,2020,27(6):60-66.GUAN Wenlong,GONG Yuning,TANG Junshi,et al.Discus‐ sion on the fire drive development model of multi-layer reser‐ voirs [J].Special Oil and Gas Reservoirs,2020,27(6):60-66.
参考文献 28
童钧耕.工程热力学[M].北京:高等教育出版社,2007.TONG Jungeng.Engineering thermodynamics [M].Beijing:Higher Education Press,2007.
参考文献 29
关文龙,马德胜,梁金中,等.火驱储层区带特征实验研究[J].石油学报,2010,31(1):100-104,109.GUAN Wenlong,MA Desheng,LIANG Jinzhong,et al.Exper‐ imental research of thermodynamic characteristics of in-situ com‐ bustion zones in heavy oil reservoir [J].Acta Petrolei Sinica,2010,31(1):100-104,109.
参考文献 30
李金涛.火烧油层过程中原油的热解动力学特征研究[D].青岛:中国石油大学(华东),2015.LI Jintao.Study on pyrolysis kinetics characteristics of crude oil in-situ combustion process [D].Qingdao:China University of Petroleum(East China),2015.
参考文献 31
江航,昝成,宋新民,等.高压近绝热量热法获取原油氧化动力学参数[J].石油学报,2014,35(4):745-748.JIANG Hang,ZAN Cheng,SONG Xinmin,et al.Determina‐ tion of oxidation kinetics parameters for crude oil using high pressure and near adiabatic calorimetry method [J].Acta Petrolei Sinica,2014,35(4):745-748.
参考文献 32
廖广志,王红庄,王正茂,等.注空气全温度域原油氧化反应特征及开发方式[J].石油勘探与开发,2020,47(2):334-340.LIAO Guangzhi,WANG Hongzhuang,WANG Zhengmao,et al.Oil oxidation in the whole temperature regions during oil res‐ ervoir air injection and development methods [J].Petroleum Ex‐ ploration and Development,2020,47(2):334-340.
参考文献 33
袁成东,蒲万芬,郭征,等.氧气还原空气驱的适用范围和含氧量极限[J].石油勘探与开发,2020,47(2):334-340.YUAN Chengdong,PU Wanfen,GUO Zheng,et al.Applicable scope of oxygen-reduced air flooding and the limit of oxygen content [J].Petroleum Exploration and Development,2020,47(2):334-340.
目录contents

    摘要

    稠油氧化特性研究是火驱提高采收率矿场设计的依据和基础,但截至目前,有关压力对稠油高压火驱的研究相对较少。为了明确压力对稠油火驱氧化特性的影响,并有效减少高压火驱的不利影响,以鲁克沁稠油为例,基于热重实验和差示扫描量热实验,研究不同压力下的稠油氧化热失重以及放热等变化特性,首先计算不同压力下的动力学参数,得出各氧化阶段的活化能、反应焓;其次,通过燃烧管实验,评价了不同压力下的火驱燃烧效果及稳定性。研究结果表明:压力升高加快了稠油氧化反应速率,增加了放热量,复杂体系的氧化路径有所改变,反应动力学表征参数需进行高压修正;并且压力升高使火线推进速率加快,燃烧前缘温度较常压火驱升高300 ℃以上,燃烧稳定性变差;10%减氧高压火驱燃烧稳定,有效抑制高压反应速度过快导致的燃烧不稳定性。

    Abstract

    A study on oxidation characteristics of heavy oil is the basis of mine design of improving oil recovery by in-si‐ tu combustion. However,there are relatively few studies on the effect of pressure on high-pressure in-situ combustion of heavy oil reservoirs. In order to clarify the influence of pressure on oxidation characteristics of heavy oil reservoirs by insitu combustion and effectively reduce the adverse effects of high-pressure in-situ combustion,this paper took Lukeqin heavy oil reservoirs as an example and investigated the thermal weight loss,heat release,and other oxidation character‐ istics of heavy oil reservoirs under different pressures based on thermogravimetric and differential scanning calorimetry experiments. The paper first calculated the kinetic parameters under different pressures and obtained the activation ener‐ gy and reaction enthalpy at each oxidation stage. Secondly,the combustion effect and stability of in-situ combustion un‐ der varied pressures were evaluated through the combustion tube experiments. The experimental results show that higher pressures accelerate the oxidation reaction rates of heavy oil and intensify heat release. The oxidation paths of complex systems are changed,and the characterization parameters of reaction kinetics need to be modified under high pressures. In addition,the advancing speeds of the in-situ combustion line under high pressures are accelerated,and the tempera‐ tures of the burning fronts are more than 300 °C higher than those of atmospheric-pressure in-situ combustion;the com‐ bustion stability becomes worse,and the combustion under high-pressure in-situ combustion with oxygen reduced by 10% is stable,which effectively suppresses the combustion instability caused by fast high-pressure reaction speeds.

  • 深层稠油油藏具有地层压力大、原油黏度大、注蒸汽压力高、热损失大等特点,存在易出砂、举升困难等生产问题[1],采用常规的注蒸汽方法无法保证效果。中国鲁克沁油田三叠系油藏为边底水超深层普通稠油油藏,埋深约为 2 300~3 700 m,地层压力为 23~35 MPa,原始地层温度为 65℃,地下原油黏度约为20 150 mPa•s[2]。经过二十余年注水开发,由于原油黏度大,油水流度比差异大,储层非均质性严重,易形成水流优势通道,水驱波及体积小,油井含水率上升速度快,水驱采收率低[3]。近几年,通过调剖、泡沫驱[4]、化学剂降黏[5]、注气吞吐[6-7] 等改善水驱效果的“二三结合”稠油冷采技术的实施,水驱采收率有所提高,但仍存在泡沫驱见气、多轮次吞吐效果减弱、调剖效果达不到预期等问题[8],导致区块综合采出程度低于 10%,寻求新的接替开采技术已迫在眉睫。由于三叠系油藏埋深较大,地层压力大,实施注蒸汽开发方式转换难度大[9-10]。火烧油层作为一种热采接替手段,具有采收率高、成本低、热能利用率高、油藏适应性广等优点[11-12],目前已在新疆红浅、辽河曙光、胜利[13]、Suplacu de Barcau和Balol等稠油油藏得到广泛应用[14-19],但目前报道的火驱矿场案例的地层压力均较低。部分学者研究了压力对轻质油氧化的影响,认为压力对原油氧化特性和动力学特征有一定的影响[20],压力升高,明显抑制了轻质组分的挥发,放热速度大幅提高,氧化反应明显加强[21]; 增大压力抑制沥青质、胶质及芳香分的热解产气过程而促进饱和分的热解产气过程[22],但缺乏针对高压火驱的可行性和可控性实验和论证。为解决鲁克沁稠油高压火驱能否顺利进行驱替、是否具有可控性、如何确定运行机理和动力学参数、氧化和燃烧特征与常压有哪些不同等问题,通过高压火驱室内实验,研究深层稠油高压火驱可行性非常必要。

  • 稠油高压火驱的高压氧化燃烧-驱替内在机制复杂,氧化动力学能够深入认识反应内在机制,是火驱动态分析与工程设计的基础。目前常用的研究方法是热分析实验[23-24],包括热重实验(TG)和差示扫描量热实验(DSC),分别是在程序控制温度下测量待测样品质量或热流率随温度的变化关系,分析反应程度、反应速率与反应热变化,从而总结高压氧化内在机制。

  • 首先通过热分析实验研究稠油高压氧化特性及内在机制,确定高压下的动力学参数表征方法,进而基于燃烧管实验对高压火驱可行性进行评价,最后,为了有效减少高压火驱的不利影响,实验论证了减氧火驱的可行性,为鲁克沁稠油火驱及矿场工程实践提供了理论依据。该研究为复杂体系高压实验提供了借鉴,为矿场工程实践提供了理论依据,对高压稠油油藏的火驱(ISC)开发具有一定指导意义。

  • 1 实验器材及方法

  • 1.1 实验流体及装置

  • 实验油样选用鲁克沁油田中区稠油油样。 50℃时原油黏度为 20 150 mPa•s,地层温度(65℃) 时含气原油黏度为 526 mPa•s,按照稠油分类标准,研究区的稠油属于普通稠油B类。

  • 实验所用仪器主要包括德国同步热分析仪(型号为 NETZSCH STA 449 F3)、耐驰公司生产的差示扫描量热仪(型号为DSC204HP)及自主建立的火驱实验系统。自主建立的火驱实验系统主要由燃烧管、注气系统、注水系统、油气分离系统、测量与控制系统共 5 部分组成,其中主体部分燃烧管长度为 60 cm,内径为 5 cm。共有 14 组热电偶均匀分布在内管外壁上、下两侧(图1)。

  • 火烧油层驱替实验由自主建立的火驱实验系统实现,可模拟注入井与采油井连线上的火烧动态过程,包括油层点火、油层温度分布及其变化、产出物变化等,整套系统基本上实现了计算机控制。

  • 图1 实验装置

  • Fig.1 Experimental device

  • 1.2 实验方法

  • 1.2.1 高压火驱热分析实验

  • 通过室内TG/DSC实验分析不同压力下的反应程度、反应速率与反应热变化,总结高压氧化内在机制。热分析实验设计参数包括:压力为0.1~8 MPa,升温速率为 6℃/min,温度为 25~600℃,气体环境为空气氛围。样品质量不超过5.0 g。

  • 1.2.2 高压火驱驱替实验

  • 燃烧管实验作为一种最具代表性、分析技术最成熟的火驱效果研究手段,已在稠油火驱可行性评价与分析中得到广泛应用[25-26]。为深入研究压力对稠油氧化燃烧的影响,进行3组燃烧管实验,设计了实验方案和实验参数(表1),3组实验均采用干式燃烧方式,实验设计注入速率为 3 L/min,设计点火温度为500℃。

  • 表1 燃烧管实验方案设计

  • Table1 Experimental scheme designs of combustion tubes

  • 2 结果与讨论

  • 2.1 氧化阶段划分

  • 以空气环境下升温速率为6℃/min的DSC-TG-DTG(差热热流量,简称 DTG)曲线为主,进行氧化阶段划分(图2)。

  • 由热重曲线和差热曲线可以看出,原油氧化反应过程中阶段性明显。据原油失重速率变化,将原油氧化过程分成以下 4 个阶段:①溶解膨胀(Disso‐ lution Swelling,DS)。只有失重不放热,主要以水分蒸发和一些轻质组分挥发为主,有轻微的吸热。 ②低温氧化(Low Temperature Oxidation,LTO)。少量放热和失重,烃类物质发生加氧反应,形成醇、醛、酮、酯等物质。③焦炭沉积(Coke Deposition,CD)。放热和失重变缓,以缩聚反应和断键反应为主,累积了部分氧化焦,为高温氧化奠定基础。④高温氧化[27] ( High Temperature Oxidation,HTO)。剧烈放热、失重,原油热裂解生成热解焦,氧化焦和热解焦燃烧,高温氧化反应明显。

  • 在高压条件下,氧化阶段也划分为4个阶段,溶解膨胀阶段变化不大,但不能说明没有影响,该阶段主要是轻质组分挥发,失重不明显。焦炭沉积与高温氧化阶段受影响较大。高压下各阶段持续时间不同,具体如表2所示。

  • 与低压相比,高压阶段特征有以下特点:①压力升高使反应更易发生。随压力升高,高温氧化阶段反应温度提前,这表明高压情况下反应更容易发生。同时,压力增大抑制了轻质组分的挥发,使溶解膨胀阶段失重量减少,在气-液相界面发生剧烈氧化反应,加快原油氧化反应速率,热失重速率增大;随着压力升高,各反应阶段的温度范围变窄。高压使反应结束温度由485℃下降至442℃。②压力加强了高温氧化,使放热量增加。DSC数值增加明显,焦炭沉积持续时间变长,燃料量变大。但氧化放热不会无限增加,放热曲线逐渐趋于稳定。

  • 图2 空气环境升温速率为6℃/min下的氧化阶段划分

  • Fig.2 Oxidation phase division at temperature rise rate of 6 °C/min in air environment

  • 表2 各阶段的温度范围和持续时间占比

  • Table2 Temperature ranges and duration of each stage

  • 2.2 高压氧化特征

  • 由不同压力TG-DTG曲线(图3)可以看出:压力越高,氧化反应过程中的热失重量越大,反应结束时的失重质量分数越小,氧化反应越充分;高压也使反应阶段变窄,压力升高,反应向高温氧化阶段转化,中温氧化阶段范围缩短,2个热失重速率峰值相近且峰值变大,8 MPa条件下DTG几乎呈单峰,说明压力升高导致原油中轻质组分的沸点上升,抑制了轻质组分的挥发,气-液、气-固相界面发生剧烈氧化反应。随压力增大,热失重速率曲线数值越大,说明氧分压增大,氧气与原油的接触面积增大,加快原油氧化反应速率。

  • 图3 升温速率为6℃/min,不同压力下TG-DTG曲线

  • Fig.3 TG-DTG curves under different pressures at temperature rise rate of 6 °C/min

  • 由不同压力下的DSC曲线(图4)及热焓值曲线 (图5)可以看出,随压力升高,各阶段反应温度降低,各阶段热流率增大,氧化放热量增多,并且高温氧化 DSC 数据波动剧烈,反应更强烈,进一步表明高压情况下,反应更易发生。因此,高压更有利于氧化燃烧。

  • 当压力达到4 MPa时,高压最终的反应焓接近,反应逐渐趋于稳定。由盖斯定律[28] 可知,不可逆反应焓变仅与化学反应的类型有关,与过程无关,温度、压强改变,焓变不变。因此,高压促进了燃料生成的反应,燃烧温度和放热量均有所上升,但原油氧化放热量不随压力升高而一直增大。在对原油进行火烧油层反应分析时,建议取低压燃烧反应焓(≤4 MPa)和高压燃烧反应焓(>4 MPa)2 套数据分析即可。

  • 图4 不同压力下的DSC曲线

  • Fig.4 DSC curves under different pressures

  • 图5 不同压力下的热焓值曲线

  • Fig.5 Enthalpy curves under different pressures

  • 2.3 高压氧化动力学参数

  • 基于 DSC 实验结果进行动力学参数计算[29-31]。将到达一定温度或者时间的转化率定义为到达该点的热流率峰的部分面积除以热流率峰的总面积,表达式为[32]

  • α=ΔSpΔSt×100%
    (1)
  • 对 α 求导代表转化率的快慢,表征稠油氧化的反应速率。根据 Arrhenius方程,原油氧化速率方程可表示为:

  • dαdt=Ae-ERTf(α)
    (2)
  • 令:

  • β=dTdt
    (3)
  • 由(2)—(3)式分离变量,取对数得:

  • lnβdαdT=ln[Af(α)]-ERT
    (4)
  • 由ln(βdα/dT)对1/T作图,用最小二乘法拟合数据,得到不同压力下的拟合结果,最终计算得到不同压力下的动力学参数(图6)。

  • 图6 不同氧化阶段的活化能外推结果

  • Fig.6 Extrapolation results of activation energy at different oxidation stages

  • 压力升高,活化能有降低的趋势,说明压力增大对氧化反应有促进作用,压力增大导致氧分压增大,增大了氧气与反应物的接触面积,更容易发生氧化。压力对反应速率有改变作用。化学动力学理论指出[33],活化能是化学反应发生所需的最小能量,其值只能通过实验测出,浓度、压强是影响活化能的因素。采取幂函数拟合压力对活化能的影响,将上述压力下动力学参数延伸至更高压力,得到不同氧化阶段的活化能随压力变化关系曲线(图6)。活化能随压力升高呈幂函数递减;随压力升高,原油氧化的活化能趋于稳定,但在低压阶段随压力变化较为敏感。

  • 2.4 高压火驱驱替实验

  • 2.4.1 高压火驱驱替实验对比特征

  • 实验均点火成功。油砂被点燃后,燃烧产生大量的热,燃烧带附近范围内热量聚集,温度变化速率急剧上升出现极大值,因此,在与其对应温度和时间关系曲线上即可求得门槛温度。由图7 可知,鲁克沁原油门槛温度为 380~390℃,根据工程要求,点火温度要高于门槛温度50℃,即现场设计点火温度不应低于430℃。

  • 常压火驱稳定燃烧温度为 500℃左右,最高温度可达571.4℃(图7a)。高压条件下(图7b)燃烧温度高,火驱稳定燃烧温度为800℃左右,最高温度可达 989.9℃,这与高压 DSC 实验结果相一致;此外,高压条件下温度有骤然变化点,温度带空间跨越大,氧化燃烧速率加快;高压火驱采收率较常压的低 11.59%(表3),主要由于高压时燃烧燃料增多,消耗了更多储量。

  • 2.4.2 高压减氧火驱可行性分析

  • 当地层压力过高,高压火驱会导致燃烧温度过高,推进速度过快,具有控制难度大和安全性降低的风险。因此,设计进行了减氧火驱实验(氧含量为 10%,氮含量为90%)。

  • 减氧条件下,受氧气含量降低的影响,稳定燃烧温度较高压空气火驱大幅下降,且不会出现温度骤然升高现象(图7c);火驱燃烧稳定且可持续,火线平均推进速率降低(图7c)。采收率较高压空气火驱高 1.54%(表3),减氧很好地抑制了剧烈氧化,使得燃烧稳定推进,可控性增强,能够作为高压稠油油藏火驱的调控手段。但是由于高压下生成燃料消耗了更多储量,仍达不到常压火驱的生产效果。

  • 3 结论

  • 高压下的原油氧化各个阶段均较常压环境有所提前,并且反应向高温段转化;压力升高增大了原油的放热量,并且由于压力升高导致反应路径变化,计算的活化能随压力升高呈幂函数递减。热分析及燃烧管实验表明,高压下的原油氧化更充分、更易发生,反应更加剧烈,高压火驱燃烧温度高,火驱推进加快,燃料含量上升,温度有骤然变化点,温度带空间跨越大,火驱稳定性变差,采收率降低。高压减氧使得着火门槛相应降低,降低了点火工艺难度,并且压力导致的超高温得到抑制,燃烧稳定且可持续。减氧有效抑制了高压带来的影响,能够应用于高压稠油油藏火驱提高采收率。

  • 图7 高压火驱驱替实验不同位置温度变化曲线

  • Fig.7 Temperature changing curves at different positions in in-situ combustion experiments

  • 表3 燃烧管实验结果

  • Table3 Results of combustion tube experiments

  • 符号解释

  • A——指前因子,min-1

  • E——活化能,kJ/mol;

  • R——气体常数,J/(mol•K),取值为8.314;

  • t——反应时间,s;

  • T——温度,K;

  • ΔSp——热流率峰的部分面积,m2

  • ΔSt ——热流率峰的总面积,m2

  • fα)——反应机理函数;

  • α——转化率;

  • β——升温速率,K/min。

  • 参考文献

    • [1] 霍刚.超稠油及深层稠油开采关键技术研究[D].北京:中国石油大学(北京),2007.HUO Gang.Research on key technologies for super heavy oil and deep heavy oil recovery [D].Beijing:China University of Petroleum(Beijing),2007.

    • [2] 李伟,梁世君,姜均伟,等.吐鲁番坳陷鲁克沁稠油油藏形成及演化特征[J].石油学报,2006,27(6):14-18.LI Wei,LIANG Shijun,JIANG Junwei,et al.Formation and evolution characteristics of Lukeqin heavy oil reservoir in Tur‐ pan depression [J].Acta Petrolei Sinica,2006,27(6):14-18.

    • [3] 黄兆海.深层稠油高盐水驱油藏深部化学调驱技术的应用——以吐哈油田鲁X区块为例[J].石油地质与工程,2021,35(6):110-113.HUANG Zhaohai.Application of deep chemical profile control and flooding technology in deep heavy oil and high salt water drive reservoirs—Taking Lux Block of Tuha Oilfield as an exam‐ ple [J].Petroleum Geology and Engineering,2021,35(6):110-113.

    • [4] 朱永贤,张明敏,张凯,等.鲁克沁深层稠油油藏空气泡沫驱技术实践[J].石油钻采工艺,2022,44(3):348-353.ZHU Yongxian,ZHANG Mingmin,ZHANG Kai,et al.Prac‐ tice of air foam flooding technology in Lukeqin deep heavy oil reservoir [J].Petroleum Drilling and Production Technology,2022,44(3):348-353.

    • [5] 孙永涛,李兆敏,孙玉豹,等.稠油耐高温乳化降黏剂AESO的合成及其性能[J].大庆石油地质与开发,2021,40(3):103-108.SUN Yongtao,LI Zhaomin,SUN Yubao,et al.Synthesis and properties of high-temperature emulsified viscosity reducer AE‐ SO for heavy oil [J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2021,40(3):103-108.

    • [6] 高能,赵健,何嘉.减氧空气吞吐技术在鲁克沁深层稠油油藏的应用[J].新疆石油地质,2020,41(6):748-752.GAO Neng,ZHAO Jian,HE Jia,et al.Application of oxygen reducing air huff and puff technology in Lukeqin deep heavy oil reservoir [J].Xinjiang Petroleum Geology,2020,41(6):748-752.

    • [7] 程柯扬,戚志林,田杰,等.稠油油藏高轮次吞吐储层变化规律——以HJ油田为例[J].油气藏评价与开发,2022,12(5):816-824.CHENG Keyang,QI Zhilin,TIAN Jie,et al.Change law of heavy oil reservoir with high cyclic huff and puff—taking HJ oil‐ field as an example [J].Reservoir Evaluation and Development,2022,12(5):816-824.

    • [8] 木合塔尔,高成国,袁士宝,等.红浅1井区注蒸汽后火烧油层生产特征分析[J].大庆石油地质与开发,2021,40(4):73-79.MUHETAR,GAO Chengguo,YUAN Shibao,et al.Analysis of production characteristics of burning oil layer after steam in‐ jection in Hongqian 1 well block [J].Petroleum Geology & Oil‐ field Development in Daqing,2021,40(4):73-79.

    • [9] 荆文波,张娜,孙欣华,等.鲁克沁油田深层稠油注水开发技术 [J].新疆石油地质,2013,34(2):199-201.JING Wenbo,ZHANG Na,SUN Xinhua,et al.Water injection development technology for deep heavy oil in Lukeqin Oilfield [J].Xinjiang Petroleum Geology,2013,34(2):199-201.

    • [10] 关文龙,席长丰,陈亚平,等.稠油油藏注蒸汽开发后期转火驱技术[J].石油勘探与开发,2011,38(4):452-462.GUAN Wenlong,XI Changfeng,CHEN Yaping,et al.Fireflooding technologies in post-steam-injected heavy oil reservoirs [J].Petroleum Exploration and Development,2011,38(4):452-462.

    • [11] 袁士宝,蒋海岩,王丽,等.稠油油藏蒸汽吞吐后转火烧油层适应性研究[J].新疆石油地质,2013,34(3):303-306.YUAN Shibao,JIANG Haiyan,WANG Li,et al.Research on adaptability to in-situ combustion in heavy oil reservoir after steam huff and puff [J].Xinjiang Petroleum Geology,2013,34(3):303-306.

    • [12] 闫红星,杨俊印,姜文瑞,等.芳烃化合物在稠油火驱室内实验中的指示作用[J].石油实验地质,2022,44(5):914-921.YAN Hongxing,YANG Junyin,JIANG Wenrui,et al.The in‐ dicative role of aromatic compounds in heavy oil fire flooding laboratory experiment [J].Petroleum Geology & Experimental,2022,44(5):914-921.

    • [13] 杨勇.胜利油田稠油开发技术新进展及发展方向[J].油气地质与采收率,2021,28(6):1-11.YANG Yong.New progress and development direction of heavy oil development technology in Shengli Oilfield [J].Petroleum Geology and Recovery Efficiency,2021,28(6):1-11.

    • [14] 姜毅,喻高明,辛显康,等.辽河油田高3618区块火线预测及注采参数优化[J].新疆石油地质,2021,42(4):462-468.JIANG Yi,YU Gaoming,XIN Xiankang,et al.Fire front pre‐ diction and injection-production parameter optimization for Block Gao 3618,Liaohe oilfield [J].Xinjiang Petroleum Geolo‐ gy,2021,42(4):462-468.

    • [15] 周立国.辽河油田稠油火烧工艺技术研究[D].大庆:东北石油大学,2014.ZHOU Liguo.A study on the research of the technology of heavy oil ISU in Liaohe oilfield [D].Daqing:Northeast Petro‐ leum University,2014.

    • [16] 姜野.曙光采油厂杜66断区块空气注气开采安全风险分析[D].青岛:中国石油大学(华东),2017.JIANG Ye.Risk analysis of production based on air-injection in block Du 66 in Shuguang oilfield [D].Qingdao:China Universi‐ ty of Petroleum(East China),2017.

    • [17] 蔡文斌,李友平,李淑兰,等.胜利油田火烧油层现场试验[J].特种油气藏,2007,62(3):88-90.CAI Wenbin,LI Youping,LI Shulan,et al.Field test of burning oil layer in Shengli Oilfield [J].Special Oil and Gas Reservoirs,2007,62(3):88-90.

    • [18] PANAIT-PATICA A,SERBAN D,ILIE N,et al.Suplacu de Barcau Field—A case history of a successful in-situ combustion exploitation [C]//Vienna:SPE Europec/EAGE Annual Confer‐ ence and Exhibition,2006.

    • [19] DAYAL H S,PANDEY V,MITRA S,et al.Monitoring of in-si‐ tu combustion process in southern part of Balol field through analysis of produced fluids [C]//Vienna:SPE Heavy Oil Confer‐ ence and Exhibition,2011.

    • [20] 牛菊叶,沙帆,冯娟.理829井区注空气原油氧化速率影响因素的研究[J].当代化工,2019,48(9):1 926-1 929.NIU Juye,SHA Fan,FENG Juan,et al.Study on influencing factors of oxidation rate of crude oil in Li829 Well [J].Contem‐ porary Chemical Industry,2019,48(9):1 926-1 929.

    • [21] 王伟伟.压力对轻质原油氧化动力学参数的影响[J].断块油气田,2020,27(1):109-112.WANG Weiwei.Influence of pressure on oxidation kinetics pa‐ rameters of light crude oil [J].Fault-Block Oil and Gas Field,2020,27(1):109-112.

    • [22] 张庆轩,曲雪丽.压力对塔里木原油四组分热解性能的影响[J].应用化学,2017,34(10):1 202-1 208.ZHANG Qingxuan,QU Xueli.Effect of pressure on pyrolysis characteristics of four-components of Tarim crude oil [J].Chi‐ nese Journal of Applied Chemistry,2017,34(10):1 202-1 208.

    • [23] 龙安林,祁青山,陈小龙,等.减氧空气辅助重力驱全直径岩心物理模拟——以青海油田尕斯库勒E13油藏为例[J].新疆石油地质,2021,42(5):565-571.LONG Anlin,QI Qingshan,CHEN Xiaolong,et al.Full-diame‐ ter physical simulation of oxygen-reducing air assisted gravity drainage:a case study of Gasikule E13 reservoir in Qinghai oil‐ field [J].Xinjiang Petroleum Geology,2021,42(5):565-571.

    • [24] 师耀利,吕世瑶,施小荣,等.火驱油藏岩矿与原油演化特征[J].新疆石油地质,2018,39(6):696-700.SHI Yaoli,LÜ Shiyao,SHI Xiaorong,et al.Evolution of rocks and crude oil in reservoirs during fire flooding [J].Xinjiang Pe‐ troleum Geology,2018,39(6):696-700.

    • [25] 李秋,何厚锋,关文龙,等.稠油油藏火驱驱替特征实验研究[J].油气地质与采收率,2021,28(6):79-86.LI Qiu,HE Houfeng,GUAN Wenlong,et al.Experimental study on the characteristics of fire drive displacement in heavy oil reservoirs [J].Petroleum Geology and Recovery Efficiency,2021,28(6):79-86.

    • [26] 蒋海岩,李晓倩,高成国,等.火驱阶段特征对比与分析[J].油气藏评价与开发,2020,10(5):114-119.JIANG Haiyan,LI Xiaoqian,GAO Chengguo,et al.Compari‐ son and analysis of stage feature of in situ combustion [J].Reser‐ voir Evaluation and Development,2020,10(5):114-119.

    • [27] 关文龙,宫宇宁,唐君实,等.多层油藏火驱开发模式探讨[J].特种油气藏,2020,27(6):60-66.GUAN Wenlong,GONG Yuning,TANG Junshi,et al.Discus‐ sion on the fire drive development model of multi-layer reser‐ voirs [J].Special Oil and Gas Reservoirs,2020,27(6):60-66.

    • [28] 童钧耕.工程热力学[M].北京:高等教育出版社,2007.TONG Jungeng.Engineering thermodynamics [M].Beijing:Higher Education Press,2007.

    • [29] 关文龙,马德胜,梁金中,等.火驱储层区带特征实验研究[J].石油学报,2010,31(1):100-104,109.GUAN Wenlong,MA Desheng,LIANG Jinzhong,et al.Exper‐ imental research of thermodynamic characteristics of in-situ com‐ bustion zones in heavy oil reservoir [J].Acta Petrolei Sinica,2010,31(1):100-104,109.

    • [30] 李金涛.火烧油层过程中原油的热解动力学特征研究[D].青岛:中国石油大学(华东),2015.LI Jintao.Study on pyrolysis kinetics characteristics of crude oil in-situ combustion process [D].Qingdao:China University of Petroleum(East China),2015.

    • [31] 江航,昝成,宋新民,等.高压近绝热量热法获取原油氧化动力学参数[J].石油学报,2014,35(4):745-748.JIANG Hang,ZAN Cheng,SONG Xinmin,et al.Determina‐ tion of oxidation kinetics parameters for crude oil using high pressure and near adiabatic calorimetry method [J].Acta Petrolei Sinica,2014,35(4):745-748.

    • [32] 廖广志,王红庄,王正茂,等.注空气全温度域原油氧化反应特征及开发方式[J].石油勘探与开发,2020,47(2):334-340.LIAO Guangzhi,WANG Hongzhuang,WANG Zhengmao,et al.Oil oxidation in the whole temperature regions during oil res‐ ervoir air injection and development methods [J].Petroleum Ex‐ ploration and Development,2020,47(2):334-340.

    • [33] 袁成东,蒲万芬,郭征,等.氧气还原空气驱的适用范围和含氧量极限[J].石油勘探与开发,2020,47(2):334-340.YUAN Chengdong,PU Wanfen,GUO Zheng,et al.Applicable scope of oxygen-reduced air flooding and the limit of oxygen content [J].Petroleum Exploration and Development,2020,47(2):334-340.

  • 参考文献

    • [1] 霍刚.超稠油及深层稠油开采关键技术研究[D].北京:中国石油大学(北京),2007.HUO Gang.Research on key technologies for super heavy oil and deep heavy oil recovery [D].Beijing:China University of Petroleum(Beijing),2007.

    • [2] 李伟,梁世君,姜均伟,等.吐鲁番坳陷鲁克沁稠油油藏形成及演化特征[J].石油学报,2006,27(6):14-18.LI Wei,LIANG Shijun,JIANG Junwei,et al.Formation and evolution characteristics of Lukeqin heavy oil reservoir in Tur‐ pan depression [J].Acta Petrolei Sinica,2006,27(6):14-18.

    • [3] 黄兆海.深层稠油高盐水驱油藏深部化学调驱技术的应用——以吐哈油田鲁X区块为例[J].石油地质与工程,2021,35(6):110-113.HUANG Zhaohai.Application of deep chemical profile control and flooding technology in deep heavy oil and high salt water drive reservoirs—Taking Lux Block of Tuha Oilfield as an exam‐ ple [J].Petroleum Geology and Engineering,2021,35(6):110-113.

    • [4] 朱永贤,张明敏,张凯,等.鲁克沁深层稠油油藏空气泡沫驱技术实践[J].石油钻采工艺,2022,44(3):348-353.ZHU Yongxian,ZHANG Mingmin,ZHANG Kai,et al.Prac‐ tice of air foam flooding technology in Lukeqin deep heavy oil reservoir [J].Petroleum Drilling and Production Technology,2022,44(3):348-353.

    • [5] 孙永涛,李兆敏,孙玉豹,等.稠油耐高温乳化降黏剂AESO的合成及其性能[J].大庆石油地质与开发,2021,40(3):103-108.SUN Yongtao,LI Zhaomin,SUN Yubao,et al.Synthesis and properties of high-temperature emulsified viscosity reducer AE‐ SO for heavy oil [J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2021,40(3):103-108.

    • [6] 高能,赵健,何嘉.减氧空气吞吐技术在鲁克沁深层稠油油藏的应用[J].新疆石油地质,2020,41(6):748-752.GAO Neng,ZHAO Jian,HE Jia,et al.Application of oxygen reducing air huff and puff technology in Lukeqin deep heavy oil reservoir [J].Xinjiang Petroleum Geology,2020,41(6):748-752.

    • [7] 程柯扬,戚志林,田杰,等.稠油油藏高轮次吞吐储层变化规律——以HJ油田为例[J].油气藏评价与开发,2022,12(5):816-824.CHENG Keyang,QI Zhilin,TIAN Jie,et al.Change law of heavy oil reservoir with high cyclic huff and puff—taking HJ oil‐ field as an example [J].Reservoir Evaluation and Development,2022,12(5):816-824.

    • [8] 木合塔尔,高成国,袁士宝,等.红浅1井区注蒸汽后火烧油层生产特征分析[J].大庆石油地质与开发,2021,40(4):73-79.MUHETAR,GAO Chengguo,YUAN Shibao,et al.Analysis of production characteristics of burning oil layer after steam in‐ jection in Hongqian 1 well block [J].Petroleum Geology & Oil‐ field Development in Daqing,2021,40(4):73-79.

    • [9] 荆文波,张娜,孙欣华,等.鲁克沁油田深层稠油注水开发技术 [J].新疆石油地质,2013,34(2):199-201.JING Wenbo,ZHANG Na,SUN Xinhua,et al.Water injection development technology for deep heavy oil in Lukeqin Oilfield [J].Xinjiang Petroleum Geology,2013,34(2):199-201.

    • [10] 关文龙,席长丰,陈亚平,等.稠油油藏注蒸汽开发后期转火驱技术[J].石油勘探与开发,2011,38(4):452-462.GUAN Wenlong,XI Changfeng,CHEN Yaping,et al.Fireflooding technologies in post-steam-injected heavy oil reservoirs [J].Petroleum Exploration and Development,2011,38(4):452-462.

    • [11] 袁士宝,蒋海岩,王丽,等.稠油油藏蒸汽吞吐后转火烧油层适应性研究[J].新疆石油地质,2013,34(3):303-306.YUAN Shibao,JIANG Haiyan,WANG Li,et al.Research on adaptability to in-situ combustion in heavy oil reservoir after steam huff and puff [J].Xinjiang Petroleum Geology,2013,34(3):303-306.

    • [12] 闫红星,杨俊印,姜文瑞,等.芳烃化合物在稠油火驱室内实验中的指示作用[J].石油实验地质,2022,44(5):914-921.YAN Hongxing,YANG Junyin,JIANG Wenrui,et al.The in‐ dicative role of aromatic compounds in heavy oil fire flooding laboratory experiment [J].Petroleum Geology & Experimental,2022,44(5):914-921.

    • [13] 杨勇.胜利油田稠油开发技术新进展及发展方向[J].油气地质与采收率,2021,28(6):1-11.YANG Yong.New progress and development direction of heavy oil development technology in Shengli Oilfield [J].Petroleum Geology and Recovery Efficiency,2021,28(6):1-11.

    • [14] 姜毅,喻高明,辛显康,等.辽河油田高3618区块火线预测及注采参数优化[J].新疆石油地质,2021,42(4):462-468.JIANG Yi,YU Gaoming,XIN Xiankang,et al.Fire front pre‐ diction and injection-production parameter optimization for Block Gao 3618,Liaohe oilfield [J].Xinjiang Petroleum Geolo‐ gy,2021,42(4):462-468.

    • [15] 周立国.辽河油田稠油火烧工艺技术研究[D].大庆:东北石油大学,2014.ZHOU Liguo.A study on the research of the technology of heavy oil ISU in Liaohe oilfield [D].Daqing:Northeast Petro‐ leum University,2014.

    • [16] 姜野.曙光采油厂杜66断区块空气注气开采安全风险分析[D].青岛:中国石油大学(华东),2017.JIANG Ye.Risk analysis of production based on air-injection in block Du 66 in Shuguang oilfield [D].Qingdao:China Universi‐ ty of Petroleum(East China),2017.

    • [17] 蔡文斌,李友平,李淑兰,等.胜利油田火烧油层现场试验[J].特种油气藏,2007,62(3):88-90.CAI Wenbin,LI Youping,LI Shulan,et al.Field test of burning oil layer in Shengli Oilfield [J].Special Oil and Gas Reservoirs,2007,62(3):88-90.

    • [18] PANAIT-PATICA A,SERBAN D,ILIE N,et al.Suplacu de Barcau Field—A case history of a successful in-situ combustion exploitation [C]//Vienna:SPE Europec/EAGE Annual Confer‐ ence and Exhibition,2006.

    • [19] DAYAL H S,PANDEY V,MITRA S,et al.Monitoring of in-si‐ tu combustion process in southern part of Balol field through analysis of produced fluids [C]//Vienna:SPE Heavy Oil Confer‐ ence and Exhibition,2011.

    • [20] 牛菊叶,沙帆,冯娟.理829井区注空气原油氧化速率影响因素的研究[J].当代化工,2019,48(9):1 926-1 929.NIU Juye,SHA Fan,FENG Juan,et al.Study on influencing factors of oxidation rate of crude oil in Li829 Well [J].Contem‐ porary Chemical Industry,2019,48(9):1 926-1 929.

    • [21] 王伟伟.压力对轻质原油氧化动力学参数的影响[J].断块油气田,2020,27(1):109-112.WANG Weiwei.Influence of pressure on oxidation kinetics pa‐ rameters of light crude oil [J].Fault-Block Oil and Gas Field,2020,27(1):109-112.

    • [22] 张庆轩,曲雪丽.压力对塔里木原油四组分热解性能的影响[J].应用化学,2017,34(10):1 202-1 208.ZHANG Qingxuan,QU Xueli.Effect of pressure on pyrolysis characteristics of four-components of Tarim crude oil [J].Chi‐ nese Journal of Applied Chemistry,2017,34(10):1 202-1 208.

    • [23] 龙安林,祁青山,陈小龙,等.减氧空气辅助重力驱全直径岩心物理模拟——以青海油田尕斯库勒E13油藏为例[J].新疆石油地质,2021,42(5):565-571.LONG Anlin,QI Qingshan,CHEN Xiaolong,et al.Full-diame‐ ter physical simulation of oxygen-reducing air assisted gravity drainage:a case study of Gasikule E13 reservoir in Qinghai oil‐ field [J].Xinjiang Petroleum Geology,2021,42(5):565-571.

    • [24] 师耀利,吕世瑶,施小荣,等.火驱油藏岩矿与原油演化特征[J].新疆石油地质,2018,39(6):696-700.SHI Yaoli,LÜ Shiyao,SHI Xiaorong,et al.Evolution of rocks and crude oil in reservoirs during fire flooding [J].Xinjiang Pe‐ troleum Geology,2018,39(6):696-700.

    • [25] 李秋,何厚锋,关文龙,等.稠油油藏火驱驱替特征实验研究[J].油气地质与采收率,2021,28(6):79-86.LI Qiu,HE Houfeng,GUAN Wenlong,et al.Experimental study on the characteristics of fire drive displacement in heavy oil reservoirs [J].Petroleum Geology and Recovery Efficiency,2021,28(6):79-86.

    • [26] 蒋海岩,李晓倩,高成国,等.火驱阶段特征对比与分析[J].油气藏评价与开发,2020,10(5):114-119.JIANG Haiyan,LI Xiaoqian,GAO Chengguo,et al.Compari‐ son and analysis of stage feature of in situ combustion [J].Reser‐ voir Evaluation and Development,2020,10(5):114-119.

    • [27] 关文龙,宫宇宁,唐君实,等.多层油藏火驱开发模式探讨[J].特种油气藏,2020,27(6):60-66.GUAN Wenlong,GONG Yuning,TANG Junshi,et al.Discus‐ sion on the fire drive development model of multi-layer reser‐ voirs [J].Special Oil and Gas Reservoirs,2020,27(6):60-66.

    • [28] 童钧耕.工程热力学[M].北京:高等教育出版社,2007.TONG Jungeng.Engineering thermodynamics [M].Beijing:Higher Education Press,2007.

    • [29] 关文龙,马德胜,梁金中,等.火驱储层区带特征实验研究[J].石油学报,2010,31(1):100-104,109.GUAN Wenlong,MA Desheng,LIANG Jinzhong,et al.Exper‐ imental research of thermodynamic characteristics of in-situ com‐ bustion zones in heavy oil reservoir [J].Acta Petrolei Sinica,2010,31(1):100-104,109.

    • [30] 李金涛.火烧油层过程中原油的热解动力学特征研究[D].青岛:中国石油大学(华东),2015.LI Jintao.Study on pyrolysis kinetics characteristics of crude oil in-situ combustion process [D].Qingdao:China University of Petroleum(East China),2015.

    • [31] 江航,昝成,宋新民,等.高压近绝热量热法获取原油氧化动力学参数[J].石油学报,2014,35(4):745-748.JIANG Hang,ZAN Cheng,SONG Xinmin,et al.Determina‐ tion of oxidation kinetics parameters for crude oil using high pressure and near adiabatic calorimetry method [J].Acta Petrolei Sinica,2014,35(4):745-748.

    • [32] 廖广志,王红庄,王正茂,等.注空气全温度域原油氧化反应特征及开发方式[J].石油勘探与开发,2020,47(2):334-340.LIAO Guangzhi,WANG Hongzhuang,WANG Zhengmao,et al.Oil oxidation in the whole temperature regions during oil res‐ ervoir air injection and development methods [J].Petroleum Ex‐ ploration and Development,2020,47(2):334-340.

    • [33] 袁成东,蒲万芬,郭征,等.氧气还原空气驱的适用范围和含氧量极限[J].石油勘探与开发,2020,47(2):334-340.YUAN Chengdong,PU Wanfen,GUO Zheng,et al.Applicable scope of oxygen-reduced air flooding and the limit of oxygen content [J].Petroleum Exploration and Development,2020,47(2):334-340.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告