-
地下储气库对天然气安全供应至关重要,在保障民用及工业用气、应对极端天气和突发事件以及战略储备中发挥着不可替代的作用。中国地下储气库历经 20 多年发展,形成调峰能力超过 100×108 Nm3 规模,是国家能源安全保障的重要组成部分[1-2]。气井产能评价不仅是气藏动态描述的核心,也是储气库注采气能力研究的重点[3-6],直接关系到井网部署、地面管网建设、开发指标预测、储气库达容达产等一系列技术问题,是衡量气田开发方案及储气库注采气方案的关键。
-
目前,针对气藏开发已经形成了比较完善的产能研究方法,建立了回压试井[7-8]、等时试井[9] 及修正等时试井[10] 方法;同时在产能试井资料整理方法上建立了指数产能方程[8]、二项式产能方程[11] 和一点法产能方程[12-15],被广泛应用于油气藏型储气库工作气量核定及储层渗流规律研究[16-18] 等方面。自上述产能方程提出后,由于气藏物性差异及气井井型的不同[19-26] 和考虑储层的非达西渗流效应及应力敏感性问题[27-29],研究重点主要是修正产能方程系数,从而适应不同气藏开发的需要。
-
油气藏型储气库的运行与气藏开发方式存在较大差别,与气藏单向降压开发方式不同,储气库是多周期注采运行,通常是 1 a 内 1~2 个注采周期,在 1 个周期内地层压力变化幅度可以达到 10~20 MPa。在注采运行方面,气藏开发稳产、低速开发和储气库周期性注采存在较大差别。通常情况下,储气库注采速度是常规天然气采气速度的 20~30倍[2]。与气田开发采气井距较大不同,储气库多采用小井距,气井注采运行必然受到周围临井生产活动的影响,储气库气井短期内的产能试井测试不能反映注气周期或采气周期整个阶段的产能变化特征。同时在储气库注气、采气过程中地层压力大幅度变化,储层应力敏感性集中作用于注采周期内,气井的产能试井结果往往偏大,给储气库的注采气能力研究带来不利影响,无法准确描述气井的实际产能。产能研究无论对于气藏还是储气库而言都是非常重要的工作,是认识储层注采气能力的主要技术手段。目前关于储气库注采气能力研究的主要方法均是沿用气藏开发的思路,须重视常规的产能试井研究方法对储气库高强度注采要求的适应性。
-
在常规试井方法中,通过获得不同生产制度下稳定的井底流压和地层压力的测试方式,与储气库注采生产方式存在明显差异,常规气藏产能方程是针对气藏开发理论建立的。因此,分析储气库注采生产过程中地层压力、井底流压和注采气量之间的关系,研究储气库气井的注采特征和产能变化规律对于储气库渗流能力认识、注采方案编制具有重要的现实意义和指导意义。
-
笔者针对油气藏型储气库的产能计算方法开展相关研究,分析地层压力、井底流压和注采气量之间的关系,提出新的储气库产能方程,进而论述产能方程及参数的物理意义,并在单井产能方程的基础上,建立注采单元或储气库在多井同时注采生产情况下的总产能方程。为验证方程的准确性,以 X 储气库某周期 4 口压力监测井的注采气生产数据为例,分别应用新产能方程和二项式产能方程对实测数据进行分析、处理和对比,新建立的储气库产能方程可以为储气库高速注采条件下的产能变化特征研究提供理论基础。
-
1 油气藏型储气库产能方程
-
1.1 单井产能方程
-
气藏开发的二项式产能方程为:
-
其中:
-
(1)式主要应用于气井或开发单元稳产条件下的产能评价。将储层及气体属性参数代入(2)式和 (3)式,得到系数 A 和 B;在气藏开发或储气库气井注采过程中,A 和 B 主要是通过产能试井数据回归方法获得。
-
将(1)式两侧同时除以q2,得到:
-
从(4)式可以看出,油气藏型储气库单井在高速注采条件下的产量、井底流压与地层压力的关系满足幂函数关系。在一般情况下,油气藏型储气库单井产能方程为:
-
对(5)式两边同时取对数,得:
-
分析(6)式,得 和 lnq 在双对数坐标系中呈直线关系,且直线的斜率为n + 2。根据生产井在2种不同工作制度下的关系得到:
-
将(5)式中得到的 n 值代入(6)式,即可得到产能方程常系数C值。
-
为分析建立模型的实际应用意义,以为纵坐标,q为横坐标;n分别取值为-2,-1.5,-1,0,1;C 取值为 1,流量取值为(0,1],得到不同 n值的单井产能曲线(图1)。
-
图1 不同n值的单井产能曲线
-
Fig.1 Well productivity curves with different n values
-
由图1可以看出,当n<0时,随着单井产量的增加,消耗的生产压差逐渐减小;当n>0时,随着单井产量的增加,消耗的生产压差逐渐增大。在相同单井产量的情况下,随着 n 值的减小,紊流现象越严重。当 n=0 时,气井流入符合高速非达西渗流规律;当 n=-1时,单井产能曲线与横坐标轴的夹角为 45°,表示气井流动符合达西渗流规律;当 n<-1 时,气井注采气能力较弱,井底存在积液,且随着n值的减小,井底积液越严重;当 n≤-2时,在一定的地层压差条件下,气井无产量,存在注不进或采不出的现象。随着单井产量的增加,井底积液被带出,或在增加注气压力时井底积液被重新驱替至地层中,井底解堵,渗透能力增强。
-
因此,在井底没有污染情况下,n取值为[-1,0],流动情况介于层流和紊流之间,且笔者新建立的产能方程综合了指数产能方程。
-
1.2 单元产能方程
-
根据单井二项式产能方程推广到单元产能方程,在一个连通的注采单元内,单元产能方程与单井产能方程具有相同的形式。通过单井产能方程,应用单井产量、控制体积和渗流系数等参数加权的方式得到整个储气库产能方程为:
-
其中:
-
2 储气库产能计算流程
-
针对储气库注采井、储气库或注采单元使用新建立的油气藏型储气库产能方程计算的流程为:① 使用储气库或注采单元的库容方程,结合压力监测井的地层压力资料或生产井的流、静压测试资料等,综合分析获得生产阶段在不同生产时间的平均地层压力。②获取单井的井底流压。对于储气库或注采单元,使用多井平均的方法得到储气库或注采单元的平均井底流压。③统计生产阶段在不同生产时间的单井日产气量、储气库或注采单元的平均单井日产气量。④根据(5)式,在直角坐标系中以 q为横坐标,以为纵坐标,绘制产能变化曲线。⑤应用幂函数回归④中的数据点,得到产能方程系数 C 和 n。 ⑥应用(9)—(13)式,计算相应参数。⑦根据⑥中得到的参数,计算储气库或注采单元的数据和回归曲线。⑧应用⑦的结果,基于单井或区块注采单元的产能分析结果,预测不同地层压力下的注采气能力。
-
3 油气藏型储气库产能计算新方法验证及应用
-
X储气库是利用枯竭气田改建而成的油气藏型储气库,担负着中国中东部地区天然气市场调峰、应急供气、管道平稳运行等重要战略任务。X 储气库位于东濮凹陷中央隆起带北部文留构造高部位,总体为基岩隆起背景上继承发育的被断层复杂化的背斜。含气层位为古近系沙河街组沙四段,埋藏深度为 2 750~3 120 m,地层厚度为 300~500 m,砂体厚度大,平面发育比较稳定,内部连通性好;物性以低孔、低渗透为主,储层孔隙度为 8.86%~13.86%,渗透率为 0.27~17.12 mD。X 储气库原始地层压力为 38.6 MPa,设计库容为 103.65×108 Nm3,工作气量为 40.02×108 Nm3,运行压力为 20.92~38.6 MPa,地面设备设计最大日注气能力为 1 800×104 Nm3 /d,最大日采气能力为 3 000×104 Nm3 /d。X 储气库 4口注采生产井安装井下永置式压力计,实时监测井底压力,从建库运行至目前,经历了垫气期和 2 个完整的运行周期。为进一步验证新建立的产能方程即(5)式的准确性,利用4口压力监测井在第2周期的注采数据,与其他方程进行对比分析。
-
研究区4口压力监测井实测数据的二项式产能方程的拟合结果(图2)表明,二项式产能方程处理地层压力、井底流压和产量数据得到的数据点散乱分布于坐标系中,因此二项式产能方程不能准确反映产能的变化规律。
-
应用新建立的油气藏型储气库产能方程对研究区第 2周期 4口压力监测井在注气阶段和采气阶段的地层压力、井底流压及产量数据进行处理,并应用 (1)式对产能数据进行拟合。结果(图3)表明,储气库气井的,即单位紊流产量需消耗的生产压差随着产量的增加而降低,且满足幂函数关系式。
-
X储气库4口压力监测井储层物性、在第2周期注气和采气阶段的生产数据以及应用新建立的产能方程对实测数据拟合得到的参数(表1)显示,受储层物性差异、初期地层压力差异和井底积液程度的综合影响,同一口井在注气和采气阶段的n值不同,且不同井的n值亦不同。当n<-1时,地层中没有出现紊流现象,主要表现为低速渗流特征,可能的原因是气井在注采初期或采气初期井底均存在一定程度的积液,在地层中表现为气水两相渗流。
-
图2 X储气库压力监测井实测数据的二项式产能方程拟合结果对比
-
Fig.2 Comparison of fitted results of measured data from pressure monitoring wells in X gas storage by binomial productivity equation
-
图3 X储气库压力监测井注气和采气阶段实测数据的新建立产能方程拟合结果对比
-
Fig.3 Comparison of fitted results of measured data from pressure monitoring wells in X gas storage by newly established productivity equation during gas injection and production stages
-
为验证新建立的产能方程对注采单元或储气库的注气和采气阶段产能描述同样具有适用性,以 X 储气库 4 口压力监测井作为 1 个注采单元,采用 (9)—(13)式分别计算单元的平均地层压力、井底流压和日注采气量,利用(1)式处理实测数据。应用表1中各压力监测井在注气和采气阶段的产能方程系数,计算注采单元的产能方程系数。对比实测数据及拟合结果和理论计算结果(图4)发现,注采单元的平均地层压力、平均井底流压和平均单井产量之间的关系,即呈幂函数关系,且随着产量的增加,生产压力的平方差逐渐降低。不论是采气阶段还是注气阶段,实测数据的拟合结果与理论计算结果均表现出较好的一致性,表明新建立的油气藏型储气库产能方程具有较好的适用性。
-
4 结论
-
在高速注采条件下,基于二项式产能方程建立油气藏型储气库产能计算新方法。与常规二项式产能方程和指数产能方程不同,新建立产能方程中的生产压差与日产气量满足幂函数关系。油气藏型储气库产能方程在双对数坐标中呈线性关系,产能指数反映生产井的生产状况和地层的渗流供给能力。当 n≥-1 时,生产表现为层流,且随着 n 值的增大,高速非达西渗流现象显著影响生产;当 n<-1时,井底污染和积液将影响气井的生产。分析X储气库4口压力监测井在第2周期注采阶段的产能变化规律呈幂函数关系,验证了新建立产能方程的适用性。通过对 X 储气库压力监测井的产能变化分析,认为储气库生产过程中普遍存在井底积液现象,随着注采生产的进行,井底积液对注采生产的影响逐渐降低。未来仍需针对新建立的油气藏型储气库产能方程中模型参数的物理意义开展相关研究工作。
-
图4 X储气库4口压力监测井采气和注气阶段实测数据及拟合结果与理论计算结果对比
-
Fig.4 Comparison of measured data and fitted results with theoretical calculation results at gas production and injection stages of four pressure monitoring wells in X gas storage
-
符号解释
-
A——层流系数;
-
B——紊流系数;
-
C——单位产量下的压力差,常系数;
-
Cr,nr ——单元产能方程系数;
-
Ci,ni——第i口气井产能方程系数;
-
h——地层厚度,m;
-
i——气井编号;
-
K——地层渗透率,mD;
-
n——单井生产渗流评价指数,C和n综合反映井底生产状况及地层供给能力;
-
N——气井总数,口;
-
pi,wf ——第i口井的井底流压,MPa;
-
pr ——地层压力,MPa;
-
——平均地层压力,MPa;
-
pr,1——生产井在产量为q1时的地层压力,MPa;
-
pr,2——生产井在产量为q2时的地层压力,MPa;
-
pr,i——第i口气井的地层压力,MPa;
-
——单位紊流产量需消耗的生产压差,MPa2 / (104 Nm3 /d)2;
-
psc——标准状况下的压力,MPa;
-
pwf ——井底流压,MPa;
-
——平均井底流压,MPa;
-
pwf,1——生产井在产量为q1时的井底流压,MPa;
-
pwf,2——生产井在产量为q2时的井底流压,MPa;
-
Δp——生产压差,MPa;
-
q——气井的日产气量,104 Nm3 /d;
-
q1,q2——生产井的日产气量,104 Nm3 /d;
-
qi ——第i口气井的日产气量,Nm3 /d;
-
——第i口气井的平均日产气量,Nm3 /d;
-
——单井平均日产气量,Nm3 /d;
-
re——井控半径,m;
-
rw——井筒半径,m;
-
S——表皮因子;
-
Tsc——标准状况下的温度,K;
-
Tw——地层温度,K;
-
Vi ——第i口气井的控制体积,104 Nm3;
-
——气体压缩因子;
-
——气体黏度,mPa·s。
-
参考文献
-
[1] 丁国生,李春,王皆明,等.中国地下储气库现状及技术发展方向[J].天然气工业,2015,35(17):107-112.DING Guosheng,LI Chun,WANG Jieming,et al.The status quo and technical development direction of underground gas storages in China[J].Natural Gas Industry,2015,35(17):107-112.
-
[2] 丁国生,魏欢.中国地下储气库建设20年回顾与展望[J].油气储运,2020,39(1):25-31.DING Guosheng,WEI Huan.Review on 20 years’UGS con‐ struction in China and the prospect[J].Oil & Gas Storage and Transportation,2020,39(1):25-31.
-
[3] 高涛.底水火山岩储气库库容和工作气量主控影响因素定量评价[J].特种油气藏,2021,28(3):87-93.GAO Tao.Quantitative evaluation of main controlling factors of capacity and working gas volume of volcanic gas storage with bottom water[J].Special Oil & Gas Reservoirs,2021,28(3):87-93.
-
[4] 郑少婧,郑得文,孙军昌,等.气藏型储气库温度敏感性及其对气井注采能力的影响[J].石油实验地质,2022,44(2):365-372.ZHENG Shaojing,ZHENG Dewen,SUN Junchang,et al.Tem‐ perature-sensitivity of underground gas reservoir storage and its effect on well deliverability[J].Petroleum Geology & Experi‐ ment,2022,44(2):365-372.
-
[5] 游利军,孟森,康毅力,等.气藏型储气库储层损害机理与保护技术对策[J].油气藏评价与开发,2021,11(3):395-403.YOU Lijun,MENG Sen,KANG Yili,et al.Formation damage mechanism and protection measures for gas field storage[J].Res‐ ervoir Evaluation and Development,2021,11(3):395-403.
-
[6] 陈显学.底水气藏型储气库注采渗流规律实验[J].特种油气藏,2022,29(4):101-106.CHEN Xianxue.Test on the seepage pattern in injection and pro‐ duction of gas storage in bottom-water gas reservoir[J].Special Oil & Gas Reservoirs,2022,29(4):101-106.
-
[7] PIERCE H R,RAWLINS E L.The Study of a Fundamental basis for controlling and gauging natural-gas wells:Part 1:Computing the pressure at the sand in A Gas Well[M].Washington DC:De‐ partment of the Interior,Bureau of Mines,1929.
-
[8] RAWLINS E L,SCHELLHARDT M A.Back-pressure data on natural gas wells and their application to production practices[M].Baltimore City:Lord Baltimore Press,1935.
-
[9] CULLENDER M H.The isochronal performance method of deter‐ mining the flow characteristics of gas wells[J].Transactions of the AIME,1955,204(1):137-142.
-
[10] KATZ D L,CORNELL D,KOBAYASHI R,et al.Handbook of natural gas engineering[M].New York:McGraw-Hill Book Com‐ pany,1959.
-
[11] 陈元千.确定气井绝对无阻流量的简单方法[J].天然气工业,1987,7(1):59-63.CHEN Yuanqian.A simple method for determining absolute open flow rate of gas well[J].Natural Gas Industry,1987,7(1):59-63.
-
[12] 何光怀,许进进,赖枫鹏,等.一点法产能评价的改进方法[J].油气井测试,2005,14(5):1-2,4.HE Guanghuai,XU Jinjin,LAI Fengpeng,et al.The modified method for potential test evaluation with single-point [J].Well Testing,2005,14(5):1-2,4.
-
[13] 胥洪成,陈建军,万玉金,等.一点法产能方程在气藏开发中的应用[J].石油天然气学报,2007,29(3):454-456.XU Hongcheng,CHEN Jianjun,WAN Yujin,et al.Application of single point productivity equation in gas reservoir development [J].Journal of Oil and Gas Technology,2007,29(3):454-456.
-
[14] 庄惠农.气藏动态描述和试井[M].北京:石油工业出版社,2014:15-35.ZHUANG Huinong.Development dynamic description and well testing of gas reservoir[M].Beijing:Petroleum Industry Press,2014:15-35.
-
[15] 钟家峻,唐海,吕栋梁,等.苏里格气田水平井一点法产能公式研究[J].岩性油气藏,2013,25(2):107-111.ZHONG Jiajun,TANG Hai,LÜ Dongliang,et al.Study on a sin‐ gle point deliverability formula of horizontal wells in Sulige Gas Field[J].Lithologic Reservoirs,2013,25(2):107-111.
-
[16] 苏玉亮,蔡明玉,孟凡坤,等.低渗透油藏 CO2驱试井解释方法 [J].油气地质与采收率,2020,27(1):113-119.SU Yuliang,CAI Mingyu,MENG Fankun,et al.Well testing in‐ terpretation method for CO2 flooding in low permeability oil res‐ ervoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):113-119.
-
[17] 徐中一,方思冬,张彬,等.页岩气体积压裂水平井试井解释新模型[J].油气地质与采收率,2020,27(3):120-128.XU Zhongyi,FANG Sidong,ZHANG Bin,et al.A new well test model for horizontal wells by stimulated reservoir volume in shale gas reservoirs[J].Petroleum Geology and Recovery Effi‐ ciency,2020,27(3):120-128.
-
[18] 刘晓旭,周源,王霞,等.气藏型储气库注气期试井分析探讨[J].特种油气藏,2021,28(2):139-143.LIU Xiaoxu,ZHOU Yuan,WANG Xia,et al.Analysis and discus‐ sion on well test of gas field storage facility in gas injection peri‐ od[J].Special Oil & Gas Reservoirs,2021,28(2):139-143.
-
[19] 杨洋,欧加强,吕亚博,等.基于生产动态分析的气井产能评价方法[J].世界石油工业,2021,28(6):74-79.YANG Yang,OU Jiaqiang,LÜ Yabo,et al.Evaluation method of gas well productivity based on production performance analysis [J].World Petroleum Industry,2021,28(6):74-79.
-
[20] 吴则鑫.苏里格气田致密气井产能主控因素分析[J].非常规油气,2018,5(5):62-67.WU Zexin.Analysis of production capacity control factors of low-permeability tight gas reservoir[J].Unconventional Oil & Gas,2018,5(5):62-67.
-
[21] 米瑛,王振兴.四川盆地涪陵页岩气田气井合理配产方法探讨 [J].天然气勘探与开发,2017,40(3):78-83.MI Ying,WANG Zhenxing.Rational proration method for shale gas wells in Fuling Shale Gasfield,Sichuan Basin[J].Natural Gas Exploration and Development,2017,40(3):78-83.
-
[22] 庞伟.酸性气藏深井产能试井方法[J].油气井测试,2018,27(2):67-72.PANG Wei.Deliverability test method for deep sour gas wells[J].Well Testing,2018,27(2):67-72.
-
[23] 陈春艳,阮基富,吴利华,等.磨溪区块龙王庙组高压气藏气井产能方程及求解方法[J].油气井测试,2021,30(2):67-73.CHEN Chunyan,RUAN Jifu,WU Lihua,et al.Productivity equa‐ tion and solution of gas wells in high pressure gas reservoir of Longwangmiao Formation,Moxi Block[J].Well Testing,2021,30(2):67-73.
-
[24] 石军太,李骞,张磊,等.多层合采气井产能指示曲线异常的原因与校正方法[J].天然气工业,2018,38(3):50-59.SHI Juntai,LI Qian,ZHANG Lei,et al.An abnormality of pro‐ ductivity indicative curves for multi-layer gas wells:reason anal‐ ysis and correction method[J].Natural Gas Industry,2018,38(3):50-59.
-
[25] 蔡珺君,彭先,李骞,等.四川盆地重点海相碳酸盐岩气藏产能评价现状及展望[J].断块油气田,2021,28(5):655-660.CAI Junjun,PENG Xian,LI Qian,et al.Present situation and prospect of productivity evaluation of key marine carbonate gas reservoirs in Sichuan Basin[J].Fault-Block Oil and Gas Field,2021,28(5):655-660.
-
[26] 唐林,郭肖,苗彦平,等.非达西渗流效应对低渗气藏水平井产能的影响[J].断块油气田,2013,20(5):607-610.TANG Lin,GUO Xiao,MIAO Yanping,et al.Influence of nonDarcy seepage effect on deliverability of horizontal wells in low permeability gas reservoirs[J].Fault-Block Oil and Gas field,2013,20(5):607-610.
-
[27] 胥洪俊,范明国,康征,等.考虑渗透率应力敏感的低渗气藏产能预测公式[J].天然气地球科学,2008,19(1):145-147.XU Hongjun,FAN Mingguo,KANG Zheng,et al.A productivity prediction equation considering rock permeability stress-sensitiv‐ ity in low-permeability gas reservoirs [J].Natural Gas Geosci‐ ence,2008,19(1):145-147.
-
[28] 宋传真,郑荣臣.致密低渗气藏储层应力敏感性及其对单井产能的影响[J].大庆石油地质与开发,2006,25(6):47-49.SONG Chuanzhen,ZHENG Rongchen.Stress sensitivity of lowpermeability tight gas reservoir and its effect on single well pro‐ ductivity [J].Petroleum Geology and Development in Daqing,2006,25(6):47-49.
-
[29] 王宇航,程时清,符浩,等.考虑应力敏感性的低渗透气藏气井产能分析[J].油气井测试,2017,26(1):6-9.WANG Yuhang,CHENG Shiqing,FU Hao,et al.Analysis on gas well productivity of low-permeability gas reservoir with stresssensitivity[J].Well Testing,2017,26(1):6-9.
-
摘要
气井产能研究不仅是气藏动态描述的核心,也是储气库注采气能力分析、注采方案编制的重要依据。目前常规二项式、指数及一点法产能方程是针对气藏开发建立的,对储气库周期性高速注采的适用性还没有相关研究。为此,针对油气藏型储气库产能计算方法开展相关研究,通过储气库气井地层压力、井底流压和注采气量的关系,建立了油气藏型储气库产能方程,并明确方程中各参数的物理意义,进而界定层流和紊流的阈值。不同于常规气藏产能方程,油气藏型储气库产能方程中的生产压力平方差与产量的平方比随着产量的增加而降低,呈幂函数关系,在双对数坐标系中呈线性关系。建立的油气藏型储气库产能方程是对常规气藏产能方程的拓展,为储气库的注采气能力研究提供了理论依据。为验证新建立产能方程的适用性,分别应用二项式产能方程和新建立的产能方程对X储气库4口压力监测井的实测生产数据进行拟合对比,结果表明新建立的产能方程更符合油气藏型储气库产能变化规律。
Abstract
The research on the production capacity of gas wells is not only the core of the performance description of gas reservoirs but also an important basis for the analysis of gas injection and production capacity and the preparation of in‐ jection and production schemes of gas storage. At present,the conventional binomial,exponential,and one-point pro‐ ductivity equations are established for gas reservoir development,and there is no relevant research on the adaptability of cyclic high-rate injection and production of gas storage. Therefore,this study investigated the productivity calculation methods for gas storage in oil and gas reservoirs. On the basis of the relationships between formation pressure,bottomhole flow pressure,and injection and production capacity in gas storage in oil and gas reservoirs,the productivity equa‐ tion of gas wells in gas storage was established,and the physical significance of various parameters in the newly estab‐ lished productivity equation of gas wells was clarified to define the thresholds of laminar flow and turbulent flow. Differ‐ ent from the productivity equation of the conventional gas reservoirs,the newly established equation demonstrates that the ratio of the difference of squares of production pressure to the square of production decreases with the increase in pro‐ duction,which satisfies the power function relationship and shows a linear relationship in the double logarithmic coordi‐ nate system. The established productivity equation of gas storage in oil and gas reservoirs is an extension of the conven‐ tional productivity equation,which provides a theoretical basis for the study of gas injection and production capacity of gas storage. To verify the applicability of the equation proposed in this paper,we used the binomial productivity equa‐ tion and the newly established equation to fit the measured production data of four pressure monitoring wells in X gas storage for comparison. The results show that the equation established in this paper is more in line with the productivity change laws of gas storage in oil and gas reservoirs.