-
页岩复杂的矿物组成和孔隙结构特征导致孔隙流体类型也千差万别,准确划分不同类型孔隙流体是优选高品质页岩油储层的关键[1-3]。通常页岩孔隙流体类型可划分为可动流体和束缚流体,其中束缚流体主要包括毛管束缚流体和黏土束缚流体[4-6]。为识别核磁共振 T2谱分布中不同类型孔隙流体,定义 T2C1和 T2C2分别为可动流体与束缚流体的弛豫时间截止值及毛管束缚流体与黏土束缚流体的弛豫时间截止值[7-9]。MORRISS 等通过核磁共振离心实验确定典型砂岩和碳酸盐岩的 T2C1 值分别为 33 和 100 ms[10]。SUN 等针对 12 块页岩样品开展核磁共振离心实验后发现,页岩的 T2C1值明显小于砂岩和碳酸盐岩,仅为 8.9 ms[11]。代全齐等基于延长组 66 块致密岩心的核磁共振 T2谱分布,将孔隙结构划分为 3 类,对应的 T2C1分布范围为 0.45~28.23 ms,且 T2C1值与渗透率呈正相关性[12]。目前大部分学者在研究页岩核磁共振特性的时候都是采用常规砂岩的评价方法,然而由于相比普通砂岩,页岩孔喉致密、有机碳及黏土矿物含量高导致孔隙结构特征必然存在明显差异,由于客观认识及实验方法的限制,使得对 T2C2 的研究进展相对缓慢,而 T2C2值的确定对评价页岩油后期生产动态具有重要意义[13-15]。
-
因此,为明确页岩油储层的微观孔隙流体赋存和运移特征,基于低场核磁共振实验原理,采用离心实验与热处理实验相结合的方法,识别并划分出不同孔隙结构页岩中 3 类孔隙流体的 T2弛豫时间界限,在标定弛豫时间 T2值与孔隙半径之间转换系数的基础上,对目标储层页岩的全孔径分布特征进行定量表征。研究成果可以为页岩全孔径孔隙流体划分及页岩油高效开发提供依据。
-
1 实验原理、材料及步骤
-
1.1 实验原理
-
基于低场核磁共振实验原理可知,岩石孔隙流体中的氢核会在外加磁场的作用下发生共振,通过测量氢核共振信号的幅度和弛豫速率可以间接表征岩石孔隙结构特征。通常氢核的弛豫时间T2与孔隙半径呈正比,共振信号的幅度与孔隙中流体赋存量呈正比[16-17]。因而采用核磁共振 T2谱不但能够描述岩心的孔隙结构,还能定量评价孔隙中流体的分布特征。
-
1.2 实验材料
-
实验所用页岩来自姬塬油田 Y57-1 井,取样深度为 2 684~2 711 m的长 7油层组。选取 15块结构完整且不含裂缝的岩心,先后采用二氯甲苯和乙二醇溶剂反复清洗小岩心柱,烘干后测定每块页岩的孔隙度和渗透率,以及总有机碳含量和矿物组成。由表1 可知,目标储层页岩孔隙度为 4.4%~16.2%,渗透率为0.003~0.182 mD,总有机碳含量为1.22%~4.16%,石英含量为 9.5%~41.9%,黏土矿物含量为 2.8%~13.7%。
-
注:其他矿物包括黄铁矿、菱铁矿和金红石等。
-
1.3 实验步骤
-
本次核磁共振实验考虑到页岩纳米孔隙发育, T2谱中小孔径孔隙占比高,因此采用 0.069 ms 的回波间隔进行测量,其他参数分别为等待时间为1.5 s,扫描次数为64,回波个数为8 192。具体实验步骤如下:①将页岩放入烘箱中高温120℃烘干24 h,以去除岩心中的水蒸气,然后对烘干后的岩心进行核磁共振扫描,获取岩心基础信号。②对装有岩心的高压容器抽真空后,再以30 MPa高压向容器中注入浓度为1 mol/L的KCl溶液(此浓度能避免页岩发生水敏反应),高压饱和岩心后在常压下对饱和水的岩心进行核磁共振扫描。③采用 Optima L-100XP 型超速离心机依次在转速为 6 000,8 000,10 000,12 000 和 14 000 r/min(对应离心力分别为 1.18,2.76,4.11, 5.36和7.18 MPa)条件下对岩心进行离心,并测量不同离心状态下岩心的核磁共振 T2谱。④重复步骤 ②,将最佳离心力离心后的页岩放入不同温度烘箱中进行热处理,逐渐升高烘箱温度至 40,60,80, 100,120和140℃(当温度超过140℃后会对页岩孔隙中黏土矿物的胶结方式产生破坏,故最高温度只到140℃),分别测量不同温度后岩心的核磁共振T2 谱。
-
2 实验结果与分析
-
2.1 页岩微观孔隙结构分类
-
根据 15 块饱和水页岩的 T2谱分布(图1),可以将目标页岩的孔隙结构划分为 3类。Ⅰ类页岩的 T2 谱为左峰高于右峰的连续双峰型,弛豫时间分布范围广(为 0.01~2 000 ms)(图1a);由表1 可知,该类页岩储层物性相对较好,孔喉组合多样。Ⅱ类页岩的 T2谱为左峰远大于右峰的不连续双峰型,弛豫时间范围变窄(为0.01~200 ms),波峰振幅降低,两峰之间连通程度变差(图1b);由表1可知,该类页岩储层物性变差,平均孔隙半径减小,孔隙中流体赋存量也在不断降低。Ⅲ类页岩的T2谱分布虽然以多峰分布为主,但主峰分布范围大幅变窄(弛豫时间为 0.01~1 ms),平均孔隙度和渗透率均大幅下降,分别仅为 5.3% 和 0.008 mD,说明此类页岩物性很差,孔隙类型单一,纳米孔隙极其发育,大、中孔隙发育程度很低,且孔隙中流体赋存量大幅降低。
-
2.2 微观孔隙流体识别
-
2.2.1 饱和水-离心T2谱对比
-
图2 为 3 类孔隙结构页岩中代表页岩在不同离心力作用下的 T2谱分布,可以看出,3块页岩 T2谱中左、右两峰对应振幅均随离心转速(离心力)的增加而不断降低,当离心转速由 12 000 r/min(5.36 MPa) 增大至14 000 r/min(7.18 MPa)时,Ⅰ类1#页岩和Ⅱ 类 9#页岩的 T2振幅的下降幅度明显减小(Ⅲ类 15# 页岩由于不同离心力作用下振幅变化很小,未看出明显变化,需要进一步分析),说明左峰代表的微小孔隙和右峰代表的大孔隙及微裂缝中均含有可动水,且随着离心力的增加,可动水在克服毛管压力后会优先被排出。当离心力增大至 5.36 MPa时,页岩孔隙中能够被离心出的可动水已基本达到最大,继续增大离心力非但不能大幅增加可动水的产出,还有可能导致页岩在水化作用下发生碎裂,而毛管束缚水与不可采出水仍滞留在孔隙中无法排出。
-
图1 3类孔隙结构页岩的T2谱分布
-
Fig.1 T2 spectrum distribution of shales with three types of pore structures
-
图2 3类孔隙结构页岩在不同离心力作用下的T2谱分布
-
Fig.2 T2 spectrum distribution of shales with three types of pore structures under different centrifugal forces
-
基于低场核磁共振测试中核磁共振信号振幅的大小与页岩孔隙中流体的赋存量呈正比的原理,可以采用T2谱中所有弛豫时间对应的振幅之和来表征页岩中流体的总赋存量。图3为不同离心转速下归一化后的累积振幅(归一化是指不同离心力下的累积振幅除以完全饱和水下的累积振幅)变化规律,可以看出,当离心转速由6 000 r/min增至12 000 r/min 的过程中,3块页岩累积振幅的下降速度较快,而当离心转速由 12 000 r/min 增至 14 000 r/min 时,累积振幅的下降速度明显变缓。严格意义上而言, 12 000 r/min并不是累积振幅明显变化的拐点,但却可以近似认为 12 000 r/min 是目标储层页岩的最佳离心转速。此外,Ⅰ类 1#页岩累积振幅的降低幅度明显大于另外2块页岩,而Ⅲ类15#页岩累积振幅的降低幅度最小,说明 1#页岩孔隙中可动水饱和度最大,而 15#页岩中可动水饱和度最小,造成可动水饱和度差异的主要原因一方面是由于孔隙半径变小,孔喉组合方式变得单一,孔喉中的毛管压力增大;另一方面由于黏土矿物含量增大,更多的水被黏土矿物颗粒吸附,导致黏土束缚水饱和度增加,可动水饱和度大幅降低。
-
图3 3类孔隙结构页岩归一化后累积振幅随离心转速的变化规律
-
Fig.3 Variation of cumulative amplitudes(normalized) of shales with three types of pore structures with centrifugal speeds
-
2.2.2 饱和水-热处理T2谱对比
-
离心实验仅能区分页岩孔隙中的可动水与束缚水,而无法有效识别束缚水中的毛管束缚水与不可采出水。毛管束缚水主要是指孔隙中水相在巨大毛管压力作用下被锁定,在最佳离心力作用下无法参与流动的水,但当页岩受热升温时,气水界面张力大幅减小,毛管压力的作用减弱,原来被毛管压力束缚的水相能够蒸发逃逸出来[18-19]。因而可以采用热处理升温的方式来识别页岩中的毛管束缚水和不可采出水。
-
图4 为 3 类孔隙结构页岩在不同温度热处理后的 T2谱分布,可以看出,在最佳离心力离心后,随着热处理温度的升高,3 块页岩的 T2振幅将会进一步大幅降低,主峰波峰对应的弛豫时间向左移动。结合图5 可以进一步看出,1#页岩累积振幅的降低幅度明显大于另外2块页岩,而15#页岩的累积振幅降低幅度最小,这一现象与离心过程中累积振幅的变化规律相似,这主要因为Ⅰ类页岩孔隙半径大、连通性好,毛管束缚水受热蒸发排出过程中需克服的毛管压力比另外2类页岩小。此外,还可以看出,当温度由40℃升高至100℃过程中,累积振幅的下降幅度较大,且下降速度较快,而当温度由100℃继续升高至140℃过程中,累积振幅的下降幅度明显变缓,并逐渐出现了拐点。与最佳离心力的选取方式一样,虽然100℃并不是严格意义上的阈值温度,但可以近似选取100℃作为阈值温度。
-
图4 3类孔隙结构页岩在不同温度热处理后的T2谱变化
-
Fig.4 T2 spectrum changes of shales with three types of pore structures after heat treatment at different temperatures
-
图5 3类孔隙结构页岩归一化后累积振幅随热处理温度的变化规律
-
Fig.5 Variation of cumulative amplitudes(normalized) of shales with three types of pore structures with heat-treatment temperature
-
2.2.3 不同类型流体T2截止值
-
为准确识别页岩孔隙中可动水与束缚水、毛管束缚水与不可采出水之间的弛豫时间界限,首先根据页岩完全饱和水、最佳离心力离心后及阈值温度热处理后3种状态下的T2谱分布,绘制对应的3条累积振幅随弛豫时间的变化曲线(图6 中累积振幅曲线),然后反向延长最佳离心力离心后的累积振幅不变时的直线段(离心后累积振幅曲线),与完全饱和水状态下的累积振幅曲线(饱和水累积振幅曲线)的交点对应的弛豫时间即为 T2C1,同理可以确定 T2C2。此外,完全饱和水下和最佳离心力离心后的累积振幅之差再除以完全饱和水下的累积振幅即为可动水饱和度。最佳离心力离心后和阈值温度热处理后的累积振幅之差再除以完全饱和水状态下的累积振幅即为毛管束缚水饱和度,而剩余饱和度即为不可采出水饱和度。
-
由图6和表2可知,Ⅰ类孔隙结构页岩的 T2C1为 0.87~1.22 ms,T2C2为 0.14~0.28 ms,对应的平均可动水饱和度、毛管束缚水饱和度和不可采出水饱和度分别为 30.5%,34.2% 和 35.3%。Ⅱ类孔隙结构页岩的 T2C1为 0.95~1.52 ms,T2C2为 0.24~0.42 ms,对应的平均可动水饱和度、毛管束缚水饱和度和不可采出水饱和度分别为 26.6%,32.7% 和 40.7%。Ⅲ类孔隙结构页岩的 T2C1为 1.64~2.27 ms,T2C2为 0.41~0.68 ms,对应的平均可动水饱和度、毛管束缚水饱和度和不可采出水饱和度分别为 17.2%,32.7% 和 50.1%。综上可以看出,随着页岩孔隙结构不断变差,可动水和不可采出水的T2截止值不断增大,可动水饱和度不断降低,不可采出水饱和度不断增大,而毛管束缚水饱和度则变化较小。
-
图6 3类孔隙结构页岩的双T2截止值
-
Fig.6 Double T=cutoff values of shales with three types of pore structures
-
2.3 页岩全孔径分布特征
-
2.3.1 核磁共振转换系数确定
-
低场核磁共振与高压压汞都是研究页岩孔隙结构的有效实验方法,T2谱分布与孔隙半径分布均能有效表征页岩内部的孔隙结构分布。由于T2与孔隙半径呈正比,因而可通过高压压汞获得的孔隙半径分布来标定 T2谱分布,由转换系数来进行弛豫时间与孔隙半径之间的转换。因此,在保证 T2谱主峰波峰对应的T2值与孔隙半径波峰对应的孔隙半径值相重合的前提下(图7),可以实现孔隙半径分布对 T2谱分布的标定,进而计算出转换系数。由表2可知, Ⅰ类孔隙结构页岩的转换系数为 18.6~26.8 nm/ ms,平均值为23.0 nm/ms;Ⅱ类孔隙结构页岩的转换系数明显增加,平均值为33.0 nm/ms;而Ⅲ类孔隙结构页岩的转换系数最大,为 42.2~61.6 nm/ms,平均值为 49.2 nm/ms。此外,从图7可以看出,孔隙半径分布与 T2谱分布并非完全吻合,主要差别在于 T2谱分布能够反映出大孔隙中流体的赋存量,而高压压汞孔隙半径分布却对孔隙中流体赋存量的表征效果较差,这主要是因为高压压汞实验更多描述的是孔喉之间的连通程度,由于页岩孔喉结构复杂,孔隙缩小型喉道和短导管状喉道大量发育,导致汞被卡塞在小喉道处无法进入孔隙,测得的孔隙体积偏低,这种现象称为孔隙屏蔽效应[20]。
-
2.3.2 不同类型流体孔隙半径界限
-
图8 为 3 类孔隙结构页岩中 3 种类型流体对应的孔隙半径界限。从图7和表2可知,Ⅰ类孔隙结构页岩中的可动流体主要赋存于孔径大于 24.8 nm 的中、大孔隙,平均饱和度为 30.5%;不可采出流体则赋存于孔径小于 4.5 nm 的微孔隙,平均饱和度为 35.3%。Ⅱ类孔隙结构页岩中的可动流体赋存于孔径大于 41.9 nm 的大孔隙,平均饱和度为 26.6%;不可采出流体则赋存于孔径小于 10.3 nm 的微、小孔隙,平均饱和度为 40.7%。而Ⅲ类孔隙结构页岩中的可动流体赋存于孔径大于93.6 nm的大孔隙,平均饱和度为 17.2%;不可采出流体则赋存于孔径小于 26.3 nm 的中、小孔隙,平均饱和度达到 50.1%。综上可以看出,可动流体孔径下限(R2C1)和不可采出流体孔径上限(R2C2)均随孔隙结构参数和物性的变差而不断增大,这一方面是由于孔喉组合的变差,导致孔径和喉道半径变小,流体赋存量降低;另一方面由于Ⅲ类页岩中有机质含量和黏土矿物含量增加,导致孔喉中黏土束缚水饱和度增大所致。
-
图7 3类孔隙结构页岩T2谱与孔隙半径分布对应关系
-
Fig.7 Corresponding relationship between T2 spectrum and pore radius distribution of shales with three types of pore structures
-
图8 3类孔隙结构页岩全孔径分布
-
Fig.8 Full pore size distribution of shales with three types of pore structures
-
3 结论
-
目标页岩孔隙结构可划分为 3 类(Ⅰ,Ⅱ和Ⅲ 类),其对应的平均渗透率及孔隙半径依次减小,平均总有机碳含量依次增大,孔隙中流体赋存量依次降低。采用离心实验与热处理相结合的方法可以有效识别目标页岩孔隙中的可动流体、毛管束缚流体及不可采出流体。其中,Ⅰ,Ⅱ和Ⅲ类页岩的 T2C1分别为 1.10,1.24 和 1.92 ms,T2C2 分别为 0.20,0.30 和 0.54 ms。Ⅰ类页岩的可动流体赋存于孔径大于 24.8 nm 的中、大孔隙,平均饱和度为 30.5%;不可采出流体赋存于孔径小于 4.5 nm 的微孔隙,平均饱和度为 35.3%。Ⅱ类页岩的可动流体赋存于孔径大于 41.9 nm 的大孔隙,平均饱和度为 26.6%;不可采出流体赋存于孔径小于 10.3 nm 的微、小孔隙,平均饱和度为 40.7%。Ⅲ类页岩中的可动流体赋存于孔径大于 93.6 nm 的大孔隙,平均饱和度为 17.2%;不可采出流体则赋存于孔径小于 26.3 nm 的中、小孔隙,平均饱和度达到50.1%。
-
参考文献
-
[1] 陆国青,杨少春,张逸帆,等.马海东地区下干柴沟组下段砂岩储层孔隙结构特征及控制因素[J].大庆石油地质与开发,2021,40(2):20-29.LU Guoqing,YANG Shaochun,ZHANG Yifan,et al.Pore structure characteristics and their controlling factors of sandstone reservoirs in the Lower Xiaganchaigou Formation in Mahaidong area[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):20-29.
-
[2] 刘丽,闵令元,孙志刚,等.济阳坳陷页岩油储层孔隙结构与渗流特征[J].油气地质与采收率,2021,28(1):106-114.LIU Li,MIN Lingyuan,SUN Zhigang,et al.Pore structure and percolation characteristics in shale oil reservoir of Jiyang Depression[J].Petroleum Geology and Recovery Efficiency,2021,28(1):106-114.
-
[3] 赵贤正,周立宏,蒲秀刚,等.陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J].石油勘探与开发,2018,45(3):361-372.ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al.Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin:a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag,Bo‐ hai Bay Basin,China[J].Petroleum Exploration and Develop‐ ment,2018,45(3):361-372.
-
[4] 柳波,石佳欣,付晓飞,等.陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J].石油勘探与开发,2018,45(5):828-838.LIU Bo,SHI Jiaxin,FU Xiaofei,et al.Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system:a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China[J].Petroleum Exploration and Development,2018,45(5):828-838.
-
[5] 王红梅,黄杰,郭发军,等.束鹿凹陷馆陶组储层微观孔隙结构及其成岩作用的影响[J].大庆石油地质与开发,2021,40(2):50-59.WANG Hongmei,HUANG Jie,GUO Fajun,et al.Micro pore structures and the influences of the diagenesis on these structures for Guantao Formation(Ng)reservoir in Shulu Sag[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):50-59.
-
[6] YANG Feng,NING Zhengfu,WANG Qing,et al.Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin,China:insights to pore development and gas storage mechanism[J].International Journal of Coal Geology,2016,156:12-24.
-
[7] 刘永.基于核磁共振流态分析的页岩微纳米孔隙类型划分方法[D].北京:中国地质大学(北京),2018.LIU Yong.A study of shale pore size classification by using low field nuclear magnetic resonance fluid typing method[D].Beijing:China University of Geosciences(Beijing),2018.
-
[8] YAO Yanbin,LIU Dameng,CAI Yidong,et al.Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J].Science China Earth Sciences,2010,53(6):854-862.
-
[9] KUILA U,PRASAD M.Specific surface area and pore-size distribution in clays and shales[J].Geophysical Prospecting,2013,61(2):341-362.
-
[10] MORRISS C,ROSSINI D,STRALEY C,et al.Core analysis by low-field NMR[J].The Log Analyst,1997,38(2):84-93.
-
[11] SUN Junchang,CHEN Jingping,YANG Zhengming,et al.Experimental study of the NMR characteristics of shale reservoir rock [J].Science & Technology Review,2012,30(14):25-30.
-
[12] 代全齐,罗群,张晨,等.基于核磁共振新参数的致密油砂岩储层孔隙结构特征——以鄂尔多斯盆地延长组7段为例[J].石油学报,2016,37(7):887-897.DAI Quanqi,LUO Qun,ZHANG Chen,et al.Pore structure characteristics of tight-oil sandstone reservoir based on a new parameter measured by NMR experiment:a case study of seven Member in Yanchang Formation,Ordos Basin[J].Acta Petrolei Sinica,2016,37(7):887-897.
-
[13] LIU Yong,YAO Yanbin,LIU Dameng,et al.Shale pore size classification:an NMR fluid typing method[J].Marine and Petroleum Geology,2018,96:591-601.
-
[14] 董岩,肖佃师,彭寿昌,等.页岩油层系储集层微观孔隙非均质性及控制因素——以吉木萨尔凹陷芦草沟组为例[J].矿物岩石地球化学通报,2021,40(1):115-123.DONG Yan,XIAO Dianshi,PENG Shouchang,et al.Heterogeneity of microscopic pores in shale oil reservoir and its controlling factors:taking the Lucaogou Formation in the Jimusar Sag as an example[J].Bulletin of Mineralogy,Petrology and Geochemistry,2021,40(1):115-123.
-
[15] 张冲,萧汉敏,肖朴夫,等.盐间页岩油 CO2-纯水吞吐开发机理实验及开采特征[J].特种油气藏,2022,29(1):121-127.ZHANG Chong,XIAO Hanmin,XIAO Pufu,et al.Experimental study on development mechanism and production characteristics of CO2-pure water stimulation of inter-salt shale oil[J].Special Oil & Gas Reservoirs,2022,29(1):121-127.
-
[16] 贾连超,刘鹏飞,袁丹,等.注CO2提高页岩吸附气采收率实验:以鄂尔多斯盆地延长组长7页岩气为例[J].大庆石油地质与开发,2021,40(2):153-159.JIA Lianchao,LIU Pengfei,YUAN Dan,et al.Experiment of enhancing the recovery of the shale adsorbed gas by CO2 injection:taking Yanchang-Formation Chang-7 shale gas in Ordos Basin as an example[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):153-159.
-
[17] 于雯汀,吴亚红.基于构造差异的页岩孔隙结构与吸附能力表征[J].断块油气田,2022,29(1):95-100.YU Wenting,WU Yahong.Characteristics of shale pore structure and adsorption capacity based on tectonic difference[J].FaultBlock Oil and Gas Field,2022,29(1):95-100.
-
[18] 李海,刘安,罗胜元,等.鄂西宜昌地区寒武系页岩孔隙结构特征及发育主控因素[J].油气地质与采收率,2018,25(6):16-23.LI Hai,LIU An,LUO Shengyuan,et al.Pore structure characteristics and development control factors of Cambrian shale in the Yichang area,western Hubei[J].Petroleum Geology and Recov‐ ery Efficiency,2018,25(6):16-23.
-
[19] 陈建勋.深层高压碳酸盐岩气藏孔隙结构特征及衰竭开发规律[J].特种油气藏,2022,29(5):80-87.CHEN Jianxun.Pore structure characteristics and natural depletion law of deep high-pressure carbonate gas reservoirs[J].Special Oil & Gas Reservoirs,2022,29(5):80-87.
-
[20] 李嫣然,胡志明,刘先贵,等.泸州地区龙马溪组深层页岩孔隙结构特征[J].断块油气田,2022,29(5):584-590.LI Yanran,HU Zhiming,LIU Xiangui,et al.The pore structure characteristics of deep shale in Longmaxi Formation of Luzhou area[J].Fault-Block Oil and Gas Field,2022,29(5):584-590
-
摘要
页岩复杂的孔隙结构导致多样化的孔隙流体类型。针对鄂尔多斯盆地延长组长7段页岩,采用低场核磁共振实验技术,将离心实验与热处理实验相结合,识别划分出3类页岩中多类孔隙流体的T2弛豫时间界限,并定量表征了目标页岩的全孔径分布特征。研究结果表明,目标页岩孔隙结构可划分为Ⅰ,Ⅱ和Ⅲ类,其对应的平均孔隙半径和流体赋存量依次减小。Ⅰ,Ⅱ 和Ⅲ类页岩的可动流体截止值分别为 1.10,1.24和 1.92 ms,不可采出流体截止值分别为 0.20,0.30和 0.54 ms。Ⅰ类页岩的可动流体赋存于孔径大于24.8 nm的中、大孔隙,平均饱和度为30.5%;不可采出流体则赋存于孔径小于4.5 nm的微孔隙,平均饱和度为35.3%。Ⅱ类页岩的可动流体赋存于孔径大于41.9 nm的大孔隙,平均饱和度为26.6%;不可采出流体赋存于孔径小于 10.3 nm的微、小孔隙,平均饱和度为40.7%。Ⅲ类页岩的可动流体赋存于孔径大于93.6 nm的大孔隙,平均饱和度为17.2%;不可采出流体则赋存于孔径小于26.3 nm的中、小孔隙,平均饱和度达50.1%。
Abstract
The complex pore structures of shales lead to a variety of pore fluid types. Taking the shales of Chang 7 Member of Yanchang Formation in Ordos Basin as the research object,the low-field nuclear magnetic resonance(NMR)technology was adopted, and the T2 relaxation time limits of multiple types of pore fluid in three types of shales were identified by combining centrifugal test with heat treatment test. The full pore size distribution characteristics of the target shales were quantitatively characterized. The results show that the pore structures of the target shals can be divided into three types:Ⅰ,Ⅱ,and Ⅲ,and their corresponding average pore radii and fluid accumulations decrease successively. The cutoff values of movable fluid in the three types of shale are 1.1, 1.24,and 1.92 ms,respectively,while those of non-recoverable fluid are 0.2,0.3,and 0.54 ms,respectively. The movable fluid in type Ⅰ shale occurs in medium and large pores with a diameter of larger than 24.8 nm,and the average saturation is 30.5%;the non-recoverable fluid occurs in micropores with a diameter of less than 4.5 nm,and the average saturation is 35.3%. The movable fluid in type Ⅱ shale occurs in large pores with a diameter of larger than 41.9 nm,and the average saturation is 26.6%;the nonrecoverable fluid occurs in micro and small pores with a diameter of less than 10.3 nm,and the average saturation is 40.7%. The movable fluid in type Ⅲ shale occurs in large pores with a diameter of larger than 93.6 nm,and the average saturation is 17.2%;the nonrecoverable fluid occurs in medium and small pores with a diameter of less than 26.3 nm,and the average saturation reaches 50.1%.
Keywords
shale ; pore structure ; nuclear magnetic resonance ; fluid type ; saturation