en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

何延龙(1987—),男,甘肃兰州人,副教授,博士,从事提高原油采收率研究。E-mail:stpnet@126.com。

中图分类号:TE357.9

文献标识码:A

文章编号:1009-9603(2023)04-0106-10

DOI:10.13673/j.pgre.202205037

参考文献 1
荣辉,钱春香,王欣.微生物水泥基材料抗冻性和抗冲刷性[J].功能材料,2014,45(11):11 091-11 095.RONG Hui,QIAN Chunxiang,WANG Xin.Performance of mi‐ crobe cementitious materials[J].Journal of Functional Materials,2014,45(11):11 091-11 095.
参考文献 2
JOSH S,GOYAL S,MUKHERJEE A,et al.Microbial healing of cracks in concrete:a review[J].Journal of Industrial Microbiology & Biotechnology,2017,44(11):1 511-1 525.
参考文献 3
RODRIGUEZ-NAVARRO C,RODRIGUEZ-GALLEGO M,BEN-CHEKROUN K,et al.Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization[J].Applied and Environmental Microbiology,2003,69(4):2 182-2 193.
参考文献 4
BOQUET E,BORONAT A,RAMOS-CORMENZANA A.Production of calcite(calcium carbonate)crystals by soil bacteria is a general phenomenon[J].Nature,1973,246:527-529.
参考文献 5
解思维,唐国旺,王贵和.一种生物水泥的研制[J].断块油气田,2021,28(3):428-432.XIE Siwei,TANG Guowang,WANG Guihe.Development of a biological cement[J].Fault-Block Oil and Gas Field,2021,28(3):428-432.
参考文献 6
JACK T R,STEHMEIER L G,ISLAM M R,et al.Ch.F-6 microbial selective plugging to control water channeling[J].Developments in Petroleum Science,1991,31:433-440.
参考文献 7
KANTZAS A,MARENTETTE D F,JHA K N N.Computer-assisted tomography from qualitative visualization to quantitative core analysis[J].Journal of Canadian Petroleum Technology,1992,31(9):48-56.
参考文献 8
FERRIS F G,STEHMEIER L G,KANTZAS A,et al.Bacteriogenic mineral plugging[J].Journal of Canadian Petroleum Technology,1997,36(9):56-59.
参考文献 9
WU Jun,WANG Xianbin,WANG Houfeng,et al.Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery[J].RSC Advances,2017,7(59):37 382-37 391.
参考文献 10
ARMSTRONG I O,PALOMBO E A,NISSOM P M.Bioprecipitation of calcium carbonate mediated by ureolysis:a review[J].Environmental Engineering Research,2021,26(6):200379.
参考文献 11
ZHU Tingting,DITTRICH M.Carbonate precipitation through microbial activities in natural environment,and their potential in biotechnology:a review[J].Frontiers in Bioengineering and Biotechnology,2016,4:4.
参考文献 12
LIN Wenbin,LIN Wei,CHENG Xiaohui,et al.Microbially induced desaturation and carbonate precipitation through denitrification:a review[J].Applied Sciences,2021,11(17):7 842.
参考文献 13
VAN PAASSEN L A,DAZA C M,STAAL M,et al.Potential soil reinforcement by biological denitrification[J].Ecological Engineering,2010,36(2):168-175.
参考文献 14
MUYZER G,STAMS A J M.The ecology and biotechnology of sulphate-reducing bacteria[J].Nature Reviews Microbiology,2008,6(6):441-454.
参考文献 15
李沛豪,屈文俊.细菌诱导矿化保护历史建筑遗产的机理及效果[J].硅酸盐学报,2009,37(4):497-505.LI Peihao,QU Wenjun.Mechanism and performance of remediation for historic buildings by bacterially induced mineralization [J].Journal of the Chinese Ceramic Society,2009,37(4):497-505.
参考文献 16
孙道胜,许婉钰,刘开伟,等.MICP 在建筑领域中的应用进展 [J].材料导报,2021,35(11):11 084-11 091.SUN Daosheng,XU Wanyu,LIU Kaiwei,et al.Research progress of the application of MICP in architecture[J].Materials Reports,2021,35(11):11 084-11 091.
参考文献 17
YUSUF ÇE,NELE DB,NICO B.Microbially induced CaCO3 precipitation through denitrification:An optimization study in minimal nutrient environment[J].Biochemical Engineering Journal,2015,101:108-118.
参考文献 18
REEBURGH W S.Oceanic methane biogeochemistry[J].Chemical Reviews,2007,107(2):486-513.
参考文献 19
皋德祥,邓欢欢,张明华,等.微生物胞外聚合物的研究进展[J].温州医学院学报,2012,42(3):297-301.GAO Dexiang,DENG Huanhuan,ZHANG Minghua,et al.Re‐ search progress of microbial extracellular polymer[J].Journal of Wenzhou Medical College,2012,42(3):297-301.
参考文献 20
王小豆,聂麦茜,聂红云,等.铜绿假单胞菌NY3及突变株代谢油污泥同步产胞外聚合物的特性[J].环境工程学报,2016,10(7):3 891-3 897.WANG Xiaodou,NIE Maiqian,NIE Hongyun,et al.Characterizations of degradation of oil sludge and synchronous production of extracellular polymers by Pseudomonas aeruginosa NY3 and its mutants[J].Chinese Journal of Environmental Engineering,2016,10(7):3 891-3 897.
参考文献 21
杨敏.微生物胞外聚合物的生成及其对树脂特性的影响研究 [D].昆明:昆明理工大学,2012.YANG Min.Study on the formation of microbial extracellular polymer and its effect on resin properties [D].Kunming:Kunming University of Science and Technology,2012.
参考文献 22
杜国丰,关云虎.油田本源微生物胞外聚合物产生菌 AD-05发酵条件的实验室评估[J].当代化工,2016,45(1):44-47.DU Guofeng,GUAN Yunhu.Laboratory evaluation of the fermentation conditions of the bio-polymer producing bacteria AD05 from oil field source[J].Contemporary Chemical Industry,2016,45(1):44-47.
参考文献 23
彭仁,邱业先,汪金莲.脲酶高产菌的筛选和产酶条件的研究 [J].江西师范大学学报:自然科学版,2003,27(3):273-275.PENG Ren,QIU Yexian,WANG Jinlian.Screening of strains producing urease with high activity and study on condition of producing urease[J].Journal of Jiangxi Normal University:Natural Science Edition,2003,27(3):273-275.
参考文献 24
谢新东,陈济琛,林新坚,等.一株芽孢杆菌产生脲酶条件及脲酶提取研究[J].微生物学通报,1996,23(2):81-84.XIE Xindong,CHEN Jichen,LIN Xinjian,et al.Studies on production and extraction of urease from Bacillus SP.[J].Microbiology China,1996,23(2):81-84.
参考文献 25
DHAMI N K,REDDY M S,MUKHERJEE A.Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites[J].Journal of Microbiology and Biotechnology,2013,23(5):707-714.
参考文献 26
PHANG I R K,CHAN Y S,WONG K S,et al.Isolation and characterization of ureaseproducing bacteria from tropical peat [J].Biocatalysis and Agricultural Biotechnology,2018,13:168-175.
参考文献 27
FIDALEO M,ESTI M,MORESI M.Assessment of urea degradation rate in model wine solutions by acid urease from lactobacillus fermentum[J].Journal of Agricultural and Food Chemistry,2006,54(17):6 226-6 235.
参考文献 28
KIM G,KIM J,YOUN H.Effect of temperature,pH,and reaction duration on microbially induced calcite precipitation[J].Applied Sciences,2018,8(8):1 277.
参考文献 29
李成杰.产脲酶菌诱导碳酸钙沉积及对重金属Cd2+/Pb2+的去除研究[D].武汉:武汉科技大学,2018.LI Chengjie.Bioremediation of Cd2+/Pb2+ and calcium carbonate precipitation induced by urease producing bacteria [D].Wuhan:Wuhan University of Science and Technology,2018.
参考文献 30
杨康,王路逸,吴泽宇,等.外源反硝化菌投加对湖水细菌群落的影响[J].安全与环境工程,2020,27(6):81-87.YANG Kang,WANG Luyi,WU Zeyu,et al.Effects of denitrifying bacteria inoculation on bacterial communities in a lake[J].Safety and Environmental Engineering,2020,27(6):81-87.
参考文献 31
蔡峰.硫酸盐还原菌对油田套管腐蚀的影响及控制技术[J].建材与装饰,2019,(21):146-147.CAI Feng.Influence of sulfate reducing bacteria on casing corrosion in oilfield and its control technology[J].Construction Materials & Decoration,2019,(21):146-147.
参考文献 32
韩冰,丁雷,史沐,等.一株高效嗜碱反硝化菌的分离鉴定及其脱氮特性研究[J].环境科学研究,2020,33(9):2 129-2 137.HAN Bing,DING Lei,SHI Mu,et al.Identification and characterization of an alkalophilic pseudomonas stutzeri strain with high denitrification capacity[J].Research of Environmental Science,2020,33(9):2 129-2 137.
参考文献 33
韩彬,王桐屿,曹雁,等.一株反硝化菌的脱氮性能[J].环境工程学报,2017,11(3):1 935-1 940.HAN Bin,WANG Tongyu,CAO Yan,et al.Denitrification performance of a denitrifying bacteria strain[J].Chinese Journal of Environmental Engineering,2017,11(3):1 935-1 940.
参考文献 34
陈效,孙立苹,徐盈,等.硫酸盐还原菌的分离和生理特性研究 [J].环境科学与技术,2006,29(9):38-40.CHEN Xiao,SUN Liping,XU Ying,et al.Isolation and physiological characteristics of sulfatereducing bacteria[J].Environ‐ mental Science & Technology,2006,29(9):38-40.
参考文献 35
白鹤.硫酸盐还原菌生物膜生长和传质过程的研究[D].天津:天津大学,2014.BAI He.Growth and mass transfer of sulfate reducing bacteria biofilm [D].Tianjin:Tianjin University,2014.
参考文献 36
钱江,吴文涛,周跃飞,等.硫酸盐还原菌对碳酸钙结晶过程的影响[J].硅酸盐学报,2019,47(1):109-116.QIAN Jiang,WU Wentao,ZHOU Yuefei,et al.Effect of sulfate reducing bacteria on the crystallization process of calcium carbonate[J].Journal of the Chinese Ceramic Society,2019,47(1):109-116.
参考文献 37
汪卫东,汪竹,耿雪莉,等.美国微生物采油技术现场应用效果分析[J].油气地质与采收率,2002,9(6):75-76.WANG Weidong,WANG Zhu,GENG Xueli,et al.Effect analysis on field application of microbial enhanced oil recovery technique in U.S.A.[J].Petroleum Geology and Recovery Efficiency,2002,9(6):75-76.
参考文献 38
雷光伦,郭云尧,郑家朋,等.高温微生物提高采收率实验研究 [J].油气地质与采收率,2002,9(4):15-16,20.LEI Guanglun,GUO Yunyao,ZHENG Jiapeng,et al.Laboratory research of improving oil recovery by microbe at high temperature[J].Petroleum Geology and Recovery Efficiency,2002,9(4):15-16,20.
参考文献 39
汪卫东.微生物采油技术研究进展与发展趋势[J].油气地质与采收率,2021,28(2):1-9.WANG Weidong.Research advance and development trend in microbial enhanced oil recovery technology[J].Petroleum Geology and Recovery Efficiency,2021,28(2):1-9.
参考文献 40
林军章,汪卫东,胡婧,等.胜利油田微生物采油技术研究与应用进展[J].油气地质与采收率,2021,28(2):18-26.LIN Junzhang,WANG Weidong,HU Jing,et al.Progress in research and application of microbial enhanced oil recovery technology in Shengli Oilfield[J].Petroleum Geology and Recovery Efficiency,2021,28(2):18-26.
参考文献 41
成亮,钱春香,王瑞兴,等.碳酸岩矿化菌诱导碳酸钙晶体形成机理研究[J].化学学报,2007,65(19):2 133-2 138.CHENG Liang,QIAN Chunxiang,WANG Ruixing,et al.Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J].Acta Chimica Sinica,2007,65(19):2 133-2 138.
参考文献 42
孙刚正,胡婧,刘涛,等.油藏物性及采出程度对内源微生物驱油效果的影响[J].油气地质与采收率,2021,28(2):41-48.SUN Gangzheng,HU Jing,LIU Tao,et al.Effects of reservoir physical properties and recoveries on oil displacement of endogenous microbes[J].Petroleum Geology and Recovery Efficiency,2021,28(2):41-48.
参考文献 43
GEBRU K A,KIDANNEMARIAM T G,GEBRETINSAE H K.Bio-cement production using microbially induced calcite precipitation(MICP)method:a review[J].Chemical Engineering Science,2021,238:116610.
参考文献 44
TORRES-ARAVENA A,DUARTE-NASS C,AZÓCAR L,et al.Can microbially induced calcite precipitation(MICP)through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters?[J].Crystals,2018,8(11):438.
参考文献 45
郝小虎.微生物矿化增强膨胀珍珠岩保温板性能试验研究及机理分析[D].太原:太原理工大学,2019.HAO Xiaohu.Experimental studies on performances of expanded perlite insulation board strengthened by microbial mineralization and mechanism analysis [D].Taiyuan:Taiyuan University of Technology,2019.
参考文献 46
MAHAWISH A,BOUAZZA A,GATES W P.Improvement of coarse sand engineering properties by microbially induced calcite precipitation[J].Geomicrobiology Journal,2018,35(10):887-897.
参考文献 47
VAEZI M,ZAREEI S A,JAHADI M.Recycled microbial mortar:effects of bacterial concentration and calcium lactate content [J].Construction and Building Materials,2020,234:117349.
参考文献 48
GHOSH S,BISWAS M,CHATTOPADHYAY B D,et al.Microbial activity on the microstructure of bacteria modified mortar [J].Cement and Concrete Composites,2009,31(2):93-98.
参考文献 49
SUN Xiaohao,MIAO Linchang,TONG Tianzhi,et al.Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification[J].Journal of Materials in Civil Engineering,2018,30(11):04018301.
参考文献 50
AL QABANY A A,SOGA K,SANTAMARINA J C.Factors affecting efficiency of microbially induced calcite precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2012,138(8):992-1 001.
参考文献 51
梁仕华,牛九格,戴君,等.碳源对微生物固化砂土效果影响的试验研究[J].工业建筑,2018,48(7):16-21.LIANG Shihua,NIU Jiuge,DAI Jun,et al.Experimental research on the effect of carbon sources on bio-cemented sand[J].Industrial Construction,2018,48(7):16-21.
参考文献 52
梁仕华,牛九格,房采杏,等.钙源对微生物沉积碳酸钙固化砂土的试验研究[J].工业建筑,2018,48(7):10-15.LIANG Shihua,NIU Jiuge,FANG Caixing,et al.Experimental research on the effect of calcium source on microbial deposites of calcium carbonate[J].Industrial Construction,2018,48(7):10-15.
参考文献 53
ZHANG Yanrong,GUO Hongxian,CHENG Xiaohui.Role of calcium sources in the strength and microstructure of microbial mortar[J].Construction and Building Materials,2015,77:160-167.
参考文献 54
荣辉,钱春香,李龙志.微生物水泥胶结机理[J].硅酸盐学报,2013,41(3):314-319.RONG Hui,QIAN Chunxiang,LI Longzhi.Cementation mechanism of microbe cement[J].Journal of the Chinese Ceramic Society,2013,41(3):314-319.
参考文献 55
詹其伟.微生物捕碳浅层矿化胶结沙土及其抑尘应用[D].南京:东南大学,2018.ZHAN Qiwei.Cementation of sandy soil by shallow mineralization of microbe capturing carbon dioxide and application in fugitive dust suppresion [D].Nanjing:Southeast University,2018.
参考文献 56
CHENG Liang,CORD-RUWISCH R.Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation[J].Geomicrobiology Journal,2014,31(5):396-406.
参考文献 57
SIDDIQUE R,CHAHAL N K.Effect of ureolytic bacteria on concrete properties[J].Construction and Building Materials,2011,25(10):3 791-3 801.
参考文献 58
UMAR M,KASSIM K A,ZANGO M U,et al.Performance evaluation of lime and microbial cementation in residual soil improvement[C].Kuala Lumpur:IOP Conference Series:Materials Science and Engineering,527,2019:012005.
参考文献 59
SOON N W,LEE L M,KHUN T C,et al.Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2014,140(5):04014006.
参考文献 60
汪卫东,刘茂诚,程海鹰,等.微生物堵调研究进展[J].油气地质与采收率,2007,14(1):86-90.WANG Weidong,LIU Maocheng,CHENG Haiying,et al.Re‐ search progress of microbial plugging and profile control[J].Petroleum Geology and Recovery Efficiency,2007,14(1):86-90.
参考文献 61
ZHAO Qian,LI Lin,LI Chi,et al.Factors affecting improvement of engineering properties of micp-treated soil catalyzed by bacteria and urease[J].Journal of Materials in Civil Engineering,2014,26(12):04014094.
参考文献 62
CHENG Liang,SHAHIN M A,CHU Jian.Soil bio-cementation using a new one-phase low-pH injection method[J].Acta Geotechnica,2019,14(3):615-626.
参考文献 63
李明东,LI Lin,张振东,等.微生物矿化碳酸钙改良土体的进展、展望与工程应用技术设计[J].土木工程学报,2016,49(10):80-87.LI Mingdong,LI Lin,ZHANG Zhendong,et al.Review,out‐ look and application technology design on soil improvement bymicrobial induced calcium carbonate precipitation[J].China Civil Engineering Journal,2016,49(10):80-87.
参考文献 64
VARENYAM A,ABHIJIT M.A Review of microbial precipita‐ tion for sustainable construction[J].Construction and Building Materials,2015,93:1 224-1 235.
参考文献 65
代学成,王红波,许念,等.内源微生物驱油激活配方筛选评价指标探讨[J].油气地质与采收率,2012,19(2):37-40.DAI Xuecheng,WANG Hongbo,XU Nian,et al.Study on activation blend evaluation for indigenous microbial flooding[J].Petroleum Geology and Recovery Efficiency,2012,19(2):37-40.
参考文献 66
RONG Hui,QIAN Chunxiang.Development of microbe cementitious material in China[J].Journal of Shanghai Jiaotong University:Science,2012,17(3):350-355.
参考文献 67
梁仕华,曾伟华,陈俊涛,等.纤维对微生物固化不同颗粒粒径砂土强度影响试验研究[J].工业建筑,2018,48(7):27-32.LIANG Shihua,ZENG Weihua,CHEN Juntao,et al.Experimental research on the effect of fiber on bio-cemented sand with different particle sizes[J].Industrial Construction,2018,48(7):27-32.
参考文献 68
梁仕华,牛九格,戴君,等.循环灌浆次数对微生物固化砂土效果的影响[J].工业建筑,2018,48(7):22-26.LIANG Shihua,NIU Jiuge,DAI Jun,et al.Effect of the number of grouting cycles on bio-cemented sand[J].Industrial Construction,2018,48(7):22-26.
目录contents

    摘要

    微生物诱导碳酸盐沉淀(MICP)技术是利用微生物的新陈代谢活动诱导沉积碳酸盐,从而对松散物质进行胶结的技术,该技术凭借反应速率可控、高渗透性、绿色环保等优点被广泛应用,具有较好的应用前景。笔者系统综述了MICP技术的作用原理、应用菌种、矿化胶结机制,以及MICP技术在油气田开发领域的应用。MICP技术主要通过尿素水解作用、反硝化作用、硫酸盐还原作用或甲烷氧化作用实现,诱导碳酸盐沉淀的微生物主要分为产胞外聚合物菌、产脲酶菌、反硝化菌、硫酸盐还原菌和甲烷氧化菌。MICP技术的矿化作用产生碳酸盐沉淀,可作为桥梁胶结松散物质,形成统一的整体。将MICP技术应用于油气田开发过程中堵塞孔隙及裂缝,可以在预防出砂的同时改善水驱开发效果,提高油气采收率。

    Abstract

    Microbial-induced carbonate precipitation(MICP)takes advantage of the metabolic activities of microorganisms to induce carbonate deposition and cement loose materials. The technology has been widely used due to its controllable reaction rate, high permeability,and environmental friendliness,having a good application prospect. In this paper,the principle of MICP technology,applied bacteria,mineralization and cementation mechanism,and the application of MICP technology in oil and gas field development are systematically reviewed. MICP can be achieved through urea hydrolysis,denitrification,sulfate reduction,or methane oxidation. The microorganisms inducing carbonate precipitation are mainly divided into extracellular polymer producing bacteria,urease producing bacteria,denitrifying bacteria,sulfate reducing bacteria and methane oxidizing bacteria. The MICP technology can induce carbonate precipitation by mineralization and act as a bridge to cement loose materials so that they can form a unified whole. Thus,MICP can be used to plug pores and fractures to prevent sand production in oil and gas wells and also improve the effectiveness of water flooding to enhance oil and gas recovery.

    关键词

    MICP技术微生物脲酶矿化胶结固砂

  • MICP 技术可以通过微生物的新陈代谢作用诱导产生碳酸盐沉淀,相较传统胶结材料,MICP技术诱导产生的碳酸盐沉淀具有反应速率可控、高渗透性、晶体尺寸和胶结强度可控、环境污染少且相对廉价等优点。MICP 技术具备封存和回收利用二氧化碳、固定重金属离子和去除放射性核素等作用,可用于建筑材料表面保护、混凝土裂缝修复、土壤改良、石雕艺术品的保护等领域[1-6]

  • 1973 年 BOQUET 等首次提出土壤中的微生物能够诱导生成碳酸钙晶体[4]。1992 年 KANTZAS 等通过实验发现微生物诱导沉积碳酸盐作为一种新型的胶凝材料显著降低了砂岩的孔隙度,同时渗透系数下降近 90%[7]。FERRIS 等研究发现,利用 MICP 技术可以在石油开采过程中有效封堵地层中的孔隙,以此来降低地层渗透率,进而提高石油采收率[8]。WU 等发现 MICP 技术可以使原油采收率从 44%提高至83%[9]

  • 在油气田开发过程中,目前常见的胶结材料和堵剂多为化学材料,对地层伤害较大,不可调控,且为一次性起效材料。当前对 MICP技术的研究还处在不断完善阶段,将 MICP 技术应用于油气田开发领域可以弥补化学胶结材料和堵剂的不足,无污染,可通过注入营养物质进行调控且具有可持续性,能够促进油气田开发向更加绿色环保的方向发展[10]

  • 1 MICP技术的原理

  • MICP技术可以通过多种途径实现,微生物自身细胞壁以及部分微生物产生的胞外聚合物可以诱导产生碳酸盐沉淀,还有一些功能菌可以通过光合作用、尿素水解作用、反硝化作用、硫酸盐还原作用、氨化作用或甲烷氧化作用诱导碳酸盐沉淀[11]。由于油藏环境中无光照且氧气不充足,所以在油气田的应用过程中不涉及光合作用和氨化作用(图1)。

  • 图1 不同代谢途径的MICP技术机理

  • Fig.1 Mechanisms of MICP in different metabolic pathways

  • 1.1 细胞自身细胞壁以及产生胞外聚合物诱导碳酸盐沉淀作用

  • 部分微生物细胞壁表面存在大量羧基、羟基、磷酸根等官能团,碱性条件下细胞表面带负电荷,在代谢过程中分泌的胞外聚合物也带有负电荷,二者均对溶液中的金属阳离子表现出极强的静电亲和力。微生物细胞自身以及胞外聚合物通过静电作用螯合金属阳离子,并为晶体成核提供矿化沉积界面[15]

  • 1.2 尿素水解作用

  • 尿素水解作用诱导碳酸盐沉淀的过程涉及氮循环:氨基酸的氨化、硝酸盐还原和尿素降解。尿素在脲酶的作用下分解生成氨和碳酸,氨水解成铵根和氢氧根,碳酸分解成碳酸氢根和氢离子,在细胞表面负电荷基团的吸引下,钙离子吸附于细胞表面并与碳酸氢根发生反应形成碳酸钙沉淀[1116]。尿素水解诱导碳酸盐沉淀是最常见的 MICP 技术,脲酶是尿素水解过程中的重要参与物,因此寻找并培养产脲酶菌是 MICP技术应用的重点。尿素水解诱导碳酸钙沉淀的过程中会产生铵根,除此之外不产生其他有害物质,适用于温度为20~35℃的环境[16]

  • 1.3 反硝化作用

  • 在酸性条件下,反硝化菌将硝酸盐还原为氮气并将碳源氧化为二氧化碳。二氧化碳溶于水生成碳酸氢根和氢离子,碳酸氢根结合钙离子与氢氧根反应生成碳酸钙沉淀[12-13]。反硝化作用会导致无机碳、碱度、pH 值的增加以及大量氮气的产生,对环境较为友好。反硝化作用在厌氧条件下发生,部分菌株能在缺乏微量元素的状态下进行反硝化作用。但反硝化作用过程中碳酸盐的生成速率远低于尿素水解作用,因此反硝化作用诱导碳酸盐沉淀并不常用[1317]

  • 1.4 硫酸盐还原作用

  • 硫酸盐还原菌将有机碳氧化为碳酸氢盐并将硫酸盐还原为硫化物,细胞本身的作用可以吸附钙离子,并提供碱性环境,促使钙离子反应生成碳酸钙沉淀[1116]。硫酸盐还原菌是厌氧碳循环的主要参与者,特别是在海洋沉积物中,硫酸盐还原作用形成的沉积可占海洋沉积物中有机碳沉积量的 50% 以上[14],但硫酸盐还原菌进行硫酸盐还原反应来诱导碳酸钙沉淀时,会产生副产物 H2S,导致油田套管堵塞和腐蚀,运输管路腐蚀、穿孔以及结垢等。此外硫酸盐还原菌还会降解聚丙烯酰胺等聚合物,降低聚合物驱油效果。

  • 1.5 甲烷氧化作用

  • 甲烷在甲烷脱氢酶的催化下水解成醋酸根,醋酸根在水中生成醋酸和氢氧根,醋酸在甲烷脱氢酶的催化下生成二氧化碳,与钙离子和氢氧根反应生成碳酸钙沉淀,但在甲烷氧化诱导碳酸盐沉淀过程中,甲烷氧化菌以甲烷作为营养物质,会导致细菌浓度增大、碳酸钙沉淀增多,使得脱钙现象发生[1218]

  • 2 MICP技术的菌种

  • 微生物在 MICP技术中起着关键作用,MICP技术的核心就在于利用微生物的各种新陈代谢活动产生的酶来催化诱导生成碳酸钙沉淀。能够诱导应用于 MICP 技术的微生物种类很多,按其作用方式可分为产胞外聚合物菌、产脲酶菌、反硝化菌、硫酸盐还原菌和甲烷氧化菌,每种菌都有其独有的特征和适宜生存的环境。

  • 2.1 产胞外聚合物菌

  • 胞外聚合物是在特定的生存环境下,微生物在新陈代谢过程中产生的胞外有机高分子多聚化合物[18]。微生物大多可以产生胞外聚合物,但能否产生理想的胞外聚合物并加以应用还需对微生物进行筛选。胞外聚合物的组成受微生物组成和外界环境因素的影响,但大致成分都是蛋白质、多糖、核酸、糖醛酸、脂类、腐殖酸、氨基酸等[19]。影响胞外聚合物产量的因素有提取方法不统一、来源菌类不同、菌类生长环境不同等[20-21]

  • 杜国丰等在油藏中筛选出了一株产胞外聚合物的革兰氏阴性杆菌,研究发现该菌种适宜生活在偏碱性环境并具有一定耐盐性,其产生的胞外聚合物具有耐温性能[22]。RODRIGUEZ-NAVARRO 等实验证明培养基的组成、培养条件和菌种类型是影响胞外聚合物膜的形成以及碳酸钙固结效果的重要因素[3]

  • 2.2 产脲酶菌

  • 大多数细菌、真菌、放线菌等均能产生脲酶,不同微生物产脲酶能力不同,按产脲酶能力从大到小依次排序为放线菌、真菌和细菌[23-24]。巴氏芽孢杆菌以其高产脲酶、安全无致病性的特点成为 MICP 技术中尿素水解作用应用最多的产脲酶菌,此外还有巴氏芽孢八叠球菌、巨大芽孢杆菌、球形芽孢杆菌等[16]。DHAMI 等对巨大芽孢杆菌、蜡样芽孢杆菌、苏云金芽孢杆菌等不同菌种的 MICP技术过程和生成的碳酸钙晶体进行研究,发现巨大芽孢杆菌的酶活性最大且形成的碳酸钙晶体尺寸最大,认为巨大芽孢杆菌的矿化潜能是最大的[25]

  • 大多数产脲酶菌都严格需氧,在一些缺氧、高 pH 值、高盐浓度等极端环境中,一些产脲酶菌无法生存,故而在油层环境中,产脲酶菌的存活量和脲酶活性会随反应时间的延长逐渐降低[12]。脲酶在碱性环境中更活跃,一些产脲酶菌,例如巴氏杆菌和产气克氏杆菌,在弱碱性条件脲酶活性最高[26-27]。其他因素也会影响产脲酶菌,促进其代谢产生脲酶,例如碳源以及钙、镁等金属离子[23]

  • KIM等研究了温度、pH值以及反应时间对腐生葡萄球菌和巴氏芽孢八叠球菌沉积碳酸钙的影响,发现这2种菌在尿素-CaCl2培养基中的最适宜pH值均为 7,其对于碳酸钙的最大沉积量都在 3 d 内,且在相同的实验环境下,腐生葡萄球菌的碳酸钙沉淀量是巴氏芽孢八叠球菌的 5倍[28]。李成杰通过实验确定芽孢杆菌属中某一种菌的最适宜生长环境:温度为 30℃,pH 值为 9.0,尿素质量浓度为 30 g/L,诱导碳酸钙沉积最佳钙离子浓度为0.25 mol/L[29]

  • 2.3 反硝化菌

  • 反硝化菌在自然界中分布广泛,分为自养反硝化菌和异养反硝化菌,异养反硝化菌较为常见,其将有机物作为生长活动的营养物质且革兰氏染色多为阴性。异养兼性厌氧反硝化菌在厌氧微生物中占比可达 20%,在可培养的土壤微生物中占比为 1%~5 %。目前已发现的反硝化菌有芽孢杆菌、碱性杆菌、双链杆菌、假单胞菌、螺旋菌等50多种。在油气田生产过程中,培养反硝化菌可以抑制硫酸盐还原菌的生长繁殖,从而减少硫酸盐还原菌对油气管道的损害。在炼油废水处理过程中,反硝化菌能够脱氮,且后期总氮去除率较高且稳定。增加外源反硝化菌后可以短时间内增强群落反硝化能力,但也会降低原有环境细菌群落的多样性[1230-31]

  • 韩冰等从污泥中分离出一株兼性厌氧嗜碱反硝化菌株 HK13,发现其适宜生长的 pH 值为 7~10,适宜生长的温度为 20~40℃,该菌在 C/N 为 8时反硝化脱氮效果最佳[32]。韩彬等从污泥中分离出一株反硝化菌,初步鉴定为苏云金芽孢杆菌,其在 35℃, pH值为6.8,C/N为23.55的条件下脱氮效果最佳[33]

  • 2.4 硫酸盐还原菌

  • 硫酸盐还原菌是利用硫酸盐作为有机物异化作用电子受体的微生物[1734]。SRB通常被认为是厌氧菌,普遍生活在河水、海水以及油藏等环境中,具有极强的生存能力,生长最适宜温度为 20~40℃,最适宜 pH 值大约为 7.2~7.6。但研究发现硫酸盐还原菌可以在有氧环境中生存,常见的硫酸盐还原菌有瘤胃脱硫肠状菌、普通脱硫弧菌等[16]

  • 温度、pH值、氧、代谢中间产物、金属离子、种群竞争等因素都会影响 SRB的适应能力,决定其生长和代谢活动的积极性[35]。陈效等通过对一株革兰氏阴性硫酸盐还原菌进行分析培养,发现菌株在 30~35℃且 pH值为 7、盐度为 0.7%的条件下生长良好,硫化物对其生长有明显抑制作用[34]。钙离子浓度对硫酸盐还原菌形成碳酸钙沉淀也存在影响,在高钙离子浓度环境中,硫酸盐还原菌能抑制球霰石,促进稳定方解石的形成[36]

  • MICP 技术所用微生物按照来源可分为内源微生物和外源微生物,内源微生物相对于外源微生物更容易适应油田的环境。甲烷氧化菌是一种以甲烷为能量来源的甲基营养菌,这类以烃类为营养物的厌氧或兼性厌氧菌种相较于其他几种功能菌而言,其在油田中应用的功能性更全、更为经济,且有研究表明此类微生物能在多种油藏条件下生存,适应环境范围广,但对其筛选和应用的研究很少[2037-40]。目前应用较广的是产脲酶菌,其生长条件要求较低,适宜大规模应用。

  • 3 MICP技术的矿化胶结机制

  • MICP 技术在油气田开发领域的应用主要是基于微生物的矿化作用和胶结作用,其中微生物的矿化作用是微生物代谢活动诱导产生碳酸钙沉淀,而胶结作用是产生的碳酸钙晶体之间或晶体与砂粒之间固结成整体。

  • 3.1 矿化作用机理及影响因素

  • 微生物的矿化作用是利用部分微生物在各种反应过程中代谢某种酶,通过酶的作用生成碳酸根离子,结合在生长环境中的钙离子形成碳酸钙沉淀。微生物在矿化过程中可以有效参与碳酸钙晶体的成核、生长以及沉积,整个过程具有易控制、操作便捷、矿化效率高等优点[15-1641-42]

  • 影响矿化作用的最主要因素是酶的催化作用,而影响酶催化作用的因素包括 pH 值、环境温度、底物浓度[24]。每种酶都有其最适宜的温度和pH值,以 MICP 技术中最常用的脲酶为例,当 pH 值大于 10 时,脲酶活性随 pH 值的增大而减小;且环境温度除了影响酶的活性,还会通过影响尿素的水解作用进一步影响矿化作用[21643-44]。不同底物浓度影响脲酶活性,底物浓度越高,脲酶活性达到最大值所需的培养时间越长[24]

  • 碳酸钙沉积量的影响因素有钙离子浓度、成核位点可用性、细菌浓度。钙离子浓度的增加会使碳酸钙沉积量先增大后降低,这是因为钙离子对酶活性有一定的抑制作用,进而抑制微生物的矿化作用[45-46]。细菌作为碳酸钙沉淀的成核位点,细菌浓度会对碳酸钙沉积量产生影响[46]。郝小虎由实验证明细菌浓度与碳酸钙沉积量呈线性关系,即细菌浓度越高,酶的浓度越高,碳酸钙的成核位点越多,碳酸钙沉积就越多,晶体表面也较为平整[45]。VAEZI 等由实验发现在细菌浓度达到一定程度后,碳酸钙的沉淀量会趋于稳定,甚至会出现略微的下降[47]。 GHOSH 等认为细菌浓度越高,酶的催化作用越大,会导致反应基质的完整性受到破坏,碳酸钙的沉淀量下降[48]

  • 碳酸钙晶体形貌受许多因素影响,例如沉积时间、钙源、细菌浓度、碳源等。沉积时间在一定范围内与碳酸钙晶体大小呈正相关关系,沉积时间过长,早期沉积的碳酸钙晶体会包裹在微生物周围,使其不能继续反应生成更多的碳酸钙,晶体尺寸趋于稳定。不同钙源生成的碳酸钙晶体形貌虽大致都呈方形,但仍存在差异(图2)[4649-51]。无机钙源生成的碳酸钙沉淀晶体颗粒较大,凝聚成簇;有机钙源生成的碳酸钙沉淀晶体颗粒较小,附着于基质上[52]。例如,氯化钙和硝酸钙作为钙源诱导生成的碳酸钙是方解石和六方石晶体,而乙酸钙作为钙源诱导生成的碳酸钙除了方解石和六方石晶体,还存在针状文石晶体[5053]。细菌浓度增大,沉积出的碳酸钙晶体粒径也会增大,还可能沉积一些小粒径晶体随机吸附于大粒径晶体表面。成亮等发现不同体积分数的菌液对生成碳酸钙晶体的形态有很大影响(图3),在体积分数为 25% 的菌液中,碳酸钙晶体呈规则晶体状的比例较高;在体积分数为50%的菌液中,规则形状碳酸钙晶体的比例降低,出现部分不规则形状的晶体;在体积分数为 100% 的菌液中,形成的碳酸钙晶体大多呈不规则的球体,大小也相去甚远[41]。不同碳源诱导生成碳酸钙的物质组成基本相同,但晶体形貌不同(图4)[50-51]

  • 3.2 胶结作用机理及影响因素

  • MICP 技术的胶结作用是由于微生物分泌物诱导生成的碳酸钙沉积物充当桥梁作用将松散颗粒胶结成为整体[54]。碳酸钙晶体可与砂粒胶结,或晶体之间互相胶结进而胶结砂粒。相较于化学胶结法,微生物胶结法是以砂粒为核心,将松散砂土胶结成一个整体[55-56]。对比酶诱导的碳酸钙沉淀,微生物诱导产生的碳酸钙含量高于酶诱导产生的碳酸钙含量[57]。詹其伟通过对矿化产物与松散颗粒之间的作用进行分析,发现微生物能够胶结砂粒最本质的原因是在有机质的影响下矿化产物与松散砂粒之间分子间氢键的形成[55]。CHENG等研究发现,控制胶结溶液注入速率可以形成较大晶体,在颗粒之间形成连接[56]

  • 图2 不同钙源沉积后的碳酸钙晶体微观显示[45]

  • Fig.2 Microstructure of calcium carbonate crystals deposited from different calcium sources[45]

  • 图3 不同浓度菌液中产生碳酸钙晶体的扫描电镜照片(20℃)[41]

  • Fig.3 SEM images of calcium carbonate crystals in bacterial solutions at different concentrations(20℃)[41]

  • 图4 不同碳源沉积后的碳酸钙晶体微观显示[51]

  • Fig.4 Microstructure of calcium carbonate crystals deposited from different carbon sources[51]

  • 影响胶结作用效果的因素很多,例如温度、pH 值、流动压力、细菌浓度等,这些因素会直接影响胶结过程或胶结后的砂体强度。环境温度和 pH 值会影响胶结作用效果,MICP技术的胶结作用的最适宜环境温度为 20~40℃,最适宜 pH 值为中性或弱碱性[55]。适当的胶结剂流动压力对于保证较好的胶结作用效果很重要,压力过高会导致孔隙中的液体压力增高,压力过低可能导致碳酸钙沉积在注入口处,堵塞后续胶结液的注入,在实际应用中可能会造成近井堵塞[58-60]。VAEZI等的实验说明,细菌浓度过高会导致碳酸钙沉积在表面,这对于总体胶结而言并没有积极作用[47]。CHENG等通过实验得出结论,胶结深度和胶结液的浸润速率与脲酶活性有关,胶结液浸润速率越大、脲酶活性越低,则胶结深度越大[56]。郝小虎的实验证明微生物和营养物质的注入量会对微生物诱导碳酸钙的胶结作用产生影响,其注入量越大,试件抗压程度越大[45]。GHOSH等研究发现,细菌浓度越高会导致基质完整性被破坏,进而使得砂浆抗压强度降低[48]。ZHANG 等通过研究不同钙源处理后微生物砂浆的物理性能发现,相比于氯化钙和硝酸钙处理过的,醋酸钙处理过的微生物砂浆的单轴抗压和劈裂抗拉强度更大,孔径分布更均匀,更适合应用于MICP技术[53]。在碳酸钙含量维持在1.0%~2.5%时,抗剪强度的提高与渗透率的降低呈线性相关;当碳酸钙含量超过 2.5% 时,抗剪强度的提高减缓,渗透率继续下降[59]。在胶结作用相同的情况下,低液体介质浓度的输入会使得碳酸钙沉淀在微尺度上的分布更加均匀[50]。胶结介质浓度控制在 0.25~0.5 mol/L,可以获得较理想的碳酸钙沉淀量和试件强度[61]。胶结注入工艺也会对 MICP 技术的胶结作用效果产生影响。CHENG 等发现一种新型胶结方式,即使用低pH值一体化生物碳酸钙沉淀溶液(微生物培养物、尿素以及CaCl2混合溶液) 进行胶结,可以通过低pH值延缓胶结作用来防止入口堵塞,进而使得胶结液在基质中分布更加均匀,该方法还能使氨气的释放量减少90%以上。处理次数和处理周期对于碳酸钙的胶结作用均存在一定影响,增加处理次数和处理时间可以增强胶结作用效果[62]。在一定时间范围内,处理时间越长,碳酸钙沉淀量越大,强度提高越大。但在此时间范围以外,细菌活性下降,试件强度随养护时间的增长而降低[434658]

  • 4 MICP 技术在油气田开发过程中的应用

  • MICP 技术在很多领域都有应用,例如建筑修复、地基加固、污染土壤修复等,其在油气田开发领域也有独特的价值,可以堵塞孔隙和裂缝提高水驱效果,还可以固结砂粒。相比于传统的堵剂和化学胶结剂,微生物诱导碳酸钙沉淀污染低,对环境友好,效果也较为理想,成为近些年固结砂粒和堵塞孔隙、裂缝的新选择。

  • 4.1 驱油效果

  • MICP技术可以通过沉积碳酸钙来堵塞孔隙、裂缝,减少砂岩缺损体积,降低渗透率(图5)[34663-66]。基于内源微生物的 MICP 技术,主要是激活油藏中的内源微生物并产生碳酸钙沉淀,堵塞部分孔隙、裂缝,从而提高驱油效果。而基于外源微生物的MICP 技术则是通过注入地层的液体中所含微生物本身的机械阻塞以及沉积碳酸钙的组合作用[265]

  • 与传统堵剂相比,MICP技术所产生的生物胶结物粒径小,可以对地层孔隙进行封堵,提高油田驱油效率[16]。与传统的硅酸盐水泥相比,MICP技术所产生的碳酸钙沉淀可以保持高渗透性条件,且具有可持续性,成本还相对较低。同时可以在多孔介质中生存,封堵高渗透层,堵塞孔隙,增加水驱油的效率,进而提高石油采收率[22]

  • 4.2 固砂效果

  • 在油气田开发过程中,砂粒胶结疏松可能会引起油气水井出砂,磨损井下设备、管线,造成井筒砂堵。传统的固砂材料主要以化学剂为主,但化学剂可能对环境存在污染。而 MICP技术诱导生成的碳酸钙作为胶结剂,对环境影响小,不存在污染,且固结效果较好。RODRIGUEZ-NAVARRO等通过实验发现黏球菌诱导形成的碳酸钙能够有效固结石灰岩,说明 MICP 技术在胶结砂粒方面存在较好的作用[3]

  • 图5 胶结作用前后砂岩缺损体积[66]

  • Fig.5 Defect volume of sandstone before and after cementation[66]

  • 影响固砂效果的因素较多,例如钙源、碳源、砂粒粒径等。梁仕华等通过实验研究发现钙源对于 MICP技术的沉积固结效果存在影响,硝酸钙沉积固结效果较好,乙酸钙次之[52]。不同碳源对固结的效果也存在一定影响,对比碳酸氢钠、碳酸氢铵和乙酸钠,葡萄糖的固结效果最好[51]。注入速度影响砂柱的固结强度,注入速度越快,砂柱固结强度越高[49]。砂粒的粒径也会影响微生物的固砂效果,实验证明粒径为 0.25~0.5 mm 的砂粒固结效果最好,强度最大[67]。依据砂粒尺寸的不同,添加5~20 g/L尿素有益于砂柱固结[49]。注入轮次也会影响砂柱的固结效果。随着注入轮次的增长,生成的碳酸钙沉淀逐渐填补砂柱中的孔隙,注入三次后砂柱的渗透率和吸水率的降低值达到最大[68]。可以通过控制注入速率、保证间隔时间、降低碳酸钙饱和度来使碳酸钙沉积更均匀,减少薄弱区,从而提高微生物固结砂土强度。

  • 5 结论

  • MICP技术的实现可以有许多方式,产脲酶菌是目前应用于 MICP 技术最多的菌种,也是最大可能大范围应用的菌种,其中巴氏杆菌应用最广,效果最好。MICP 技术的应用主要是通过矿化作用和胶结作用来实现的。影响矿化作用的因素主要是酶的催化作用,此外环境温度、pH值、底物浓度等因素也会影响矿化作用,而细菌浓度、钙源、碳源等会影响沉积碳酸钙晶体的形貌。环境温度、pH值、胶结深度、胶结液的浸润速率、处理周期次数、钙源类型等都会对胶结作用效果产生影响。MICP 技术在许多领域都有应用,在油气田中的应用主要是通过堵塞孔隙、裂缝,改善驱油效果和固砂效果。

  • 目前有关 MICP 技术的研究成果越来越细致,但还有许多问题有待解决。相较于化学剂,MICP技术的作用效果较为缓慢,因此需对其作用环境进行详细评估及预测,确保如环境温度、pH 值等条件在一定时间内不会发生太大变化,或产生的变化不至于影响作用过程。目前 MICP技术已应用于很多方面,在油田的应用效果也较为理想,利用简单的微生物进行诱导反应即可持续生成碳酸钙沉淀用以堵塞孔隙、裂缝和固结砂粒。作为一项新兴技术,其在油气田开发领域应用过程中具有反应速率可控、高渗透性、生态友好等优势,在未来具有良好的发展潜力。

  • 参考文献

    • [1] 荣辉,钱春香,王欣.微生物水泥基材料抗冻性和抗冲刷性[J].功能材料,2014,45(11):11 091-11 095.RONG Hui,QIAN Chunxiang,WANG Xin.Performance of mi‐ crobe cementitious materials[J].Journal of Functional Materials,2014,45(11):11 091-11 095.

    • [2] JOSH S,GOYAL S,MUKHERJEE A,et al.Microbial healing of cracks in concrete:a review[J].Journal of Industrial Microbiology & Biotechnology,2017,44(11):1 511-1 525.

    • [3] RODRIGUEZ-NAVARRO C,RODRIGUEZ-GALLEGO M,BEN-CHEKROUN K,et al.Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization[J].Applied and Environmental Microbiology,2003,69(4):2 182-2 193.

    • [4] BOQUET E,BORONAT A,RAMOS-CORMENZANA A.Production of calcite(calcium carbonate)crystals by soil bacteria is a general phenomenon[J].Nature,1973,246:527-529.

    • [5] 解思维,唐国旺,王贵和.一种生物水泥的研制[J].断块油气田,2021,28(3):428-432.XIE Siwei,TANG Guowang,WANG Guihe.Development of a biological cement[J].Fault-Block Oil and Gas Field,2021,28(3):428-432.

    • [6] JACK T R,STEHMEIER L G,ISLAM M R,et al.Ch.F-6 microbial selective plugging to control water channeling[J].Developments in Petroleum Science,1991,31:433-440.

    • [7] KANTZAS A,MARENTETTE D F,JHA K N N.Computer-assisted tomography from qualitative visualization to quantitative core analysis[J].Journal of Canadian Petroleum Technology,1992,31(9):48-56.

    • [8] FERRIS F G,STEHMEIER L G,KANTZAS A,et al.Bacteriogenic mineral plugging[J].Journal of Canadian Petroleum Technology,1997,36(9):56-59.

    • [9] WU Jun,WANG Xianbin,WANG Houfeng,et al.Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery[J].RSC Advances,2017,7(59):37 382-37 391.

    • [10] ARMSTRONG I O,PALOMBO E A,NISSOM P M.Bioprecipitation of calcium carbonate mediated by ureolysis:a review[J].Environmental Engineering Research,2021,26(6):200379.

    • [11] ZHU Tingting,DITTRICH M.Carbonate precipitation through microbial activities in natural environment,and their potential in biotechnology:a review[J].Frontiers in Bioengineering and Biotechnology,2016,4:4.

    • [12] LIN Wenbin,LIN Wei,CHENG Xiaohui,et al.Microbially induced desaturation and carbonate precipitation through denitrification:a review[J].Applied Sciences,2021,11(17):7 842.

    • [13] VAN PAASSEN L A,DAZA C M,STAAL M,et al.Potential soil reinforcement by biological denitrification[J].Ecological Engineering,2010,36(2):168-175.

    • [14] MUYZER G,STAMS A J M.The ecology and biotechnology of sulphate-reducing bacteria[J].Nature Reviews Microbiology,2008,6(6):441-454.

    • [15] 李沛豪,屈文俊.细菌诱导矿化保护历史建筑遗产的机理及效果[J].硅酸盐学报,2009,37(4):497-505.LI Peihao,QU Wenjun.Mechanism and performance of remediation for historic buildings by bacterially induced mineralization [J].Journal of the Chinese Ceramic Society,2009,37(4):497-505.

    • [16] 孙道胜,许婉钰,刘开伟,等.MICP 在建筑领域中的应用进展 [J].材料导报,2021,35(11):11 084-11 091.SUN Daosheng,XU Wanyu,LIU Kaiwei,et al.Research progress of the application of MICP in architecture[J].Materials Reports,2021,35(11):11 084-11 091.

    • [17] YUSUF ÇE,NELE DB,NICO B.Microbially induced CaCO3 precipitation through denitrification:An optimization study in minimal nutrient environment[J].Biochemical Engineering Journal,2015,101:108-118.

    • [18] REEBURGH W S.Oceanic methane biogeochemistry[J].Chemical Reviews,2007,107(2):486-513.

    • [19] 皋德祥,邓欢欢,张明华,等.微生物胞外聚合物的研究进展[J].温州医学院学报,2012,42(3):297-301.GAO Dexiang,DENG Huanhuan,ZHANG Minghua,et al.Re‐ search progress of microbial extracellular polymer[J].Journal of Wenzhou Medical College,2012,42(3):297-301.

    • [20] 王小豆,聂麦茜,聂红云,等.铜绿假单胞菌NY3及突变株代谢油污泥同步产胞外聚合物的特性[J].环境工程学报,2016,10(7):3 891-3 897.WANG Xiaodou,NIE Maiqian,NIE Hongyun,et al.Characterizations of degradation of oil sludge and synchronous production of extracellular polymers by Pseudomonas aeruginosa NY3 and its mutants[J].Chinese Journal of Environmental Engineering,2016,10(7):3 891-3 897.

    • [21] 杨敏.微生物胞外聚合物的生成及其对树脂特性的影响研究 [D].昆明:昆明理工大学,2012.YANG Min.Study on the formation of microbial extracellular polymer and its effect on resin properties [D].Kunming:Kunming University of Science and Technology,2012.

    • [22] 杜国丰,关云虎.油田本源微生物胞外聚合物产生菌 AD-05发酵条件的实验室评估[J].当代化工,2016,45(1):44-47.DU Guofeng,GUAN Yunhu.Laboratory evaluation of the fermentation conditions of the bio-polymer producing bacteria AD05 from oil field source[J].Contemporary Chemical Industry,2016,45(1):44-47.

    • [23] 彭仁,邱业先,汪金莲.脲酶高产菌的筛选和产酶条件的研究 [J].江西师范大学学报:自然科学版,2003,27(3):273-275.PENG Ren,QIU Yexian,WANG Jinlian.Screening of strains producing urease with high activity and study on condition of producing urease[J].Journal of Jiangxi Normal University:Natural Science Edition,2003,27(3):273-275.

    • [24] 谢新东,陈济琛,林新坚,等.一株芽孢杆菌产生脲酶条件及脲酶提取研究[J].微生物学通报,1996,23(2):81-84.XIE Xindong,CHEN Jichen,LIN Xinjian,et al.Studies on production and extraction of urease from Bacillus SP.[J].Microbiology China,1996,23(2):81-84.

    • [25] DHAMI N K,REDDY M S,MUKHERJEE A.Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites[J].Journal of Microbiology and Biotechnology,2013,23(5):707-714.

    • [26] PHANG I R K,CHAN Y S,WONG K S,et al.Isolation and characterization of ureaseproducing bacteria from tropical peat [J].Biocatalysis and Agricultural Biotechnology,2018,13:168-175.

    • [27] FIDALEO M,ESTI M,MORESI M.Assessment of urea degradation rate in model wine solutions by acid urease from lactobacillus fermentum[J].Journal of Agricultural and Food Chemistry,2006,54(17):6 226-6 235.

    • [28] KIM G,KIM J,YOUN H.Effect of temperature,pH,and reaction duration on microbially induced calcite precipitation[J].Applied Sciences,2018,8(8):1 277.

    • [29] 李成杰.产脲酶菌诱导碳酸钙沉积及对重金属Cd2+/Pb2+的去除研究[D].武汉:武汉科技大学,2018.LI Chengjie.Bioremediation of Cd2+/Pb2+ and calcium carbonate precipitation induced by urease producing bacteria [D].Wuhan:Wuhan University of Science and Technology,2018.

    • [30] 杨康,王路逸,吴泽宇,等.外源反硝化菌投加对湖水细菌群落的影响[J].安全与环境工程,2020,27(6):81-87.YANG Kang,WANG Luyi,WU Zeyu,et al.Effects of denitrifying bacteria inoculation on bacterial communities in a lake[J].Safety and Environmental Engineering,2020,27(6):81-87.

    • [31] 蔡峰.硫酸盐还原菌对油田套管腐蚀的影响及控制技术[J].建材与装饰,2019,(21):146-147.CAI Feng.Influence of sulfate reducing bacteria on casing corrosion in oilfield and its control technology[J].Construction Materials & Decoration,2019,(21):146-147.

    • [32] 韩冰,丁雷,史沐,等.一株高效嗜碱反硝化菌的分离鉴定及其脱氮特性研究[J].环境科学研究,2020,33(9):2 129-2 137.HAN Bing,DING Lei,SHI Mu,et al.Identification and characterization of an alkalophilic pseudomonas stutzeri strain with high denitrification capacity[J].Research of Environmental Science,2020,33(9):2 129-2 137.

    • [33] 韩彬,王桐屿,曹雁,等.一株反硝化菌的脱氮性能[J].环境工程学报,2017,11(3):1 935-1 940.HAN Bin,WANG Tongyu,CAO Yan,et al.Denitrification performance of a denitrifying bacteria strain[J].Chinese Journal of Environmental Engineering,2017,11(3):1 935-1 940.

    • [34] 陈效,孙立苹,徐盈,等.硫酸盐还原菌的分离和生理特性研究 [J].环境科学与技术,2006,29(9):38-40.CHEN Xiao,SUN Liping,XU Ying,et al.Isolation and physiological characteristics of sulfatereducing bacteria[J].Environ‐ mental Science & Technology,2006,29(9):38-40.

    • [35] 白鹤.硫酸盐还原菌生物膜生长和传质过程的研究[D].天津:天津大学,2014.BAI He.Growth and mass transfer of sulfate reducing bacteria biofilm [D].Tianjin:Tianjin University,2014.

    • [36] 钱江,吴文涛,周跃飞,等.硫酸盐还原菌对碳酸钙结晶过程的影响[J].硅酸盐学报,2019,47(1):109-116.QIAN Jiang,WU Wentao,ZHOU Yuefei,et al.Effect of sulfate reducing bacteria on the crystallization process of calcium carbonate[J].Journal of the Chinese Ceramic Society,2019,47(1):109-116.

    • [37] 汪卫东,汪竹,耿雪莉,等.美国微生物采油技术现场应用效果分析[J].油气地质与采收率,2002,9(6):75-76.WANG Weidong,WANG Zhu,GENG Xueli,et al.Effect analysis on field application of microbial enhanced oil recovery technique in U.S.A.[J].Petroleum Geology and Recovery Efficiency,2002,9(6):75-76.

    • [38] 雷光伦,郭云尧,郑家朋,等.高温微生物提高采收率实验研究 [J].油气地质与采收率,2002,9(4):15-16,20.LEI Guanglun,GUO Yunyao,ZHENG Jiapeng,et al.Laboratory research of improving oil recovery by microbe at high temperature[J].Petroleum Geology and Recovery Efficiency,2002,9(4):15-16,20.

    • [39] 汪卫东.微生物采油技术研究进展与发展趋势[J].油气地质与采收率,2021,28(2):1-9.WANG Weidong.Research advance and development trend in microbial enhanced oil recovery technology[J].Petroleum Geology and Recovery Efficiency,2021,28(2):1-9.

    • [40] 林军章,汪卫东,胡婧,等.胜利油田微生物采油技术研究与应用进展[J].油气地质与采收率,2021,28(2):18-26.LIN Junzhang,WANG Weidong,HU Jing,et al.Progress in research and application of microbial enhanced oil recovery technology in Shengli Oilfield[J].Petroleum Geology and Recovery Efficiency,2021,28(2):18-26.

    • [41] 成亮,钱春香,王瑞兴,等.碳酸岩矿化菌诱导碳酸钙晶体形成机理研究[J].化学学报,2007,65(19):2 133-2 138.CHENG Liang,QIAN Chunxiang,WANG Ruixing,et al.Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J].Acta Chimica Sinica,2007,65(19):2 133-2 138.

    • [42] 孙刚正,胡婧,刘涛,等.油藏物性及采出程度对内源微生物驱油效果的影响[J].油气地质与采收率,2021,28(2):41-48.SUN Gangzheng,HU Jing,LIU Tao,et al.Effects of reservoir physical properties and recoveries on oil displacement of endogenous microbes[J].Petroleum Geology and Recovery Efficiency,2021,28(2):41-48.

    • [43] GEBRU K A,KIDANNEMARIAM T G,GEBRETINSAE H K.Bio-cement production using microbially induced calcite precipitation(MICP)method:a review[J].Chemical Engineering Science,2021,238:116610.

    • [44] TORRES-ARAVENA A,DUARTE-NASS C,AZÓCAR L,et al.Can microbially induced calcite precipitation(MICP)through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters?[J].Crystals,2018,8(11):438.

    • [45] 郝小虎.微生物矿化增强膨胀珍珠岩保温板性能试验研究及机理分析[D].太原:太原理工大学,2019.HAO Xiaohu.Experimental studies on performances of expanded perlite insulation board strengthened by microbial mineralization and mechanism analysis [D].Taiyuan:Taiyuan University of Technology,2019.

    • [46] MAHAWISH A,BOUAZZA A,GATES W P.Improvement of coarse sand engineering properties by microbially induced calcite precipitation[J].Geomicrobiology Journal,2018,35(10):887-897.

    • [47] VAEZI M,ZAREEI S A,JAHADI M.Recycled microbial mortar:effects of bacterial concentration and calcium lactate content [J].Construction and Building Materials,2020,234:117349.

    • [48] GHOSH S,BISWAS M,CHATTOPADHYAY B D,et al.Microbial activity on the microstructure of bacteria modified mortar [J].Cement and Concrete Composites,2009,31(2):93-98.

    • [49] SUN Xiaohao,MIAO Linchang,TONG Tianzhi,et al.Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification[J].Journal of Materials in Civil Engineering,2018,30(11):04018301.

    • [50] AL QABANY A A,SOGA K,SANTAMARINA J C.Factors affecting efficiency of microbially induced calcite precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2012,138(8):992-1 001.

    • [51] 梁仕华,牛九格,戴君,等.碳源对微生物固化砂土效果影响的试验研究[J].工业建筑,2018,48(7):16-21.LIANG Shihua,NIU Jiuge,DAI Jun,et al.Experimental research on the effect of carbon sources on bio-cemented sand[J].Industrial Construction,2018,48(7):16-21.

    • [52] 梁仕华,牛九格,房采杏,等.钙源对微生物沉积碳酸钙固化砂土的试验研究[J].工业建筑,2018,48(7):10-15.LIANG Shihua,NIU Jiuge,FANG Caixing,et al.Experimental research on the effect of calcium source on microbial deposites of calcium carbonate[J].Industrial Construction,2018,48(7):10-15.

    • [53] ZHANG Yanrong,GUO Hongxian,CHENG Xiaohui.Role of calcium sources in the strength and microstructure of microbial mortar[J].Construction and Building Materials,2015,77:160-167.

    • [54] 荣辉,钱春香,李龙志.微生物水泥胶结机理[J].硅酸盐学报,2013,41(3):314-319.RONG Hui,QIAN Chunxiang,LI Longzhi.Cementation mechanism of microbe cement[J].Journal of the Chinese Ceramic Society,2013,41(3):314-319.

    • [55] 詹其伟.微生物捕碳浅层矿化胶结沙土及其抑尘应用[D].南京:东南大学,2018.ZHAN Qiwei.Cementation of sandy soil by shallow mineralization of microbe capturing carbon dioxide and application in fugitive dust suppresion [D].Nanjing:Southeast University,2018.

    • [56] CHENG Liang,CORD-RUWISCH R.Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation[J].Geomicrobiology Journal,2014,31(5):396-406.

    • [57] SIDDIQUE R,CHAHAL N K.Effect of ureolytic bacteria on concrete properties[J].Construction and Building Materials,2011,25(10):3 791-3 801.

    • [58] UMAR M,KASSIM K A,ZANGO M U,et al.Performance evaluation of lime and microbial cementation in residual soil improvement[C].Kuala Lumpur:IOP Conference Series:Materials Science and Engineering,527,2019:012005.

    • [59] SOON N W,LEE L M,KHUN T C,et al.Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2014,140(5):04014006.

    • [60] 汪卫东,刘茂诚,程海鹰,等.微生物堵调研究进展[J].油气地质与采收率,2007,14(1):86-90.WANG Weidong,LIU Maocheng,CHENG Haiying,et al.Re‐ search progress of microbial plugging and profile control[J].Petroleum Geology and Recovery Efficiency,2007,14(1):86-90.

    • [61] ZHAO Qian,LI Lin,LI Chi,et al.Factors affecting improvement of engineering properties of micp-treated soil catalyzed by bacteria and urease[J].Journal of Materials in Civil Engineering,2014,26(12):04014094.

    • [62] CHENG Liang,SHAHIN M A,CHU Jian.Soil bio-cementation using a new one-phase low-pH injection method[J].Acta Geotechnica,2019,14(3):615-626.

    • [63] 李明东,LI Lin,张振东,等.微生物矿化碳酸钙改良土体的进展、展望与工程应用技术设计[J].土木工程学报,2016,49(10):80-87.LI Mingdong,LI Lin,ZHANG Zhendong,et al.Review,out‐ look and application technology design on soil improvement bymicrobial induced calcium carbonate precipitation[J].China Civil Engineering Journal,2016,49(10):80-87.

    • [64] VARENYAM A,ABHIJIT M.A Review of microbial precipita‐ tion for sustainable construction[J].Construction and Building Materials,2015,93:1 224-1 235.

    • [65] 代学成,王红波,许念,等.内源微生物驱油激活配方筛选评价指标探讨[J].油气地质与采收率,2012,19(2):37-40.DAI Xuecheng,WANG Hongbo,XU Nian,et al.Study on activation blend evaluation for indigenous microbial flooding[J].Petroleum Geology and Recovery Efficiency,2012,19(2):37-40.

    • [66] RONG Hui,QIAN Chunxiang.Development of microbe cementitious material in China[J].Journal of Shanghai Jiaotong University:Science,2012,17(3):350-355.

    • [67] 梁仕华,曾伟华,陈俊涛,等.纤维对微生物固化不同颗粒粒径砂土强度影响试验研究[J].工业建筑,2018,48(7):27-32.LIANG Shihua,ZENG Weihua,CHEN Juntao,et al.Experimental research on the effect of fiber on bio-cemented sand with different particle sizes[J].Industrial Construction,2018,48(7):27-32.

    • [68] 梁仕华,牛九格,戴君,等.循环灌浆次数对微生物固化砂土效果的影响[J].工业建筑,2018,48(7):22-26.LIANG Shihua,NIU Jiuge,DAI Jun,et al.Effect of the number of grouting cycles on bio-cemented sand[J].Industrial Construction,2018,48(7):22-26.

  • 参考文献

    • [1] 荣辉,钱春香,王欣.微生物水泥基材料抗冻性和抗冲刷性[J].功能材料,2014,45(11):11 091-11 095.RONG Hui,QIAN Chunxiang,WANG Xin.Performance of mi‐ crobe cementitious materials[J].Journal of Functional Materials,2014,45(11):11 091-11 095.

    • [2] JOSH S,GOYAL S,MUKHERJEE A,et al.Microbial healing of cracks in concrete:a review[J].Journal of Industrial Microbiology & Biotechnology,2017,44(11):1 511-1 525.

    • [3] RODRIGUEZ-NAVARRO C,RODRIGUEZ-GALLEGO M,BEN-CHEKROUN K,et al.Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization[J].Applied and Environmental Microbiology,2003,69(4):2 182-2 193.

    • [4] BOQUET E,BORONAT A,RAMOS-CORMENZANA A.Production of calcite(calcium carbonate)crystals by soil bacteria is a general phenomenon[J].Nature,1973,246:527-529.

    • [5] 解思维,唐国旺,王贵和.一种生物水泥的研制[J].断块油气田,2021,28(3):428-432.XIE Siwei,TANG Guowang,WANG Guihe.Development of a biological cement[J].Fault-Block Oil and Gas Field,2021,28(3):428-432.

    • [6] JACK T R,STEHMEIER L G,ISLAM M R,et al.Ch.F-6 microbial selective plugging to control water channeling[J].Developments in Petroleum Science,1991,31:433-440.

    • [7] KANTZAS A,MARENTETTE D F,JHA K N N.Computer-assisted tomography from qualitative visualization to quantitative core analysis[J].Journal of Canadian Petroleum Technology,1992,31(9):48-56.

    • [8] FERRIS F G,STEHMEIER L G,KANTZAS A,et al.Bacteriogenic mineral plugging[J].Journal of Canadian Petroleum Technology,1997,36(9):56-59.

    • [9] WU Jun,WANG Xianbin,WANG Houfeng,et al.Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery[J].RSC Advances,2017,7(59):37 382-37 391.

    • [10] ARMSTRONG I O,PALOMBO E A,NISSOM P M.Bioprecipitation of calcium carbonate mediated by ureolysis:a review[J].Environmental Engineering Research,2021,26(6):200379.

    • [11] ZHU Tingting,DITTRICH M.Carbonate precipitation through microbial activities in natural environment,and their potential in biotechnology:a review[J].Frontiers in Bioengineering and Biotechnology,2016,4:4.

    • [12] LIN Wenbin,LIN Wei,CHENG Xiaohui,et al.Microbially induced desaturation and carbonate precipitation through denitrification:a review[J].Applied Sciences,2021,11(17):7 842.

    • [13] VAN PAASSEN L A,DAZA C M,STAAL M,et al.Potential soil reinforcement by biological denitrification[J].Ecological Engineering,2010,36(2):168-175.

    • [14] MUYZER G,STAMS A J M.The ecology and biotechnology of sulphate-reducing bacteria[J].Nature Reviews Microbiology,2008,6(6):441-454.

    • [15] 李沛豪,屈文俊.细菌诱导矿化保护历史建筑遗产的机理及效果[J].硅酸盐学报,2009,37(4):497-505.LI Peihao,QU Wenjun.Mechanism and performance of remediation for historic buildings by bacterially induced mineralization [J].Journal of the Chinese Ceramic Society,2009,37(4):497-505.

    • [16] 孙道胜,许婉钰,刘开伟,等.MICP 在建筑领域中的应用进展 [J].材料导报,2021,35(11):11 084-11 091.SUN Daosheng,XU Wanyu,LIU Kaiwei,et al.Research progress of the application of MICP in architecture[J].Materials Reports,2021,35(11):11 084-11 091.

    • [17] YUSUF ÇE,NELE DB,NICO B.Microbially induced CaCO3 precipitation through denitrification:An optimization study in minimal nutrient environment[J].Biochemical Engineering Journal,2015,101:108-118.

    • [18] REEBURGH W S.Oceanic methane biogeochemistry[J].Chemical Reviews,2007,107(2):486-513.

    • [19] 皋德祥,邓欢欢,张明华,等.微生物胞外聚合物的研究进展[J].温州医学院学报,2012,42(3):297-301.GAO Dexiang,DENG Huanhuan,ZHANG Minghua,et al.Re‐ search progress of microbial extracellular polymer[J].Journal of Wenzhou Medical College,2012,42(3):297-301.

    • [20] 王小豆,聂麦茜,聂红云,等.铜绿假单胞菌NY3及突变株代谢油污泥同步产胞外聚合物的特性[J].环境工程学报,2016,10(7):3 891-3 897.WANG Xiaodou,NIE Maiqian,NIE Hongyun,et al.Characterizations of degradation of oil sludge and synchronous production of extracellular polymers by Pseudomonas aeruginosa NY3 and its mutants[J].Chinese Journal of Environmental Engineering,2016,10(7):3 891-3 897.

    • [21] 杨敏.微生物胞外聚合物的生成及其对树脂特性的影响研究 [D].昆明:昆明理工大学,2012.YANG Min.Study on the formation of microbial extracellular polymer and its effect on resin properties [D].Kunming:Kunming University of Science and Technology,2012.

    • [22] 杜国丰,关云虎.油田本源微生物胞外聚合物产生菌 AD-05发酵条件的实验室评估[J].当代化工,2016,45(1):44-47.DU Guofeng,GUAN Yunhu.Laboratory evaluation of the fermentation conditions of the bio-polymer producing bacteria AD05 from oil field source[J].Contemporary Chemical Industry,2016,45(1):44-47.

    • [23] 彭仁,邱业先,汪金莲.脲酶高产菌的筛选和产酶条件的研究 [J].江西师范大学学报:自然科学版,2003,27(3):273-275.PENG Ren,QIU Yexian,WANG Jinlian.Screening of strains producing urease with high activity and study on condition of producing urease[J].Journal of Jiangxi Normal University:Natural Science Edition,2003,27(3):273-275.

    • [24] 谢新东,陈济琛,林新坚,等.一株芽孢杆菌产生脲酶条件及脲酶提取研究[J].微生物学通报,1996,23(2):81-84.XIE Xindong,CHEN Jichen,LIN Xinjian,et al.Studies on production and extraction of urease from Bacillus SP.[J].Microbiology China,1996,23(2):81-84.

    • [25] DHAMI N K,REDDY M S,MUKHERJEE A.Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites[J].Journal of Microbiology and Biotechnology,2013,23(5):707-714.

    • [26] PHANG I R K,CHAN Y S,WONG K S,et al.Isolation and characterization of ureaseproducing bacteria from tropical peat [J].Biocatalysis and Agricultural Biotechnology,2018,13:168-175.

    • [27] FIDALEO M,ESTI M,MORESI M.Assessment of urea degradation rate in model wine solutions by acid urease from lactobacillus fermentum[J].Journal of Agricultural and Food Chemistry,2006,54(17):6 226-6 235.

    • [28] KIM G,KIM J,YOUN H.Effect of temperature,pH,and reaction duration on microbially induced calcite precipitation[J].Applied Sciences,2018,8(8):1 277.

    • [29] 李成杰.产脲酶菌诱导碳酸钙沉积及对重金属Cd2+/Pb2+的去除研究[D].武汉:武汉科技大学,2018.LI Chengjie.Bioremediation of Cd2+/Pb2+ and calcium carbonate precipitation induced by urease producing bacteria [D].Wuhan:Wuhan University of Science and Technology,2018.

    • [30] 杨康,王路逸,吴泽宇,等.外源反硝化菌投加对湖水细菌群落的影响[J].安全与环境工程,2020,27(6):81-87.YANG Kang,WANG Luyi,WU Zeyu,et al.Effects of denitrifying bacteria inoculation on bacterial communities in a lake[J].Safety and Environmental Engineering,2020,27(6):81-87.

    • [31] 蔡峰.硫酸盐还原菌对油田套管腐蚀的影响及控制技术[J].建材与装饰,2019,(21):146-147.CAI Feng.Influence of sulfate reducing bacteria on casing corrosion in oilfield and its control technology[J].Construction Materials & Decoration,2019,(21):146-147.

    • [32] 韩冰,丁雷,史沐,等.一株高效嗜碱反硝化菌的分离鉴定及其脱氮特性研究[J].环境科学研究,2020,33(9):2 129-2 137.HAN Bing,DING Lei,SHI Mu,et al.Identification and characterization of an alkalophilic pseudomonas stutzeri strain with high denitrification capacity[J].Research of Environmental Science,2020,33(9):2 129-2 137.

    • [33] 韩彬,王桐屿,曹雁,等.一株反硝化菌的脱氮性能[J].环境工程学报,2017,11(3):1 935-1 940.HAN Bin,WANG Tongyu,CAO Yan,et al.Denitrification performance of a denitrifying bacteria strain[J].Chinese Journal of Environmental Engineering,2017,11(3):1 935-1 940.

    • [34] 陈效,孙立苹,徐盈,等.硫酸盐还原菌的分离和生理特性研究 [J].环境科学与技术,2006,29(9):38-40.CHEN Xiao,SUN Liping,XU Ying,et al.Isolation and physiological characteristics of sulfatereducing bacteria[J].Environ‐ mental Science & Technology,2006,29(9):38-40.

    • [35] 白鹤.硫酸盐还原菌生物膜生长和传质过程的研究[D].天津:天津大学,2014.BAI He.Growth and mass transfer of sulfate reducing bacteria biofilm [D].Tianjin:Tianjin University,2014.

    • [36] 钱江,吴文涛,周跃飞,等.硫酸盐还原菌对碳酸钙结晶过程的影响[J].硅酸盐学报,2019,47(1):109-116.QIAN Jiang,WU Wentao,ZHOU Yuefei,et al.Effect of sulfate reducing bacteria on the crystallization process of calcium carbonate[J].Journal of the Chinese Ceramic Society,2019,47(1):109-116.

    • [37] 汪卫东,汪竹,耿雪莉,等.美国微生物采油技术现场应用效果分析[J].油气地质与采收率,2002,9(6):75-76.WANG Weidong,WANG Zhu,GENG Xueli,et al.Effect analysis on field application of microbial enhanced oil recovery technique in U.S.A.[J].Petroleum Geology and Recovery Efficiency,2002,9(6):75-76.

    • [38] 雷光伦,郭云尧,郑家朋,等.高温微生物提高采收率实验研究 [J].油气地质与采收率,2002,9(4):15-16,20.LEI Guanglun,GUO Yunyao,ZHENG Jiapeng,et al.Laboratory research of improving oil recovery by microbe at high temperature[J].Petroleum Geology and Recovery Efficiency,2002,9(4):15-16,20.

    • [39] 汪卫东.微生物采油技术研究进展与发展趋势[J].油气地质与采收率,2021,28(2):1-9.WANG Weidong.Research advance and development trend in microbial enhanced oil recovery technology[J].Petroleum Geology and Recovery Efficiency,2021,28(2):1-9.

    • [40] 林军章,汪卫东,胡婧,等.胜利油田微生物采油技术研究与应用进展[J].油气地质与采收率,2021,28(2):18-26.LIN Junzhang,WANG Weidong,HU Jing,et al.Progress in research and application of microbial enhanced oil recovery technology in Shengli Oilfield[J].Petroleum Geology and Recovery Efficiency,2021,28(2):18-26.

    • [41] 成亮,钱春香,王瑞兴,等.碳酸岩矿化菌诱导碳酸钙晶体形成机理研究[J].化学学报,2007,65(19):2 133-2 138.CHENG Liang,QIAN Chunxiang,WANG Ruixing,et al.Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J].Acta Chimica Sinica,2007,65(19):2 133-2 138.

    • [42] 孙刚正,胡婧,刘涛,等.油藏物性及采出程度对内源微生物驱油效果的影响[J].油气地质与采收率,2021,28(2):41-48.SUN Gangzheng,HU Jing,LIU Tao,et al.Effects of reservoir physical properties and recoveries on oil displacement of endogenous microbes[J].Petroleum Geology and Recovery Efficiency,2021,28(2):41-48.

    • [43] GEBRU K A,KIDANNEMARIAM T G,GEBRETINSAE H K.Bio-cement production using microbially induced calcite precipitation(MICP)method:a review[J].Chemical Engineering Science,2021,238:116610.

    • [44] TORRES-ARAVENA A,DUARTE-NASS C,AZÓCAR L,et al.Can microbially induced calcite precipitation(MICP)through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters?[J].Crystals,2018,8(11):438.

    • [45] 郝小虎.微生物矿化增强膨胀珍珠岩保温板性能试验研究及机理分析[D].太原:太原理工大学,2019.HAO Xiaohu.Experimental studies on performances of expanded perlite insulation board strengthened by microbial mineralization and mechanism analysis [D].Taiyuan:Taiyuan University of Technology,2019.

    • [46] MAHAWISH A,BOUAZZA A,GATES W P.Improvement of coarse sand engineering properties by microbially induced calcite precipitation[J].Geomicrobiology Journal,2018,35(10):887-897.

    • [47] VAEZI M,ZAREEI S A,JAHADI M.Recycled microbial mortar:effects of bacterial concentration and calcium lactate content [J].Construction and Building Materials,2020,234:117349.

    • [48] GHOSH S,BISWAS M,CHATTOPADHYAY B D,et al.Microbial activity on the microstructure of bacteria modified mortar [J].Cement and Concrete Composites,2009,31(2):93-98.

    • [49] SUN Xiaohao,MIAO Linchang,TONG Tianzhi,et al.Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification[J].Journal of Materials in Civil Engineering,2018,30(11):04018301.

    • [50] AL QABANY A A,SOGA K,SANTAMARINA J C.Factors affecting efficiency of microbially induced calcite precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2012,138(8):992-1 001.

    • [51] 梁仕华,牛九格,戴君,等.碳源对微生物固化砂土效果影响的试验研究[J].工业建筑,2018,48(7):16-21.LIANG Shihua,NIU Jiuge,DAI Jun,et al.Experimental research on the effect of carbon sources on bio-cemented sand[J].Industrial Construction,2018,48(7):16-21.

    • [52] 梁仕华,牛九格,房采杏,等.钙源对微生物沉积碳酸钙固化砂土的试验研究[J].工业建筑,2018,48(7):10-15.LIANG Shihua,NIU Jiuge,FANG Caixing,et al.Experimental research on the effect of calcium source on microbial deposites of calcium carbonate[J].Industrial Construction,2018,48(7):10-15.

    • [53] ZHANG Yanrong,GUO Hongxian,CHENG Xiaohui.Role of calcium sources in the strength and microstructure of microbial mortar[J].Construction and Building Materials,2015,77:160-167.

    • [54] 荣辉,钱春香,李龙志.微生物水泥胶结机理[J].硅酸盐学报,2013,41(3):314-319.RONG Hui,QIAN Chunxiang,LI Longzhi.Cementation mechanism of microbe cement[J].Journal of the Chinese Ceramic Society,2013,41(3):314-319.

    • [55] 詹其伟.微生物捕碳浅层矿化胶结沙土及其抑尘应用[D].南京:东南大学,2018.ZHAN Qiwei.Cementation of sandy soil by shallow mineralization of microbe capturing carbon dioxide and application in fugitive dust suppresion [D].Nanjing:Southeast University,2018.

    • [56] CHENG Liang,CORD-RUWISCH R.Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation[J].Geomicrobiology Journal,2014,31(5):396-406.

    • [57] SIDDIQUE R,CHAHAL N K.Effect of ureolytic bacteria on concrete properties[J].Construction and Building Materials,2011,25(10):3 791-3 801.

    • [58] UMAR M,KASSIM K A,ZANGO M U,et al.Performance evaluation of lime and microbial cementation in residual soil improvement[C].Kuala Lumpur:IOP Conference Series:Materials Science and Engineering,527,2019:012005.

    • [59] SOON N W,LEE L M,KHUN T C,et al.Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2014,140(5):04014006.

    • [60] 汪卫东,刘茂诚,程海鹰,等.微生物堵调研究进展[J].油气地质与采收率,2007,14(1):86-90.WANG Weidong,LIU Maocheng,CHENG Haiying,et al.Re‐ search progress of microbial plugging and profile control[J].Petroleum Geology and Recovery Efficiency,2007,14(1):86-90.

    • [61] ZHAO Qian,LI Lin,LI Chi,et al.Factors affecting improvement of engineering properties of micp-treated soil catalyzed by bacteria and urease[J].Journal of Materials in Civil Engineering,2014,26(12):04014094.

    • [62] CHENG Liang,SHAHIN M A,CHU Jian.Soil bio-cementation using a new one-phase low-pH injection method[J].Acta Geotechnica,2019,14(3):615-626.

    • [63] 李明东,LI Lin,张振东,等.微生物矿化碳酸钙改良土体的进展、展望与工程应用技术设计[J].土木工程学报,2016,49(10):80-87.LI Mingdong,LI Lin,ZHANG Zhendong,et al.Review,out‐ look and application technology design on soil improvement bymicrobial induced calcium carbonate precipitation[J].China Civil Engineering Journal,2016,49(10):80-87.

    • [64] VARENYAM A,ABHIJIT M.A Review of microbial precipita‐ tion for sustainable construction[J].Construction and Building Materials,2015,93:1 224-1 235.

    • [65] 代学成,王红波,许念,等.内源微生物驱油激活配方筛选评价指标探讨[J].油气地质与采收率,2012,19(2):37-40.DAI Xuecheng,WANG Hongbo,XU Nian,et al.Study on activation blend evaluation for indigenous microbial flooding[J].Petroleum Geology and Recovery Efficiency,2012,19(2):37-40.

    • [66] RONG Hui,QIAN Chunxiang.Development of microbe cementitious material in China[J].Journal of Shanghai Jiaotong University:Science,2012,17(3):350-355.

    • [67] 梁仕华,曾伟华,陈俊涛,等.纤维对微生物固化不同颗粒粒径砂土强度影响试验研究[J].工业建筑,2018,48(7):27-32.LIANG Shihua,ZENG Weihua,CHEN Juntao,et al.Experimental research on the effect of fiber on bio-cemented sand with different particle sizes[J].Industrial Construction,2018,48(7):27-32.

    • [68] 梁仕华,牛九格,戴君,等.循环灌浆次数对微生物固化砂土效果的影响[J].工业建筑,2018,48(7):22-26.LIANG Shihua,NIU Jiuge,DAI Jun,et al.Effect of the number of grouting cycles on bio-cemented sand[J].Industrial Construction,2018,48(7):22-26.