-
风城油田浅层超稠油油藏自 2008 年开始实施双水平井 SAGD 的开发技术,2020年贡献产量超过100×104 t,实现了 SAGD 的规模化开发。但早期投产的井组正逐步进入开发中后期,采出程度已40 % 以上,其面临的问题逐渐凸显,主要表现为:一是为维持开发中后期较大的汽腔,需注入大量的高干度热蒸汽,导致能耗大;二是汽腔与盖层大面积接触后,部分热量散失到盖层,损失热量的同时使含水率增加。实际矿场结果表明,井组生产表现出含水率升高、热损失升高、油汽比下降、产油量下降、采油速度下降的“两升三降”的特征,生产效果和效益变差[1]。中外学者相继提出了SAGP[2] 和ES-SAGD[3] 等改进技术,并在部分区块进行了先导试验[1-12],一定程度上提高了 SAGD 采油速度和油汽比,但由于这些技术仅解决影响 SAGD 开发的部分制约因素,其作用机理单一且改善幅度有限,因此,亟需研发与转换新的开发方式。为此,笔者提出了 SAGD 中后期多介质强化提高开发效果技术,同时注入非凝析气甲烷和与蒸汽饱和温度相近的正己烷溶剂,即 SAGP和 ES-SAGD两种技术相结合[13-16]。多介质的注入参数对 SAGD 的开发效果有较大影响,以往研究成果多局限于单一介质,而多介质注入对汽腔的作用机理及生产的影响尚不明确。以甲烷、正己烷与原油的室内降黏及物理模拟实验为基础,采用风城油田重 Z 井区实际油藏参数开展数值模拟研究,综合阐述多介质对 SAGD 的作用机理,同时对主要注入参数进行优化,并将研究成果应用于现场井组试验,证实了该技术可大幅提高 SAGD 中后期开发效果,可作为超稠油油藏中后期开发的接替技术。
-
1 作用机理
-
SAGD 中后期多介质强化提高开发效果技术,是将非凝析气甲烷和与蒸汽饱和温度相近的正己烷溶剂共同注入汽腔,并与蒸汽协同作用的一项技术。
-
为明确多介质注入后的作用机理,利用风城油田重Z井区原油及岩心样品,开展了甲烷、正己烷与原油混合后的降黏,岩心驱油效率和多介质强化 SAGD 三维物理模拟等实验。实验结果表明,多介质强化SAGD具有溶解降黏、减少热损失、改善汽腔发育形态和节约蒸汽等作用,在 SAGD 中后期提高其开发效果方面具有重要应用价值。
-
1.1 甲烷隔热降黏
-
非凝析气甲烷密度小且导热系数低,其进入汽腔后,一部分由于重力分异作用聚集于油藏顶部[16-20],另一部分则会溶于稠油起到降黏的作用。
-
在温度分别为70,100,150和200℃,压力为0~10 MPa的条件下,测定甲烷在稠油中的溶解度及稠油饱和甲烷后的黏度。由图1a可以看出,甲烷在稠油中的溶解度随着压力的增加而增加,随着温度升高而降低。由图1b 可以看出,稠油饱和甲烷后,其黏度随着压力的增加而降低,随着温度升高而降低。当温度为 200℃,压力为 4 MPa(汽腔的温压条件) 时,稠油饱和甲烷后的黏度仅为9.9 mPa•s,说明甲烷的溶解可起到辅助降黏的作用。
-
图1 不同温压条件下甲烷在稠油中的溶解度及稠油饱和甲烷后的黏度变化
-
Fig.1 Changes in solubility of methane in heavy oil/viscosity of heavy oil saturated with methane under different temperatures and pressures
-
1.2 正己烷溶解降黏
-
正己烷溶剂与蒸汽在井口处混合注入注汽井,因其与蒸汽具有相近的饱和温度且是稠油中的一种组分,进入汽腔后充分气化,并随蒸汽运移至汽腔壁并与汽腔壁稠油相似相溶而降黏[21-26],在相同条件下可降低注汽量以提高驱油效率及油汽比。风城油田重Z井区不同溶剂类型驱替实验结果(表1)表明,一定质量分数的正己烷溶剂与蒸汽混合注入后,驱油效率可提高 2.7~15.7 百分点,注汽量减少 2.2~5.8 PV。
-
1.3 汽腔发育形态改善
-
甲烷作为一种非凝析气体,在 SAGD 开发中后期注入后,由于重力分异及蒸汽冷凝的作用,大部分聚集到油层顶部和侧部,从而达到隔热作用,同时又抑制汽腔顶部横向扩展,迫使汽腔向下发育[27]。
-
以风城油田重 Z 井区实际油藏参数为标准,根据相似准则设计三维物理模拟实验参数,开展多介质强化SAGD开发效果及汽腔发育形态研究。设计 3组实验,分别为200℃纯蒸汽SAGD、2%正己烷溶剂+98% 蒸汽 SAGD 和 2% 正己烷溶剂+段塞注 200 m3 甲烷+98% 蒸汽的多介质 SAGD。三维物理模拟实验结果(表2)表明,多介质强化 SAGD 生产后,相较于 200℃纯蒸汽 SAGD,采出程度提高 10.9 百分点,注汽量减少 12.5%,累积油汽比提高 0.018,且汽腔发育形态由倒三角型变为粗箱型(图2),可以看出其中下部得到扩展,泄油界面变陡,从而重力泄油能力增强。
-
图2 不同SAGD模式汽腔发育形态
-
Fig.2 Developmental shape of steam chamber in different SAGD modes
-
2 数值模拟方法
-
2.1 模型选取
-
根据风城油田重 Z 井区实际油藏参数,应用 CMG-STARS 软件建立机理模型,研究多介质强化 SAGD 的生产特征。模型尺寸为 400 m×80 m×40 m,油层下部部署 2 口平行的水平井,垂向距离为 5 m,水平段长度均为 400 m,下部水平井距离油层底部为 2 m。模型中定义 4 种组分,分别为超稠油(不考虑溶解气影响)、甲烷、正己烷和水[17-18]。生产初期预热 9个月,至井间温度为 100℃时转 SAGD 生产,蒸汽干度为 0.75,温度为 250℃,注汽压力为 3.5 MPa,生产时间为 13 a。为保持汽液界面稳定,设置生产井 Subcool为 15℃。其他油藏参数为:50℃温度下原油黏度为 20 000 mPa•s,油层平均孔隙度为3 4.7%,平均渗透率为 2 000 mD,初始平均含油饱和度为76.4%,厚度为25 m。
-
2.2 多介质参数取值
-
SAGD中后期多介质强化提高开发效果技术数值模拟中,甲烷的各项参数均采用软件中的标准组分,而溶剂相平衡常数、溶剂-稠油混合物黏度、溶剂扩散系数等通过以下方式反映其作用机理[25]。
-
溶剂相平衡常数
-
正己烷溶剂的物性参数和气液相平衡常数均使用 CMG-Winprop 模块进行相态拟合后导出,以保证数值模拟参数的准确性。
-
溶剂-稠油混合物黏度
-
Stars 模块中,应用线性混合规则计算溶剂-稠油混合物黏度,表达式为:
-
溶剂扩散系数
-
溶剂辅助 SAGD 的应用效果与溶剂在稠油中的扩散系数相关,对于C5—C15轻质溶剂,扩散系数一般取值为4.32×10-5m2 /d。
-
3 注入参数优化
-
3.1 溶剂注入时机
-
SAGD生产过程分为汽腔垂向上升、横向扩展、下降 3 个阶段[26]。溶剂注入时机与停注时机对 SAGD中后期开发效果的改善及溶剂的回收具有重要影响。在相同注采参数和操作条件下模拟不同的注入时机,由图3可以看出,当垂向上升阶段注入溶剂时,汽腔发育规模小,溶剂作用范围有限,溶剂未发挥降黏作用即被采出;当横向扩展阶段注入溶剂时,汽腔规模较大,注入的溶剂可与更多的稠油接触以发挥其溶解降黏作用;而当下降阶段注入溶剂时,虽接触的稠油更多,但此时汽腔规模较大,注入的溶剂有相当一部分滞留于其中而浪费,此阶段溶剂回收率仅为 63.9%(图4),远低于前 2个阶段。综合分析认为,应在汽腔扩展到油藏顶部后注入溶剂,并在横向扩展阶段结束时停注溶剂。
-
图3 不同注入时机油相中溶剂浓度分布
-
Fig.3 Concentration distribution of solvents in oil phase at different injection timings
-
3.2 溶剂注入浓度
-
对比溶剂质量分数分别为 1%,2%,3%,4% 和 5% 时 SAGD 的开发效果[26]。由图5 可以看出,随着溶剂注入浓度增加,采出程度和油汽比均增加,但质量分数超过 3% 后,增幅变缓。溶剂注入过少时,由于溶解降黏作用小,导致增产效果不明显;增加注入后,可加速降低汽腔边缘稠油的黏度,但浓度过高会降低汽腔尤其是边缘的温度(图6),从而蒸汽向周围油藏的传热能力下降,加热降黏作用减弱。当溶剂质量分数由 1% 增至 5% 时,汽腔壁温度下降 8.1℃。在 SAGD 生产中,热力降黏作用仍占主导,合适的溶剂注入浓度需平衡溶剂溶解降黏和蒸汽热力降黏的综合作用。
-
图4 不同注入时机溶剂注入量/采出量变化
-
Fig.4 Variation of solvent injection/production at different injection timings
-
图5 不同质量分数溶剂与采出程度及油汽比的关系
-
Fig.5 Relationships among different mass fractions of solvents,recovery,and oil-steam ratio
-
图6 不同质量分数溶剂注入后汽腔壁温度
-
Fig.6 Temperature of steam chamber wall after solvent injection with different mass fractions
-
3.3 注气周期
-
以溶剂最优模型为基础,模拟分析非凝析气对 SAGD开发的影响。鉴于非凝析气主要在顶部发挥隔热作用,因此仅在汽腔发育到油藏顶部后注入。设计相同注气量条件下,注气周期分别为3,6,12和 18个月4个方案,分析累积产油量和油汽比的变化。由图7可以看出,注气周期对累积产油量影响较小,但对于油汽比,注气周期为 12 个月时较对比模型 (注气周期为0)提高0.021,增幅最大,这是因为注气频繁会带走原有部位的热量而降低其隔热性,而合适的注气周期可预留出一段缓冲时间,使注入的非凝析气充分发挥隔热、保压以及调整汽腔发育形态等作用,进而提高最终的热利用率[26]。
-
图7 非凝析气不同注气周期累积产油量与油汽比的变化
-
Fig.7 Changes in cumulative oil production and oil-steam ratio in different gas injection cycles of non-condensate gas
-
3.4 非凝析气注入量
-
注气量包括首轮注气量和后续周期补充量。首轮注气量需考虑现有汽腔体积,后续周期补充量需考虑生产过程中的消耗以及汽腔体积的空间扩大。注气量设计时需考虑:①注气量过小时,将无法形成有效的隔热带。②注气量过大时,将导致生产井气窜,而严重的气窜将使大量的热量被油水热液携带到地面,使整个汽腔温度降低,不利于后续生产[26]。
-
设计首轮注气量时,首先通过累积产油量、孔隙度和含油饱和度的变化,采用体积法计算汽腔体积; 然后通过数值模拟计算以确定最佳地层条件气体体积/汽腔体积的比值,得出地层条件气体体积;最后根据状态方程,将地层条件气体体积换算为标准状况气体体积。
-
汽腔体积、地层条件气体体积、标准状况气体体积的表达式分别为:
-
分别在汽腔横向扩展和下降阶段设计不同地层条件气体体积与汽腔体积的比值,以油汽比变化为衡量指标,由图8 可以看出,在横向扩展阶段,随着地层条件气体体积与汽腔体积的比值增加,油汽比呈先上升后下降的趋势,最佳比值为 0.011;在下降阶段,地层条件气体体积与汽腔体积的比值改变对油汽比影响不大。
-
在汽腔横向扩展阶段,后续周期补充量为汽腔扩展所需补充量与生产周期内气体损失量之和;而在汽腔下降阶段,后续周期补充量仅为生产周期内气体损失量。数值模拟结果(图9)表明,生产周期为1 a时,甲烷损失率约为10.7%。
-
图8 地层条件气体体积与汽腔体积的比值与油汽比的关系
-
Fig.8 Relationships between gas volume/steam champer volume and oil-steam ratio under formation condition
-
图9 甲烷损失率随生产时间的变化
-
Fig.9 Variation of methane loss rate with production time
-
4 实例应用
-
2020年 10月,SAGD中后期多介质强化提高开发效果技术在风城油田重 Z 井区实施 1 个井组,该井组于2013年投产,已生产7 a,采出程度为39.4%, 2020 年大部分井段汽腔处于横向扩展阶段。通过注汽井段塞注入甲烷1.6×104 m3,焖井1 d,之后在注汽井口注入质量分数为2%的正己烷溶剂3个月,累积注入量约为 107 t,生产数据统计至 2021 年 2 月,产出液中正己烷溶剂回收量约为 86 t。由表3 可以看出,与纯蒸汽 SAGD 试验井组相比,多介质强化 SAGD试验井组的日注汽量下降6.7 t/d,日产油量上升3.9 t/d,油汽比提高0.093,含水率下降2.6%,措施效果显著。按照正己烷溶剂单价为 7 000元/t,甲烷单价为 2.5×107 元/m3,稠油单价为 1 100元/t,蒸汽价格为 80 元/t,共投入约为 15×104 元,产出约为 56.4× 104 元,4个月内投入产出比达1∶4。同时该技术可大大缩短生产周期,其实际收益远高于此。
-
5 结论
-
SAGD中后期多介质强化提高开发效果技术具有双重降黏、改善汽腔发育形态、增强重力泄油能力、减少热损失、提高重力泄油能力及节约蒸汽等作用。利用数值模拟方法,对多介质强化 SAGD 的主要注入参数进行了优化,设计在汽腔横向扩展阶段伴注质量分数为2%的正己烷溶剂,注溶剂的同时以段塞注入汽腔体积0.011倍的非凝析气甲烷,生产周期为1 a,再根据汽腔扩展规模和气体损失量进行周期性补充。该技术取得较好的应用效果,与纯蒸汽 SAGD 相比,试验区日注汽量下降 6.7 t/d,油汽比提高0.093,含水率下降2.6%,日产油量提高3.9 t/d,投入产出比达1∶4,具有良好的经济价值。
-
符号解释
-
a——地层条件气体体积与汽腔体积的比值;
-
i——组分个数;
-
M——累积产油量,t;
-
p1——地层条件汽腔压力,MPa;
-
p2——标准状况压力,MPa;
-
T1——地层条件汽腔温度,K;
-
T2——标准状况温度,K,取值为273;
-
V——汽腔体积,m3;
-
V1——地层条件气体体积,m3;
-
V2——标准状况气体体积,m3;
-
So 原始——原始含油饱和度;
-
So 残余——残余油饱和度;
-
xi ——组分i摩尔分数;
-
μ——溶剂-稠油混合物黏度,mPa•s;
-
μi ——组分i的黏度,mPa•s;
-
ϕ——孔隙度。
-
参考文献
-
[1] 卢川,田冀,郑强,等.SAGD开发效果综合评价新方法[J].油气地质与采收率,2019,26(4):99-104.LU Chuan,TIAN Ji,ZHENG Qiang,et al.New method to comprehensively evaluate stream-assisted gravity drainage(SAGD)development result [J].Petroleum Geology and Recovery Efficiency,2019,26(4):99-104.
-
[2] BUTLER R M.The steam and gas push(SAGP)[R].The Petroleum Society 48th Annual Technical Meeting,Calgary,Canada,1997.
-
[3] NASR T N,BEAULIEU G,GOLBECK H,et al.Novel expanding solvent-SAGD process‘ES-SAGD’[J].Journal of Canadian Petroleum Technology,2003,42(1):13-16.
-
[4] 曲玉线.浅薄层稠油油藏开采技术[J].西北地质,2002,35(2):69-74.QU Yuxian.Production technology of shallow and thin heavy oil reservoir [J].Northwest Geology,2002,35(2):69-74.
-
[5] 刘振宇,张明波,周大胜,等.曙光油田杜84馆陶超稠油油藏SAGP开发研究[J].特种油气藏,2013,20(6):96-99.LIU Zhenyu,ZHANG Mingbo,ZHOU Dasheng,et al.Study on SAGP development of Du 84 Guantao super heavy oil reservoir in Shuguang oilfield [J].Special Oil & Gas Reservoir,2013,20(6):96-99.
-
[6] 蒋琪,游红娟,潘竟军,等.稠油开采技术现状与发展方向初步探讨[J].特种油气藏,2020,27(6):3-6. JIANG Qi,YOU Hongjuan,PAN Jingjun,et al.Preliminary discussion on the present situation and development direction of heavy oil recovery technology [J].Special Oil & Gas Reservoirs,2020,27(6):3-6.
-
[7] 抚顺龙,张易航,刘汝敏,等.稠油,超稠油热采技术研究进展 [J].能源化工,2020,41(2):81-85.FU Shunlong,ZHANG Yihang,LIU Rumin,et al.Research progress of hot dish technology for heavy oil and super heavy oil [J].Energy and Chemical Industry,2020,41(2):81-85.
-
[8] 李玉君.杜84块氮气辅助SAGD开采技术现场试验分析[J].石油地质与工程,2013,27(2):63-65.LI Yujun.Field test and analysis of nitrogen-assisted SAGD production technology in block Du 84 [J].Petroleum Geology and Engineering,2013,27(2):63-65.
-
[9] 刘志波,程松林,纪佑军,等.蒸汽与天然气驱(SAGP)开采特征与蒸汽辅助重力泄油(SAGD)对比分析[J].石油勘探与开发,2011,38(1):79-83.LIU Zhibo,CHENG Songlin,JI Youjun,et al.Comparative analysis of production characteristics of steam and natural gas flooding(SAGP)and steam-assisted gravity drainage(SAGD)[J].Petroleum Exploration and Development,2011,38(1):79-83.
-
[10] 舒展,裴海华,张贵才,等.改善蒸汽辅助重力泄油技术研究进展[J].油田化学,2020,37(1):185-190.SHU Zhan,PEI Haihua,ZHANG Guicai,et al.Research progresses on improving steam-assisted gravity drainage application for heavy oil recovery [J].Oilfield Chemistry,2020,37(1):185-190.
-
[11] 王红庄,李秀峦,张忠义,等.稠油开发技术[M].北京:石油工业出版社,2019.WANG Hongzhuang,LI Xiuluan,ZHANG Zhongyi,et al.Heavy oil recovery technologies [M].Beijing:Petroleum Industry Press,2019.
-
[12] DAS S K,BUTLER R M.Diffusion coefficients of propane and butane in peace river bitumen [J].Canadian Journal of Chemical Engineering,1996,74(6):985-992.
-
[13] KESHAVARZ M,OKUNO R,BABADAGLI T.Optimal application conditions for steam/solvent coinjection [C].SPE 165471,2013.
-
[14] 王正东.溶剂辅助SAGD现场实验——以辽河油田杜8块为例 [J].化工设计通讯,2016,42(6):24-26.WANG Zhengdong.Solvent assisted SAGD field experiments:A case study of Liaohe oilfield Du 84 [J].Chemical Engineering Design Communications,2016,42(6):24-26.
-
[15] 何万军,木合塔尔,董宏.风城油田重37井区SAGD开发提高采收率技术[J].新疆石油地质,2015,36(4):483-486.HE Wanjun,MUHETAER,DONG Hong.EOR technologies of SAGD development in Zhong-37 wellblock,Fengcheng oil‐ field,Junggar Basin [J].Xinjiang Petroleum Geology,2015,36(4):483-486.
-
[16] 罗健,李秀峦,王红庄,等.溶剂辅助蒸汽重力泄油技术研究综述[J].石油钻采工艺,2014,36(3):106-110.LUO Jian,LI Xiuluan,WANG Hongzhuang,et al.Research on ES-SAGD technology [J].Oil Drilling & Production Technolo‐ gy,2014,36(3):106-110.
-
[17] 解鑫,魏立新,王伟伟,等.注氮气改善SAGD开发效果(SAGP)作用机理解析[J].化学工程师,2015,31(4):81-85.XIE Xin,WEI Lixin,WANG Weiwei,et al.Analysis of action mechanism of nitrogen injection to improve SAGD development effect(SAGP)[J].Chemical Engineer,2015,31(4):81-85.
-
[18] PANG Zhanxi,WU Zhengbin,ZHAO Meng.A novel method to calculate consumption of non-condensate gas during steam assis‐ tant gravity drainage in heavy oil reservoirs [J].Energy,2017,130:76-85.
-
[19] 高永荣,郭二鹏,沈德煌,等.超稠油油藏蒸汽辅助重力泄油后期注空气开采技术[J].石油勘探与开发,2018,46(1):109-115.GAO Yongrong,GUO Erpeng,SHEN Dehuang,et al.Air injection production technology in the later stage of steam-assisted gravity drainage in super heavy oil reservoir [J].Petroleum Ex‐ ploration and Development,2018,46(1):109-115.
-
[20] YUAN Zhe,LIU Pengcheng,ZHANG Shengfei,et al.Experimental study and numerical simulation of nitrogen-assisted SAGD in developing heavy oil reservoirs [J].Journal of Petroleum Science and Engineering,2018,162:325-332.
-
[21] 杨立强,陈月明,王宏远,等.超稠油直井-水平井组合蒸汽辅助重力泄油物理和数值模拟[J].中国石油大学学报:自然科学版,2007,31(4):64-69.YANG Liqiang,CHEN Yueming,WANG Hongyuan,et al.Physical and numerical simulation of steam-assisted gravity drainage of super heavy oil vertical well-horizontal well combination [J].Journal of China University of Petroleum:Natural Science Edition,2007,31(4):64-69.
-
[22] WU Y B,LI X L.Solvent-assisted start-up of SAGD in shallow heavy oil reservoirs [C].SPE 174604,2015.
-
[23] YOU N,YOON S,LEE C W.Steam chamber evolution during SAGD and ES-SAGD in thin layer oil sand reservoirs using a 2-D scaled model [J].Journal of Industrial and Engineering Chemistry,2012,18(6):2 051-2 058.
-
[24] JI Dongqi,DONG Mingzhe,CHEN Zhangxin.Analysis of steam-solvent-bitumen phase behavior and solvent mass transfer for improving the performance of the ES-SAGD process [J].Journal of Petroleum Science and Engineering,2015,133:826-837.
-
[25] 王大为,刘小鸿,张风义,等.溶剂-蒸汽辅助重力泄油数值模拟研究[J].西安石油大学学报:自然科学版,2018,33(2):65-71.WANG Dawei,LIU Xiaohong,ZHANG Fengyi,et al.Study on numerical simulation of solvent-steam assisted gravity drainage [J].Journal of Xi’an Shiyou University:Natural Science Edition,2018,33(2):65-71.
-
[26] MENG Lin,JI Dongqi,DONG Mingzhe,et al.Experimental and numerical study of the convective mass transfer of solvent in the Expanding-Solvent SAGD process [J].Fuel,2018,215(1):298-311.
-
[27] 何亮亮.超稠油SAGD蒸汽腔扩展研究[D].成都:西南石油大学,2018.HE Liangliang.Study on SAGD vapor chamber expansion of su‐ per heavy oil [D].Chengdu:Southwest University of Petroleum,2018.
-
摘要
针对双水平井SAGD开发中后期普遍存在的地层能量不足,泄油能力、油汽比低和热损失严重等问题,提出多介质强化提高开发效果技术,采用室内实验和数值模拟相结合方法,揭示关键机理并对主要注入参数进行优化。结果表明,SAGD开发中后期注入多介质后,具有双重降黏、改善汽腔发育形态、提高重力泄油能力、减少热损失和节约蒸汽等作用。溶剂在汽腔扩展至油藏顶部时注入更易发挥其溶解降黏作用,汽腔横向扩展结束时停注溶剂可提高其回收率;非凝析气甲烷的注入时机、注入方式和注入量对油汽比有重要影响。与纯蒸汽SAGD相比,多介质强化SAGD日均产油量提高3.9 t/d,油汽比提高0.093,日注汽量下降6.7 t/d,实施3个月投入产出比达1∶4。
Abstract
In view of the common problems in the middle and later stages of steam-assisted gravity drainage(SAGD)development with dual-horizontal wells,such as insufficient formation energy,low oil discharge capacity and oil-steam ratio,and serious heat loss,the technology of multi-media enhancement to improve development effects was put forward. The key mechanism was revealed,and the main injection parameters were optimized by combining laboratory experiments and numerical simulation. The results show that the injection of multi-media can reduce the viscosity,improve the shapes of steam chambers,increase the gravity oil discharge capacity,alleviate the heat loss,and save the steam in the middle and later stages of SAGD development. The solvents are easier to dissolve and reduce viscosity when the steam chambers extend to the tops of the reservoirs,and stopping the injection of solvents can improve the recovery rates when the steam chambers stop the lateral expansion;injection timings,methods,and amounts of non-condensate methane have a significant influence on the final oil-steam ratio. Compared with that of pure SAGD,the average daily oil production of SAGD enhanced by multiple media increases by 3.9 t/d. The oil-steam ratio increases by 0.093,and the daily steam injection decreases by 6.7 t/d. The technology has been implemented for three months,and the input-output ratio is 1∶4.
Keywords
SAGD ; super heavy oil ; multi-media assisted ; SAGP ; numerical simulation