-
疏松砂岩气藏在中国油气资源中占有十分重要的地位,其主要的地质特点为气藏埋藏较浅、储层岩石疏松、非均质性强、气水分布复杂等[1];渗流特征表现为层间非均质性引起的层间矛盾突出,以及地层压力下降引起的储层应力敏感性较强[2];生产过程中表现为气井易出砂堵塞,边部气井层间非均匀水侵;根据岩性和物性条件不同,泥质含量较高的储层导致的出砂损害更加严重,会引起砂埋气层或井筒砂堵,进而造成气井停产,对井眼完整性及人员设备的安全均会构成威胁[3-5]。因此,针对该类气藏生产过程中出现的泥砂堵塞问题,明确其堵塞机制,为后期合理开发和综合治理提供依据,已成为迫切需要解决的技术关键。
-
中外对疏松砂岩气藏出砂堵塞问题的研究已有多年。朱华银等通过室内实验发现岩石强度是决定储层是否出砂的决定性因素,对于泥质岩类储层更易发生孔隙堵塞[6];齐宁等采用灰色关联分析方法,对疏松砂岩气藏出砂影响因素进行研究,认为含水率上升与采气速度对出砂的影响最大[7];田红等通过水侵模拟实验,研究了疏松砂岩水侵后的出砂规律和出砂特征,认为水侵加剧出砂程度,导致后期的砂拱破坏与岩样坍塌现象发生[8];XIE等利用微观可视化模型观测了疏松砂岩微粒的动态运移堵塞过程,发现微粒堵塞与微粒和喉道直径大小、悬浮颗粒浓度等因素有关,具有一定浓度的泥质将导致储层的严重堵塞[9]。到目前为止,研究者的工作大多集中在疏松砂岩的宏观出砂动态过程研究,对高泥质粉砂岩在流动条件下的堵塞机制缺乏系统认知;由于疏松砂岩具有应力敏感性特征,在疏松砂岩气藏泥砂堵塞的实验研究中很少考虑压实作用的影响,导致实验结果不能真实地反映实际地层状况。
-
针对这些问题,笔者以柴达木盆地涩北气田为研究对象,基于生产工程因素分析与微粒堵塞机制理论研究,进行不同压实作用下的泥砂堵塞机制模拟实验,分析泥砂堵塞的主要影响因素、堵塞主体类型及损害程度,以期为疏松砂岩气藏泥砂堵塞的防治提供理论指导和实验依据。
-
1 井筒出砂的工程影响因素
-
涩北气田位于柴达木盆地三湖坳陷北斜坡台南-涩北背斜构造带,主要包括3个大型气田,分别为涩北一号气田、涩北二号气田和台南气田。涩北气田具有高黏土含量、高泥质含量、高矿化度、出砂严重的特点[10]。出砂气井的实际统计资料表明,尽管生产压差控制约为地层压力的 7%~9%,但是四分之三的气井日产量仍然在 5.0 × 104 m3 /d 以内,即在产量和生产压差二者均保持非常低的情况下,气井依旧普遍出砂[11]。而生产压差过大,将导致砂面上升速度急剧增大,地层压力降低,引起边底水侵入,加剧气井出砂,影响气井的正常生产。为明确疏松砂岩气藏的泥砂堵塞规律,须分析开发过程中的生产压差、地层压力与边底水侵等工程因素对井筒出砂的影响,进而探讨气层泥砂堵塞机制。
-
1.1 生产压差
-
在其他条件相同的情况下,生产压差越大,则气体流速越大,在井壁附近流体对岩石的拖曳力就越大;当超过地层的抗张强度时,就会形成胶结破坏或拉伸破坏,导致地层出砂[12]。流体渗流对储层岩石的冲刷力和对颗粒的拖曳力是气层出砂堵塞的重要原因。另外,生产压差越大,气层孔隙中的流体压力越低,将导致作用在岩石颗粒上的有效应力越大,当超过地层岩石强度时,岩石骨架就会受到剪切破坏,从而引起地层出砂。
-
以出砂产水严重的台南气田为例,对该气田典型出砂气井生产压差与地层静压的比值与砂面上升速度关系进行统计可知,出砂井砂面上升速度与生产压差与地层静压的比值总体呈正相关关系,随着生产压差与地层静压的比值增加,砂面上升速度增大,平均砂面上升速度高达69.22 m/a(图1)。
-
1.2 地层压力
-
涩北气田开发采用衰竭式开采方式,随着开采程度的不断深入,在上覆岩层压力不变的情况下,地层压力的不断下降会导致施加在岩石颗粒上的力越来越大,当其超过地层承受极限时,地层应力达到地层岩石破坏临界值,岩石骨架发生塑性破坏,在气体快速流动下,地层岩石颗粒被携至井底,引起出砂[13]。另外,地层压力的不断下降,也会导致产层提前见水,进一步增加气井出砂风险。
-
图1 台南气田典型出砂气井砂面上升速度和生产压差与地层静压比值的关系
-
Fig.1 Relationship between sand surface rising velocity and ratio of production pressure difference to formation static pressure of typical sand-producing gas wells in Tainan Gas Field
-
以涩北二号气田为例,对该气田典型气井的地层压力与砂面上升速度关系统计结果(图2)表明,随着地层压力的下降,砂面上升速度呈增大趋势,当地层压力下降至 7 MPa 以后,砂面上升速度急剧增大,平均达到34.86 m/a。
-
图2 涩北二号气田典型气井砂面上升速度与地层压力的关系
-
Fig.2 Relationship between sand surface rising velocity and formation pressure of typical gas wells in Sebei No.2 Gas Field
-
1.3 储层边底水侵
-
对于涩北气田疏松砂岩储层来说,边底水侵不仅会影响气井的产能,还会加剧泥砂微粒的运移堵塞。涩北气田储层泥质含量非常高,平均为 39.7%,水侵后会破坏储层原有的平衡,加剧黏土矿物的水化膨胀,破坏砂粒之间的泥质胶结[14]。另一方面,地层水或者气/水两相流对孔喉的剪切应力以及携砂能力要强于气相流,导致泥砂运移量增大,给孔喉带来堵塞风险。
-
以涩北一号气田为例,其典型出砂气井的平均日产水量与砂面上升速度呈正相关关系,随着平均日产水量增加,井筒砂面上升速度增大,至平均日产水量约为4 m3 /d出现拐点,出砂速率趋于平缓(图3)。
-
图3 涩北一号气田典型出砂气井砂面上升速度与平均日产水量的关系
-
Fig.3 Relationship between sand surface rising velocity and average daily water production of typical sand producing gas wells in Sebei No.1 Gas Field
-
综上所述,对于涩北气田从宏观工程因素分析,生产压差是导致井筒产水出砂的主要因素,生产压差越大,地层压力衰减越快,地层出水加剧;当生产压差限制在临界状态以内时,地层压力下降和气层边底水侵是加剧井筒出砂的最主要因素。为了更深入地探讨储层泥砂堵塞机理,需从泥砂微粒受力的角度,剖析地层水侵后泥砂微粒脱落、运移和堵塞的亚微观受力状态,进而明确储层泥砂堵塞的微观机制。
-
2 泥砂微粒运移堵塞机制
-
在储层原生环境下,孔隙中微粒的附着与运移是各种力共同作用的结果,微粒受平衡力作用,稳定地附着在岩石表面[15]。当发生边底水侵或生产压差过大时,平衡力遭到破坏,微粒失稳并从岩石骨架脱落,进而随水相或气相运移,最终在孔喉处发生堵塞[16-17]。因此,研究微粒发生运移堵塞时作用力的变化规律,对于分析微粒稳定性和微粒运移条件至关重要。
-
2.1 微粒脱落机制
-
如图4所示,假设微粒为表面均匀的球形,流体流动为稳定层流[18]。在单向流时,孔隙中微粒所受的力包括流体的拖曳力、流体对微粒的举升力、微粒自身重力、微粒间静电作用力以及摩擦力;而在气/ 水两相流时,在气/水界面处的微粒还受到附加的界面张力。由图4可知,微粒在z方向上受到静电作用力、举升力、重力以及附加界面张力,则 z 方向的合力为:
-
图4 孔隙中微粒的受力分析示意
-
Fig.4 Stress analysis of particles in pores
-
当 Fz<0 时,在流体作用下,微粒与孔隙壁面分离,并随着流体的流动而运移;当 Fz≥0时,微粒与孔隙壁面保持接触,但不一定处于静止状态,有可能贴着孔隙壁面滑动或滚动。此外,微粒具体的运动形态还需看 x 方向的力矩是否平衡。同样,对于运移中的微粒,若其作用场发生改变使得 Fz≥0 时,微粒会再次发生沉降而与孔隙壁面接触。
-
地层水侵入储层后,在高矿化度流体中,岩石表面的微粒吸水膨胀,扩散双电层厚度变小,双电层斥力减小,微粒与孔隙壁面的间距增大,孔喉半径减小;同时,气/水界面处微粒的界面张力增大,使得微粒产生脱落趋势[19]。在该阶段,起主导作用的力为双电层斥力,即流体对微粒的举升力。
-
2.2 微粒运移机制
-
在水动力的影响下,附着在孔隙壁面上的微粒可以有 3 种运移方式:悬浮、滑动、滚动[20]。而孔隙中微粒所受的流体拖曳力往往不在微粒的中心,所以滚动和悬浮是水相流动引起微粒运移的主要形式[21]。当微粒发生运移时,x 方向的力矩平衡被打破。此时x方向的合力为:
-
当 Fx≤0 时,孔隙中的微粒将不会发生运移;当 Fx>0时,在流体的作用下,微粒发生运移,且具体的运移形式还与Fz相关。当Fz<0时,微粒与孔隙壁面分离,这时微粒将悬浮于流体中运移,且微粒与孔隙壁面的摩擦力不存在。此时微粒运移的加速度可以表示为:
-
当 Fz≥0 时,微粒与孔隙壁面接触,这时微粒将发生滚动运移,微粒与孔隙壁面存在滚动摩擦力。此时微粒运移的加速度可以表示为:
-
当微粒不处于气/液界面时,Fγ =0。利用(4)式可以在给定的流体流速下计算出任意时刻微粒的加速度。利用边界条件对(4)式积分,也可以计算出任意时刻微粒的运移速度。
-
对于一定几何形状的孔隙和恒定的微粒溶液环境,微粒在x方向上的计算式[22] 为:
-
地层水侵后,多孔介质中流体的黏度和流速增大,此时起主导作用的是流体拖曳力。
-
2.3 微粒堵塞机制
-
当流体流动时,多孔介质中的部分微粒脱落并随着流体运移。从孔隙尺度上考虑,当这些微粒从一个孔隙运移至另一个孔隙时,只有 2 种可能通过或产生堵塞。前人研究表明,微粒堵塞的形式主要有3种:沉降、架桥及直接堵塞[23-24]。
-
沉降是微粒在综合场作用下使得 Fz≥0,从而导致微粒停留在孔隙表面,沉降现象在微粒运移的全过程中都有可能发生。
-
架桥又称桥堵,是小于孔喉尺寸的微粒在孔喉处形成的具有一定强度的桥状结构,从而堵塞后续的微粒,造成渗透率下降。根据多孔介质中微粒运移的原则,当 3df <Dp<10df 时,微粒才有可能在孔喉处发生架桥堵塞;当Dp>10df时,微粒在孔隙中自由流动;当Dp<3df时,微粒一定不能通过孔喉,此时会发生直接堵塞。因此,在研究岩石特征时有必要对目标储层岩石进行微观孔隙结构和微粒直径分布测试。
-
当不同大小的微粒悬浮于流体中运移,特别是在满足架桥的条件时,由于微粒粒径的范围较宽,相对于粒径,悬浮于流体中的微粒浓度更能决定是否发生堵塞。所以,现有研究认为当流体中的微粒浓度超过临界微粒堵塞浓度时,孔隙即会发生堵塞[25]。而流体流速增加会使更多的微粒脱落并悬浮于流体中,从而使微粒浓度增加,导致孔隙堵塞的可能性增大。如果在某些孔喉处发生堵塞,由于渗流通道的减小,被堵塞孔喉周围的渗流速度即会增加。这种情况会导致其他孔隙被连续堵塞,使得渗透率急剧降低。
-
综上所述,气藏如果发生水侵,则属于气-水两相流的工况条件,根据上述分析,微粒脱离岩石骨架后发生运移的最主要作用力应为地层水对砂粒的拖曳力。当拖曳力超过 x 方向其他作用力的合力时,微粒即被剥离并随流体在孔隙中运动。一旦孔隙中悬浮的微粒浓度达到临界值,一方面小于喉道直径的微粒易形成架桥堵塞;另一方面,大于喉道直径的微粒将直接堵塞喉道,此时流体不能在该喉道中流动。为了验证分析结果的有效性,结合现场施工状况,对运移泥砂进行相关室内模拟实验,以验证泥砂在模拟岩心中的运移堵塞机制。
-
3 泥砂堵塞机制模拟实验
-
针对疏松砂岩气藏开发中的泥砂堵塞问题,采用涩北气田储层岩心,设计疏松砂岩气藏岩心的泥砂堵塞实验,研究在不同地层压降下水侵与生产压差对泥砂堵塞的影响,对水侵前后岩心的粒度及矿物组分进行分析,明确泥砂运移过程中的堵塞机制,进而通过实验验证泥砂堵塞的工程因素和堵塞机制。
-
3.1 实验装置
-
涩北气田采用衰竭式开发方式,随着衰竭开发的不断进行,气藏压力不断降低,边底水开始侵入气藏并在地层中形成气-水两相流,降低储层骨架应力,加剧压实作用。通过如图5 所示的实验装置模拟涩北气田开发过程中发生的水侵和出砂情况,在考虑压实效应的基础上,研究水侵在泥砂运移过程中的堵塞机制。实验装置主要由恒压恒流泵 A 和 B、温控系统、中间容器、岩心夹持器、数字压力传感器、回压泵、围压泵、电子天平、量筒等组成,实验数据由计算机系统采集和处理。
-
图5 模拟实验装置示意
-
Fig.5 Simulation experiment device
-
3.2 实验材料
-
实验材料分别使用地层水和氮气模拟疏松砂岩气藏产出水和天然气,地层水的矿化度为 167 000 mg/L。为了提高模拟实验的精度和有效性,采用具有典型代表性的涩北气田现场岩心,其中岩心 1 的直径为 2.51 cm,长度为 7.45 cm,孔隙度为 19.48%,渗透率为 4.42 mD;岩心 2的直径为 2.51 cm,长度为 7.57 cm,孔隙度为26.80%,渗透率为68.14 mD。
-
3.3 实验流程
-
不同压实作用条件下的泥砂堵塞模拟实验流程为:①测量干燥岩心的长度、直径、孔隙度和渗透率。 ②充分抽真空并饱和模拟地层水后放入岩心夹持器进行气驱水,建立实验要求的原始含水饱和度。③ 手动调节围压泵和回压泵将围压和内压同步升高,围压升至上覆地层压力为 30 MPa,内压升至 12 MPa,保持温控系统内温度为80℃。④设置气流速和水流速分别为 1 和 0.5 mL/min 进行气水同驱,待出口端流量稳定时记录进出口端压力、出砂量及时间。依次设置水流速为 0.75,1,1.5,2,3,4,5,6 和 8 mL/min,继续记录进、出口端压力和出砂量,并计量时间。⑤保持围压为 30 MPa,依次降低内压至 9,6 和3 MPa,重复步骤④。⑥设置驱替压差为0.5 MPa 进行气驱,待出口端流量稳定、压力稳定时记录进、出口端压力,并计量时间和出砂量。将驱替压差按照设定的区间(0.5~4 MPa)进行设置,记录实验数据。⑦再依次降低内压至9,6,3 MPa,重复步骤⑥。
-
3.4 实验结果与分析
-
3.4.1 压实作用下水侵速率与渗透率的关系
-
利用泥砂堵塞机制模拟实验装置、材料和参数,进行水侵模拟实验。其特点为出砂伴随着整个实验过程,有间歇性的砂量激增,并有砂堵现象,而且水侵速率越大,这种现象越明显。实验后取出样品观察,泥砂呈现出泥饼状形态,并黏附一层水化膜,这是由于泥砂表面的水化作用引起的。
-
由疏松程度不同的岩心在压实作用下的渗透率损失率(Dtm)、出砂量随水侵速率(Vw)的变化(图6,图7)可以看出,在低水侵速率下(小于 2 mL/min),岩心的出砂量和Dtm随Vw的增大呈上升趋势,1号岩心的 Dtm最大值为 34.23%,2 号岩心的 Dtm最大值为 45.25%;相同水侵速率与地层压降条件下,岩心的渗透率越大(疏松程度越大),Dtm值越大;该阶段Dtm增长幅度较小,其并未因出砂而有明显增大,且压实作用造成的 Dtm值最大降幅为 61.13%,即低水侵速率条件下造成岩心Dtm值增大的主要原因为压实作用。在中、高水侵速率下(大于 3 mL/min),1 号岩心的 Dtm值明显增大,峰值达 77.40%,出砂量呈迅速下降趋势,压实作用明显加强;Dtm值上升过程中出现渗透率恢复,最大恢复幅度达到 10.73%,且处于出砂量最大的阶段,该阶段压实作用对渗透率的影响被出砂的增渗作用减弱,即中、高水侵速率下水侵与压实的双重作用是Dtm值增大的主要原因。
-
由上述分析可知,水侵对岩心渗透率的损害主要集中在中、高水侵速率阶段,随着 Vw增大,Dtm明显增大,出砂量减少,泥砂发生堵塞;水侵后岩心强度降低,压实作用加剧,导致该阶段渗透率明显下降。这与微粒的运移堵塞理论分析一致,当 Vw增大时,在孔隙表面静止的微粒受到举升力与拖曳力共同作用分散至流体中,当流速达到临界值后,微粒开始大量堆积,形成拱桥,最后造成堵塞。在流量保持不变的情况下,地层压降越大,对岩心孔隙结构的压缩越严重,由于孔隙通道变窄,使压差增大,因而进一步加大岩心出砂的可能性。
-
图6 1号岩心在压实作用下渗透率损失率、出砂量与水侵速率的关系
-
Fig.6 Relationship among permeability loss rate,sand production,and water invasion rate under compaction of core1
-
3.4.2 压实作用下生产压差与渗透率的关系
-
分析压实作用下渗透率损失率随驱替压差的变化规律(图8,图9)可知,在驱替压差较小时(小于 2 MPa),Dtm值呈缓慢增长趋势,岩心中的游离砂所受拖曳力较小,微粒未发生运移(或者运移堵塞微粒少),宏观表现为出砂量缓慢增大。其中,当驱替压差为 1.5~2 MPa 时,渗透率有明显的部分恢复,出砂量增大,出现出砂增渗的现象;该阶段影响岩心渗透率的主要因素为压实作用,随着压实作用的加强,孔隙发生结构变形,喉道半径变小,出砂量降低,同一驱替压差下 Dtm值的最大增幅达到 43.42%。随着驱替压差逐渐增大(2~3 MPa),气体流速增加,大量微粒发生运移,出砂量呈现先升后降的趋势,Dtm 值最大增幅达到 49.96%,这是微粒运移与堵塞最严重的阶段;在该阶段,压实作用导致的 Dtm值最大增幅为 49.78%,压实效应与过大的驱替压差是导致 Dtm值迅速增大的主要原因。由于可运移微粒基本已发生运移堵塞,当驱替压差进一步增加(大于 3 MPa),Dtm值趋于平衡,出砂量降低,泥砂堵塞程度加强,岩心Dtm最大值达到52.21%,属于强损害。
-
图7 2号岩心在压实作用下渗透率损失率、出砂量与水侵速率的关系
-
Fig.7 Relationship among permeability loss rate, sand production,and water invasion rate under compaction of core2
-
综上分析,岩心的出砂量与生产压差和压实作用密切相关,生产压差越大,流速波动越大,出砂量也随之增大,出现微粒运移的现象;压实作用加剧岩心渗透率损失,由于孔喉的结构变形,泥砂微粒滞留于孔喉处,出砂量降低。因此,在气田开发过程中,应控制生产压差在临界范围(2 MPa)之内,且在开发中后期采取增压开发方式,对地层进行能量补充。
-
图8 1号岩心在压实作用下渗透率损失率、出砂量与驱替压差的关系
-
Fig.8 Relationship among permeability loss rate,sand production,and displacement pressure difference under compaction of core1
-
3.4.3 压实作用下孔喉与微粒的匹配性
-
泥砂发生堵塞的关键是微粒与孔喉的适配性,当微粒与孔喉的直径满足一定的匹配规则后,将形成不同形式的堵塞,而在压实作用下孔喉与微粒的匹配性也将产生不同程度的影响[26-28]。对 4 组不同围压下的储层岩心进行压汞法毛管压力曲线实验,其孔隙分布如图10 所示,随着压实作用增强,岩心孔隙体积减小,峰值对应的孔隙直径减小,主要喉道分布区间的喉道半径减小,即岩心的孔喉变小。
-
对水侵前、后的泥砂进行粒度分布测试,结果 (图11)表明水侵前泥砂微粒的粒径主要为 1~50 mm,粒径中值为 7.75 mm;水侵后运移泥砂微粒粒径变小(粒径小于 10 mm的微粒占 80% 以上),微粒累积分布为 10% 的粒径(D10)由 1.69 mm 降至 0.468 mm,微粒累积分布为 50% 的粒径(D50)由 7.75 mm 降至 3.44 mm,微粒累积分布为 90% 的粒径(D90)由 162 mm 降至 28.40 mm,说明泥砂在地层水中的分散性增大,由于含水引起骨架砂的脱落或岩心坍塌,使产出砂的粒径波动较大。结合毛管压力曲线分析可知,运移泥砂微粒粒径与孔喉直径满足3df <Dp< 10df的桥堵规则,因而容易发生孔隙堵塞使得渗透率下降;当围压达到 12 MPa 后,压实作用进一步增大,运移泥砂微粒粒径与孔喉直径满足 df >1/3Dp的匹配关系,大量泥砂微粒直接在孔喉处堵塞,导致岩心渗透率急剧下降。
-
图9 2号岩心在压实作用下渗透率损失率、出砂量与驱替压差的关系
-
Fig.9 Relationship among permeability loss rate,sand production,and displacement pressure difference under compaction of core2
-
3.4.4 运移泥砂微粒的矿物组成
-
储层中黏土矿物遇淡水极易膨胀和运移,胶结变差,储层易出砂[29]。对水侵前、后的运移泥砂微粒进行XRD全岩矿物组成与黏土矿物组成对比分析,结果(图12)表明,泥砂微粒中石英、长石和石盐含量增加,说明运移的主体为非膨胀性矿物,其次为黏土矿物,而石盐是地层水中的可溶性无机盐在烘干过程中结晶导致的。运移泥砂微粒中的黏土矿物含量降低幅度最大,说明储层在地层水冲刷下,泥砂微粒发生水化膨胀,进而脱落运移,一部分微粒堵塞于孔喉处,剩余部分随着地层水带入井筒。黏土矿物组成分析表明,运移泥砂微粒中的伊利石含量增加,由水侵前的 50.6% 增至水侵后的 64%,伊/蒙间层矿物含量减少,由水侵前的27.6%降至水侵后的13%,但伊/蒙间层比增大,由水侵前的50%增至水侵后的 60%,说明在地层水的浸泡、裹挟作用下,伊/蒙间层矿物分散,将伊利石释放出来参与微粒运移。通过系统的泥砂堵塞机制模拟实验发现,在控制生产压差的条件下,岩心出砂并不严重,而水的流动和地层压力的下降对出砂具有严重影响。由于储层泥质含量高,地层水侵后,储层发生黏土矿物膨胀,流体对微粒的拖曳力增大,微粒分散性增大,粒度降低;另一方面,水侵后岩石强度降低,压实作用加剧,孔喉变小,增大了微粒发生堵塞的可能性。当生产压差增大后,地层流体渗流速度增大,为微粒运移提供驱动力,流体中微粒浓度升高,小粒径微粒容易发生架桥堵塞,大粒径微粒则直接堵塞孔喉,渗透率降低,在生产上表现为水侵后较大的生产压差导致砂面上升速度增加。
-
图10 不同压实作用下的孔隙直径分布
-
Fig.10 Pore size distribution under different compaction actions
-
图11 运移泥砂微粒水侵前、后的粒径分布曲线
-
Fig.11 Grain size distribution curve of transported mud &sand particles before and after water invasion
-
图12 水侵前、后的XRD全岩矿物组成与黏土矿物组成对比
-
Fig.12 Comparison between XRD whole-rock mineral composition and clay mineral composition before and after water invasion
-
结论及建议
-
分析疏松砂岩气藏的典型代表涩北气田的井筒产水出砂、地层泥砂堵塞的工程影响因素认为,生产压差、地层压力和边底水侵是主要因素。生产压差越大,地层压力衰减越快,地层出水加剧;当发生水侵后,在气藏孔隙尺度上,地层微粒的受力平衡被打破;影响地层微粒运移堵塞最主要的因素是流体的拖曳力,一旦边底水侵入气藏,流体拖曳力增大,地层水中悬浮的微粒数量增加,当微粒浓度超过临界微粒浓度时,气藏孔喉开始发生大量的堵塞现象。
-
模拟实验结果显示,在控制生产压差的条件下,天然气渗流引起的气层泥砂微粒堵塞并不严重,但水的流动和地层压力的下降对气层泥砂堵塞具有严重的影响。当储层发生边底水侵后,水侵与压实效应导致岩心渗透率迅速下降,最大渗透率损失率达到 77.40%;储层岩心水化分散导致泥砂微粒粒径变小,释放出的石英、长石等非膨胀性颗粒将发生运移,运移泥砂微粒粒径与孔喉直径满足 3df <Dp< 10df的桥堵规则,进而导致地层泥砂堵塞;当围压达到 12 MPa 后,运移泥砂微粒粒径与孔喉直径满足 df >1/3Dp的匹配关系,大量泥砂微粒直接堵塞孔喉。
-
对井筒产水、出砂等的深入研究及生产压差等参数的进一步优化是提高疏松砂岩气藏开发效益的前提和关键。对于未发生泥砂堵塞的气井,应立足于控水防砂;对于已发生泥砂堵塞的气井,建议采取适用于疏松砂岩气藏的解堵技术。
-
符号解释
-
afines——微粒运移的加速度,m/s2;
-
df ——微粒直径,m;
-
Dp——孔喉直径,m;
-
Dtm——岩心渗透率损失率,无量纲;
-
Fd——流体的拖曳力,N;
-
Fe——微粒间静电作用力,N;
-
Ff ——摩擦力,N;
-
Fg——微粒自身重力,N;
-
Fl ——微粒的举升力,N;
-
Fx——x方向的合力,N;
-
Fz——z方向的合力,N;
-
Fγ——界面张力,N;
-
Fxγ——附加界面张力在x方向上的分力,N;
-
Fzγ——附加界面张力在z方向上的分力,N;
-
Mfines——微粒的质量,g;
-
r——微粒的半径,m;
-
Vw——水侵速率,mL/min;
-
ν——流体的流速,m/s;
-
μ——流体的黏度,Pa·s。
-
参考文献
-
[1] 唐洪明,孟英峰,何世明,等.柴达木盆地东部气田疏松砂岩气藏出砂与防砂机理探讨[J].天然气工业,2002,22(1):52-54.TANG Hongming,MENG Yingfeng,HE Shiming,et al.Dis‐ cussion on the mechanisms of sand production and sand production and sand control in unconsolidated sand gas reservoirs in east Chaidamu basin [J].Natural Gas Industry,2002,22(1):52-54.
-
[2] 崔思华,朱华银,钟世敏.涩北气田储层应力敏感性及其对开发产能的影响[J].天然气地球科学,2008,19(1):141-144.CUI Sihua,ZHU Huayin,ZHONG Shimin.Reservoir properties variation characteristics stress sensitivity of Sebei gas field and its influence on gas field development [J].Natural Gas Geoscience,2008,19(1):141-144.
-
[3] 王小鲁,杨万萍,严焕德,等.疏松砂岩出砂机理与出砂临界压差计算方法[J].天然气工业,2009,29(7):72-75.WANG Xiaolu,YANG Wanping,YAN Huande,et al.The sanding mechanism and sanding critical drawdown calculation in loose sandstone [J].Natural Gas Industry,2009,29(7):72-75.
-
[4] 赵博,苏亚中,丛巍,等.疏松砂岩油气藏出砂风险及机理离散元分析[J].中国安全生产科学技术,2020,16(11):59-65.ZHAO Bo,SU Yazhong,CONG Wei,et al.Discrete element analysis on sand production risk and mechanism in unconsolidat‐ ed sandstone oil and gas reservoir [J].Journal of Safety Science and Technology,2020,16(11):59-65.
-
[5] 唐洪明,孟英峰,康毅力,等.柴达木盆地疏松砂岩气层保护技术探讨[J].天然气工业,2002,22(2):38-40.TANG Hongming,MENG Yingfeng,KANG Yili,et al.Discus‐ sion on the protective techniques of unconsolidated sandstone reservoirs in Chaidamu basin [J].Natural Gas Industry,2002,22(2):38-40.
-
[6] 朱华银,陈建军,胡勇.疏松砂岩气藏出砂机理与实验研究[J].特种油气藏,2006,13(4):89-91.ZHU Huayin,CHEN Jianjun,HU Yong.Study on sanding mechanism of unconsolidated sandstone gas reservoir [J].Special Oil & Gas Reservoirs,2006,13(4):89-91.
-
[7] 齐宁,周福建,高成元,等.涩北气田出砂影响因素的灰色关联分析[J].特种油气藏,2010,17(1):100-104.QI Ning,ZHOU Fujian,GAO Chengyuan,et al.Grey correla‐ tion analysis of factors affecting sand production in Sebei gas field [J].Special Oil & Gas Reservoirs,2010,17(1):100-104.
-
[8] 田红,邓金根,曲丛锋,等.油水两相同时流动出砂规律模拟试验[J].石油钻探技术,2005,33(1):48-51.TIAN Hong,DENG Jingen,QU Congfeng,et al.Particle migration in loose sandstone reservoirs [J].Petroleum Drilling Techniques,2005,33(1):48-51.
-
[9] XIE Yiting,CHEN Zhaohui,SUN Fujie.Particles migrating and plugging mechanism in loosen sandstone heavy oil reservoir and the strategy of production with moderate sanding [C].International Conference on Porous-Media & Their Applications in Science,2014.
-
[10] 邓创国,赵玉,刘伟,等.涩北气田低温泡排剂的研制及应用[J].天然气技术与经济,2013,7(3):24-26.DENG Chuangguo,ZHAO Yu,LIU Wei,et al.Low tempera‐ ture foaming agent used in sebei gasfield [J].Natural Gas Tech‐ nology and Economy,2013,7(3):24-26.
-
[11] 周福建,杨贤友,熊春明,等.青海涩北气田新型防细粉砂技术研究与应用[J].石油天然气学报,2005,27(5):812-814.ZHOU Fujian,YANG Xianyou,XIONG Chunming,et al.Research and application of new fine sand control technology in Se‐ bei gas field of Qinghai province [J].Journal of Oil and Gas Technology,2005,27(5):812-814.
-
[12] WANG Yingchao,GENG Fan,YANG Sheng,et al.Numerical simulation of particle migration from crushed sandstones during groundwater inrush [J].Journal of Hazardous Materials,2019,362(2):327-335.
-
[13] 裴桂红,刘建军,曾流芳,等.疏松砂岩油藏大孔道流体-砂粒两相运移的机理分析[J].岩土力学,2005,26(S2):207-210.PEI Guihong,LIU Jianjun,ZENG Liufang,et al.Mechanism analysis of fluid-particle two-phase flow in macropores of unconsolidated sandstone reservoir [J].Rock and Soil Mechanics,2005,26(S2):207-210.
-
[14] 万玉金,李江涛,杨炳秀,等.多层疏松砂岩气田开发[M].北京:石油工业出版社,2016:95-117.WAN Yujin,LI Jiangtao,YANG Bingxiu,et al.Development of multilayer unconsolidated sandstone gas reservoirs [M].Beijing:Petroleum Industry Press,2016:95-117.
-
[15] 崔传智,韦自健,刘力军,等.低矿化度水驱中的微粒运移机理及其开发效果[J].工程科学学报,2019,41(6):719-730.CUI Chuanzhi,WEI Zijian,LIU Lijun,et al.Mechanism of fines migration in low salinity waterflooding and its development effect [J].Chinese Journal of Engineering,2019,41(6):719-730.
-
[16] 吴剑,常毓文,李嘉.低矿化度水驱技术增产机理与适用条件 [J].西南石油大学学报:自然科学版,2015,37(5):145-151.WU Jian,CHANG Yuwen,LI Jia.Mechanisms of low salinity waterflooding enhanced oil recovery and its application [J].Journal of Southwest Petroleum University:Science & Technology Edition,2015,37(5):145-151.
-
[17] LEE S Y,WEBB K J,COLLINS I R,et al.Low salinity oil recovery-increasing understanding of the underlying mechanisms of double layer expansion [C].Cambridge:Society of Petroleum Engineers,2011.
-
[18] HUANG F,KANG Y,YOU L,et al.Massive fines detachment induced by moving gas-water interfaces during early stage twophase flow in coalbed methane reservoirs [J].Fuel,2018,222(1):193-206.
-
[19] 王欣,张达明,樊世忠.储层中微粒运移机理的研究[J].钻井液与完井液,1991,8(3):51-64.WANG Xin,ZHANG Daming,FAN Shizhong.Study on the mechanism of particle migration in reservoir [J].Drilling Fluid & Completion Fluid,1991,8(3):51-64.
-
[20] BERGENDAHL J,GRASSO D.Prediction of colloid detachment in a model porous media:hydrodynamics [J].Chemical Engineering Science,2000,55(9):1 523-1 532.
-
[21] BRADFORD S A,TORKZABAN S.Colloid transport and retention in unsaturated porous media:a review of interface,collector,and pore-scale processes and models [J].Vadose Zone Journal,2008,7(2):667-681.
-
[22] 李会平,陈现华,李良川,等.疏松砂层微粒运移特征及对油井动态的影响[J].断块油气田,1996,3(6):31-34.LI Huiping,CHEN Xianhua,LI Liangchuan,et al.Particle migration character of unconsolidated reservoir and its influence on oil performance [J].Fault-Block Oil & Gas Field,1996,3(6):31-34.
-
[23] VALDES J R,SANTAMARINA J C.Particle clogging in radial flow:microscale mechanisms [J].SPE Journal,2006,11(2):193-198.
-
[24] HERZIG J P,LECLERC D M,GOFF P L.Flow of suspensions through porous media-application to deep filtration [J].Industrial & Engineering Chemistry,1970,62(5):8-35.
-
[25] 吴剑,常毓文,穆歌.水驱黏土微粒迁移理论及作用[J].油田化学,2015,32(1):57-61.WU Jian,CHANG Yuwen,MU Ge.Theory and function for clay fines migration in water flooding [J].Oilfield Chemistry,2015,32(1):57-61.
-
[26] 叶珏男,唐洪明,吴小刚,等.储层孔喉结构参数与悬浮物粒径匹配关系[J].油气地质与采收率,2009,16(6):92-94.YE Yunan,TANG Hongming,WU Xiaogang,et al.The matching relation between the pore throat parameters of reservoirs and the particle diameters of suspended particles [J].Petroleum Geology and Recovery Efficiency,2009,16(6):92-94.
-
[27] 张钰祥,杨胜来,李强,等.应力对超深层碳酸盐岩气藏孔喉结构的影响[J].油气地质与采收率,2023,30(1):49-59.ZHANG Yuxiang,YANG Shenglai,LI Qiang,et al.Effects of stress on pore and throat structures of ultra-deep carbonate gas reservoirs [J].Petroleum Geology and Recovery Efficiency,2023,30(1):49-59.
-
[28] 马云峰,赵建国,孙龙,等.应力作用下气藏水体微观赋存特征及渗流规律——以鄂尔多斯盆地神木气田二叠系盒8段致密储层为例[J].石油实验地质,2023,45(3):466-473.MA Yunfeng,ZHAO Jianguo,SUN Long,et al.Microscopic occurrence characteristics and seepage law of water bodies in gas reservoir under stress:a case of tight reservoirs in the eighth member of Permian Shihezi Formation,Shenmu Gas Filed,Ordos Basin [J].Petroleum Geology & Experiment,2023,45(3):466-473.
-
[29] 邵晓岩,杨学武,孟令为,等.W油田C6低渗透油藏水驱后储层特征变化规律[J].特种油气藏,2022,29(5):107-112.SHAO Xiaoyan,YANG Xuewu,MENG Lingwei,et al.Change law of reservoir characteristics after water flooding of C6 low permeability reservoir in W oilfield [J].Special Oil & Gas Reservoirs,2022,29(5):107-112.
-
摘要
疏松砂岩气藏具有埋藏较浅,储层岩石疏松,气水分布复杂等特征,生产过程中地层易发生边底水侵、微粒运移和泥砂堵塞问题,导致井筒产水、出砂现象发生,影响气田的正常生产。选取柴达木盆地涩北气田疏松砂岩气藏为研究目标,基于生产工程因素分析与堵塞机制理论研究,探究产水、出砂以及地层泥砂堵塞的主要影响因素,进行不同压实作用下的泥砂堵塞机制模拟实验,并通过压汞法毛管压力曲线、粒度测试分析和X-射线衍射分析等手段研究泥砂微粒堵塞机制及其对疏松砂岩渗流能力的影响程度。结果表明,生产压差、地层压力和边底水侵是气井出砂的主要影响因素;生产压差越大,地层压力衰减越快,压实作用越强,导致地层出水加剧;当储层发生边底水侵后,水侵与压实效应导致岩心渗透率迅速下降,最大渗透率损失率达到77.40%;岩心水化分散导致泥砂微粒粒径变小,释放出的石英、长石等非膨胀性颗粒将发生运移,运移泥砂微粒粒径(Dp )与孔喉直径(df )满足3df <Dp<10df 的桥堵规则,导致地层泥砂微粒堵塞;当围压达到12 MPa后,运移泥砂微粒粒径与孔喉直径满足df >1/3Dp的匹配关系,泥砂微粒直接堵塞孔喉。因此,在开发中不建议采用过高的生产压差,对于地层压力降低的储层宜采取增压开发的方式,对地层进行能量补充。
Abstract
The unconsolidated sandstone gas reservoirs are characterized by shallow burial depth,loose reservoir rock,and complex gas-water distribution,and the formation is prone to the problems of edge and bottom water invasion,particle migration,and mud & sand plugging during the production process,resulting in water and sand production in the wellbore,which affects the normal production of the gas field. In this study,the unconsolidated sandstone gas reservoirs of Sebei Gas Field in Qaidam Basin were selected as the research target to study the main influencing factors of water production,sand production,and formation mud & sand plugging based on the analysis of production engineering factors and the theoretical study of plugging mechanism. The simulation experiments of the mud & sand plugging mechanism under different compaction conditions were carried out,and the plugging mechanism of mud & sand particles and its influence degree on the flow capacity of unconsolidated sandstones were studied by means of mercury injection capillary pressure curve,particle size test analysis,and X-ray diffraction analysis. The results reveal that the main factors influencing sand production in gas wells are production pressure difference,formation pressure,and edge-bottom water invasion. The faster decaying formation pressure and the stronger compaction result in increased formation water when the production pressure difference increases. The permeability of the core decreases rapidly due to the effect of water invasion and compaction when the invasion of edge and bottom water occurs in the reservoirs,and the maximum permeability loss rate reaches 77.40%. The hydration dispersion of the core leads to the smaller size of the mud & sand particles,and the released nonexpansive particles such as quartz and feldspar will migrate in the formation. There is a bridge blinding rule of 3df < Dp< 10df between the grain size(Dp )and pore throat diameter(df )of the transported mud and sand particles,which causes mud & sand plugging in the reservoir. When the confining pressure reaches 12 MPa,there is a matching relationship of df >1/3DP between the grain size and pore throat diameter of the transported mud & sand particles,and the mud & sand particles are directly plugged in the pore throat. Therefore,it is not recommended to adopt too high production pressure difference during the production process. For the reservoirs with reduced formation pressures,it is advisable to adopt pressurized development to replenish the energy of the formation.