en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

蒲春生(1959—),男,四川广安人,教授,博士生导师,从事低渗、特低渗、稠油、超稠油等特种油气藏物理-化学强化开采及资源环境保护理论与技术方面的研究。E-mail:chshpu@163.com。

中图分类号:TE327

文献标识码:A

文章编号:1009-9603(2023)04-0147-09

DOI:10.13673/j.pgre.202211034

参考文献 1
魏海峰,凡哲元,袁向春.致密油藏开发技术研究进展[J].油气地质与采收率,2013,20(2):62-66.WEI Haifeng,FAN Zheyuan,YUAN Xiangchun.Review on new advances in foreign tight oil development technology and their enlightenment [J].Petroleum Geology and Recovery Efficiency,2013,20(2):62-66.
参考文献 2
李忠兴,屈雪峰,刘万涛,等.鄂尔多斯盆地长7段致密油合理开发方式探讨[J].石油勘探与开发,2015,42(2):217-221.LI Zhongxing,QU Xuefeng,LIU Wantao,et al.Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin,NW China [J].Petroleum Exploration and Development,2015,42(2):217-221.
参考文献 3
王文东,赵广渊,苏玉亮,等.致密油藏体积压裂技术应用[J].新疆石油地质,2013,34(3):345-348.WANG Wendong,ZHAO Guangyuan,SU Yuliang,et al.Application of network fracturing technology to tight oil reservoirs [J].Xinjiang Petroleum Geology,2013,34(3):345-348.
参考文献 4
贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.JIA Chengzao,ZOU Caineng,LI Jianzhong,et al.Assessment criteria,main types,basic features and resource prospects of the tight oil in China[J].Acta Petrolei Sinica,2012,33(3):343-350.
参考文献 5
孙龙德,邹才能,贾爱林,等.中国致密油气发展特征与方向 [J].石油勘探与开发,2019,46(6):1 015-1 026.SUN Longde,ZOU Caineng,JIA Ailin,et al.Development characteristics and orientation of tight oil and gas in China[J].Petroleum Exploration and Development,2019,46(6):1 015-1 026.
参考文献 6
杜金虎,刘合,马德胜,等.试论中国陆相致密油有效开发技术[J].石油勘探与开发,2014,41(2):198-205.DU Jinhu,LIU He,MA Desheng,et al.Discussion on effective development techniques for continental tight oil in China [J].Petroleum Exploration and Development,2014,41(2):198-205.
参考文献 7
杨华,李士祥,刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力[J].石油学报,2013,34(1):1-11.YANG Hua,LI Shixiang,LIU Xianyang.Characteristics and resource prospects of tight oil and shale oil in Ordos Basin [J].Acta Petrolei Sinica,2013,34(1):1-11.
参考文献 8
康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477.KANG Yili,TIAN Jian,LUO Pingya,et al.Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs[J].Acta Petrolei Sinica,2020,41(4):467-477.
参考文献 9
何海波.致密油水平井缝网增能重复压裂技术实践[J].特种油气藏,2018,25(4):170-174.HE Haibo.Practice of re-fracturing with network energization for horizontal well in tight oil reservoir [J].Special Oil & GasReservoirs,2018,25(4):170-174.
参考文献 10
杨兆中,李扬,李小刚,等.页岩气水平井重复压裂关键技术进展及启示[J].西南石油大学学报:自然科学版,2019,41(6):75-86.YANG Zhaozhong,LI Yang,LI Xiaogang,et al.Key technology progress and enlightenment in refracturing of shale gas hori‐ zontal wells [J].Journal of Southwest Petroleum University:Sci‐ ence & Technology Edition,2019,41(6):75-86.
参考文献 11
郭建春,陶亮,曾凡辉.致密油储集层水平井重复压裂时机优化——以松辽盆地白垩系青山口组为例[J].石油勘探与开发,2019,46(1):146-154.GUO Jianchun,TAO Liang,ZENG Fanhui,et al.Optimization of refracturing timing for horizontal wells in tight oil reservoirs:A case study of Cretaceous Qingshankou Formation,Songliao Basin,NE China [J].Petroleum Exploration and Development,2019,46(1):146-154.
参考文献 12
高博禹,彭仕宓,王建波.剩余油形成与分布的研究现状及发展趋势[J].特种油气藏,2004,11(4):7-11,22.GAO Boyu,PENG Shimi,WANG Jianbo.Research status and development trend of residual oil generation and distribution [J].Special Oil & Gas Reservoirs,2004,11(4):7-11,22.
参考文献 13
冉启佑.剩余油研究现状与发展趋势[J].油气地质与采收率,2003,10(5):49-51.RAN Qiyou.Present situation and development tendency of remaining oil research technology [J].Petroleum Geology and Recovery Efficiency,2003,10(5):49-51.
参考文献 14
李洪玺,刘全稳,温长云,等.剩余油分布及其挖潜研究综述 [J].特种油气藏,2006,13(3):8-11.LI Hongxi,LIU Quanwen,WEN Changyun,et al.Residual oil distribution and potential tapping study[J].Special Oil & Gas Reservoirs,2006,13(3):8-11.
参考文献 15
靳彦欣,林承焰,贺晓燕,等.油藏数值模拟在剩余油预测中的不确定性分析[J].石油大学学报:自然科学版,2004,28(3):22-24,29.JIN Yanxin,LIN Chengyan,HE Xiaoyan,et al.Uncertainty analysis of remaining oil predicted with reservoir numerical simulation [J].Journal of China University of Petroleum:Edition of Natural Science,2004,28(3):22-24,29.
参考文献 16
周炜,唐仲华,温静,等.应用数值模拟技术研究剩余油分布规律[J].断块油气田,2010,17(3):325-329.ZHOU Wei,TANG Zhonghua,WEN Jing,et al.Study on distribution law of remaining oil by using reservoir numerical simulation technology[J].Fault-Block Oil & Gas Field,2010,17(3):325-329.
参考文献 17
胡伟,杨胜来,李斯鸣,等.基于多层次模糊综合评价的剩余油分布研究方法[J].西南石油大学学报:自然科学版,2015,37(4):22-28.HU Wei,YANG Shenglai,LI Siming,et al.Application of multi level fuzzy comprehensive evaluation method in the research of remaining oil distribution in Xing 6 District [J].Journal of Southwest Petroleum University:Science & Technology Edi‐ tion,2015,37(4):22-28.
参考文献 18
孙梦茹.基于模糊综合评判的剩余油分布定量描述[J].油气地质与采收率,2005,12(2):52-54.SUN Mengru.Quantitative description of remaining oil distribution based on fuzzy comprehensive discrimination analysis [J].Petroleum Geology and Recovery Efficiency,2005,12(2):52-54.
参考文献 19
杨炳祥,杨英涛,李榕,等.井下微地震裂缝监测技术在水平井分段压裂中的应用[J].钻采工艺,2014,37(4):48-50.YANG Bingxiang,YANG Yingtao,LI Rong,et al.Application of downhole microseismic fracture monitoring technology in staged fracturing of horizontal well [J].Drilling & Production Technology,2014,37(4):48-50.
参考文献 20
王长江,姜汉桥,张洪辉,等.水平井压裂裂缝监测的井下微地震技术[J].特种油气藏,2008,15(3):90-92.WANG Changjiang,JIANG Hanqiao,ZHANG Honghui,et al.Downhole microseismic technique for fracture monitoring in horizontal well fracturing process [J].Special Oil & Gas Reservoirs,2008,15(3):90-92.
参考文献 21
王治中,邓金根,赵振峰,等.井下微地震裂缝监测设计及压裂效果评价[J].大庆石油地质与开发,2006,25(6):76-78.WANG Zhizhong,DENG Jingen,ZHAO Zhenfeng,et al.Downhole microseismic fracture monitoring design and fracturing results analysis[J].Petroleum Geology & Oilfield Development in Daqing,2006,25(6):76-78.
参考文献 22
DENNEY D.Pressure-transient testing of low-permeability multiple-fracture horizontal wells [J].Journal of Petroleum Technology,2014,66(2):112-115.
参考文献 23
尹洪军,李兴科,赵二猛,等.体积压裂水平井不稳定试井解释研究[J].特种油气藏,2017,24(5):85-90.YIN Hongjun,LI Xingke,ZHAO Ermeng,et al.Interpretation of transient well test data in horizontal wells with volumetric fracturing [J].Special Oil & Gas Reservoirs,2017,24(5):85-90.
参考文献 24
张奇斌,张同义,廖新维.水平井不稳定试井分析理论及应用 [J].大庆石油地质与开发,2005,25(5):59-61.ZHANG Qibin,ZHANG Tongyi,LIAO Xinwei.Theory and application of non-stabilized well testing analysis for horizontal well [J].Petroleum Geology & Oilfield Development in Daqing,2005,25(5):59-61.
参考文献 25
纪天亮,卢双舫,唐明明,等.致密油藏水平井压裂后产能预测方法[J].大庆石油地质与开发,2016,35(2):165-169.JI Tianliang,LU Shuangfang,TANG Mingming,et al.Productivity predicting method of the fractured horizontal wells in the tight oil reservoirs [J].Petroleum Geology & Oilfield Development in Daqing,2016,35(2):165-169.
参考文献 26
刘巍,刘威,谷建伟,等.利用卡尔曼滤波和人工神经网络相结合的油藏井间连通性研究[J].油气地质与采收率,2020,27(2):118-124.LIU Wei,LIU Wei,GU Jianwei,et al.Research on interwell connectivity of oil reservoirs based on Kalman filter and artificial neural network [J].Petroleum Geology and Recovery Efficiency,2020,27(2):118-124.
参考文献 27
任双双,杨胜来,沈飞.BP神经网络预测最小混相压力[J].断块油气田,2010,17(2):216-218.REN Shuangshuang,YANG Shenglai,SHEN Fei.Prediction of minimum miscibility pressure with BP neural network [J].FaultBlock Oil and Gas Field,2010,17(2):216-218.
参考文献 28
张学磊,沈楠,樊茹,等.神经网络技术在复杂断块油藏水淹层评价中的应用[J].复杂油气藏,2015,8(3):55-58.ZHANG Xuelei,SHEN Nan,FAN Ru,et al.Application of neural network technique in evaluating watered-out zone in complex faulted block reservoir [J].Complex Hydrocarbon Reservoirs,2015,8(3):55-58.
参考文献 29
HAGAN Martin T,DEMUTH Howard B,BEALE Mark.神经网络设计[M].戴葵,译.北京:机械工业出版社,2002.HAGAN Martin T,DEMUTH Howard B,BEALE Mark.Neural network design [M].DAI Kui,trans.Beijing:China Machine Press,2002.
参考文献 30
姜瑞忠,王平,侯玉培,等.基于BP神经网络的油藏流场评价体系研究[J].断块油气田,2012,19(3):319-322.JIANG Ruizhong,WANG Ping,HOU Yupei,et al.Study on reservoir flow field evaluation system based on BP neural network[J].Fault-Block Oil & Gas Field,2012,19(3):319-322.
参考文献 31
韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.HAN Liqun.Artificial neural network tutorial [M].Beijing:Beijing University of Posts and Telecommunications Press,2006.
参考文献 32
崔明月,刘玉章,修乃领,等.形成复杂缝网体积(ESRV)的影响因素分析[J].石油钻采工艺,2014,36(2):82-87.CUI Mingyue,LIU Yuzhang,XIU Nailing,et al.Analysis of factors affecting the formation of Effective Stimulated Reservoir Volume(ESRV)[J].Oil Drilling & Production Technology,2014,36(2):82-87.
参考文献 33
归榕,万永平.基于常规测井数据计算储层岩石力学参数—— 以鄂尔多斯盆地上古生界为例[J].地质力学学报,2012,18(4):418-424.GUI Rong,WAN Yongping.Rock mechanics parameter calculation based on conventional logging data:a case study of upper Paleozoic in Ordos Basin [J].Journal of Geomechanics,2012,18(4):418-424.
参考文献 34
孙东生,王红才,侯默,等.影响水力压裂效果的因素及人工神经网络评价[J].地质力学学报,2006,12(4):485-491.SUN Dongsheng,WANG Hongcai,HOU Mo,et al.Factors influencing the effects of hydrofracturing in a low-permeability oilfield and potential evaluation using Artificial Neutral Network[J].Journal of Geomechanics,2006,12(4):485-491.
参考文献 35
杨秀娟,张敏,闫相祯.基于声波测井信息的岩石弹性力学参数研究[J].石油地质与工程,2008,22(4):39-42.YANG Xiujuan,ZHANG Min,YAN Xiangzhen.Study on acoustic logging-based rock elasticity parameters [J].Petroleum Geology and Engineering,2008,22(4):39-42.
参考文献 36
张立刚.松辽盆地深层火成岩破碎机理及破岩效率评价[D].大庆:东北石油大学,2014.ZHANG Ligang.Research on the igneous rock crushing mechanism and efficiency in deep reservoir of Songliao Basin [D].Daqing:Northeast Petroleum University,2014.
参考文献 37
张少龙,闫建平,唐洪明,等.致密碎屑岩气藏可压裂性测井评价方法及应用——以松辽盆地王府断陷登娄库组为例[J].岩性油气藏,2018,30(3):133-142.ZHANG Shaolong,YAN Jianping,TANG Hongming,et al.Logging fracturing evaluation for tight clastic gas reservoir and its application:a case from Denglouku Formation in Wangfu fault depression,Songliao Basin [J].Lithologic Reservoirs,2018,30(3):133-142.
参考文献 38
丁次乾.矿场地球物理[M].东营:石油大学出版社,1992.DING Ciqian.Geophysics well logging [M].Dongying:China University of Petroleum Press,1992.
参考文献 39
郝建明,吴健,张宏伟.应用水平井资料开展精细油藏建模及剩余油分布研究[J].石油勘探与开发,2009,36(6):730-736.HAO Jianming,WU Jian,ZHANG Hongwei.Study on fine reservoir modeling and distribution of remaining oil with data of horizontal wells [J].Petroleum Exploration and Development,2009,36(6):730-736.
参考文献 40
王晓冬,张义堂,刘慈群.垂直裂缝井产能及导流能力优化研究[J].石油勘探与开发,2004,31(6):78-81.WANG Xiaodong,ZHANG Yitang,LIU Ciqun.Productivity evaluation and conductivity optimization for vertical fractured wells [J].Petroleum Exploration and Development,2004,31(6):78-81.
参考文献 41
翟云芳.渗流力学[M].3版.北京:石油工业出版社,2009.ZHAI Yunfang.Fluid flow in porous media [M].3rd ed.Beijing:Petroleum Industry Press,2009.
目录contents

    摘要

    致密油藏体积压裂水平井衰竭式开发面临产量递减快、一次采收率低的问题。由于对各压裂段剩余油潜力认识不清,重复压裂后水平井开发效果差异明显。明确各压裂段剩余油潜力对于重复压裂方案设计及改善水平井开发效果具有重要意义。以鄂尔多斯盆地FX区块为例,对压裂储层改造体积影响因素进行分析,优选其中的12个因素作为BP神经网络的输入参数,建立了 BP神经网络裂缝长度和裂缝带宽度预测模型。7个测试样本预测结果误差分别为 4.91%和 2.42%,误差相对较小,说明该模型预测结果准确可靠。在此基础上,利用容积法和裂缝等效井径模型实现对压裂段剩余油潜力的定量研究。将该方法应用于同区块水平井,根据压裂段剩余油潜力评价结果设计针对性重复压裂措施并开展矿场试验,取得较好的效果,进一步验证了该方法的可靠性。

    Abstract

    The development of tight oil reservoirs with volume-fractured horizontal wells under natural depletion faces the problems of rapid production decline and low primary oil recovery. Because the remaining oil potential in each fractured section of horizontal wells is unclear,the production performance of the horizontal wells after refracturing shows a significant difference. Determining the remaining oil potential of each fractured section in horizontal wells is of great significance to the design of the refracturing scheme and the improvement of the horizontal well production performance. Therefore,Block FX in Ordos Basin was taken as an example,and 12 factors were selected as input parameters of the back propagation(BP)neural network by analyzing the influencing factors of hydraulic fracturing stimulated reservoir volume. As a result,the BP neural network prediction model for fracture length and fracture zone width was established. The prediction errors of seven test samples were 4.91% and 2.42%,respectively, which were relatively small,indicating that the prediction results of this model were accurate and reliable. On this basis,the remaining oil in fractured sections was quantitatively studied by using the volumetric method and the equivalent fractured well diameter model. The method was applied to the horizontal wells in the study area. According to the remaining oil potential evaluation results of each fractured section,the targeted refracturing measure was designed,and the field test was carried out,which achieved positive results and further verified the reliability of the method.

  • 中国致密油藏储量丰富,多采用体积压裂水平井衰竭式开发[1-5]。水平井开发面临产量递减快、一次采收率低的问题[6-8]。重复压裂是改善水平井开发效果及提高致密油藏采收率的重要手段[9-11]。然而,由于对水平井各压裂段剩余油潜力认识不清,水平井重复压裂效果差异较大。水平井各压裂段剩余油潜力研究对于重复压裂方案的制定及改善水平井开发效果具有重要指导意义。

  • 数值模拟方法和油藏工程方法是剩余油分布研究的主要手段[12-14]。其中数值模拟方法预测剩余油的准确性受地质模型精度的影响较大,且过程繁琐,工作量大[15-16]。油藏工程方法虽然可以较为简便地实现对剩余油分布的研究,但准确性受人为因素影响较大[17-18]。以往的剩余油分布研究多侧重于定性研究,定量研究方面较少,且目前针对水平井各压裂段剩余油潜力的研究几乎没有。针对致密油藏多级压裂水平井,由于储层渗透率极低,压裂段储层改造体积的确定对于压裂段控制储量计算以及剩余油潜力研究至关重要。井下微地震裂缝监测技术是目前描述裂缝空间展布形态以及确定储层改造体积应用最广泛的方法[19-21]。由于该技术复杂、昂贵,且并非对每口井进行测试,因此水平井裂缝监测资料十分有限。虽然利用水平井不稳定试井方法可以获取压裂段裂缝带宽度、裂缝高度和半长,但其过程复杂且存在一定误差和多解性[22-24]。近年来,人工神经网络技术被广泛应用于油气田勘探与开发领域[25-28]。该技术可以通过对已知样本学习实现对未知样本目标参数的快速准确预测,这为水平井各压裂段裂缝带宽度、裂缝高度和半长的快速准确获取以及压裂段储层改造体积的确定提供了一条有利途径。

  • 笔者以鄂尔多斯盆地FX区块为例,基于水平井裂缝监测资料、测井资料和压裂施工资料,首先通过分析体积压裂储层改造体积影响因素来优选 BP 神经网络的输入参数,并建立BP神经网络裂缝长度和裂缝带宽度预测模型;进一步通过确定压裂段控制的砂体及其物性参数,利用容积法计算各压裂段的控制储量。在此基础上,通过建立裂缝等效井径模型确定各压裂段的累积产油量,从而实现对各压裂段剩余油潜力的定量研究。

  • 1 BP 神经网络裂缝长度和裂缝带宽度预测模型

  • 1.1 BP神经网络基本原理

  • 人工神经网络 ANN(Artificial Neural Network) 类似于生物学神经网络,是对生物学神经网络的一种简单抽象模拟。其通过对已有样本数据的学习,确定样本各因素之间的隐含关系,很好地解决了多因素非线性问题,具有很强的分类识别和参数预测能力。BP神经网络,即误差前向传播神经网络(Error Back Propagation Neural Network)是目前应用最广泛的神经网络之一[29-30]。BP神经网络结构由一个输入层、若干隐含层和一个输出层构成,一般3层神经网络结构就可以满足需要,隐含层数的增多会导致训练时间的成倍增加和收敛问题。BP 神经网络模型通过输入层输入数据,根据初始的权值和阈值经各层处理计算得到输出结果,进一步通过比较实际输出结果与期望输出结果之间的误差,并将误差反向传播,不断调整网络的权值和阈值,直到误差满足要求,得到最优的权值和阈值[31]

  • 1.2 输入参数确定及处理

  • 水平井各压裂段体积压裂储层的改造体积取决于该压裂段岩石物性参数和工程参数,其中岩石物性参数主要包括杨氏模量、泊松比、脆性指数、水平应力差、泥质含量、孔隙度、渗透率和含油饱和度,工程参数主要包括施工排量、前置液量、注入总量和加砂量[32]。其中,由于同一区块水平应力差差异小,因此可以忽略水平应力差对体积压裂储层改造体积的影响。此外,考虑到水平井不同压裂段射孔段长度的差异,其对于压裂产生的裂缝带宽度影响较大,因此,最终选取杨氏模量、泊松比、脆性指数、泥质含量、孔隙度、渗透率、含油饱和度、施工排量、前置液量、注入总量、加砂量和射孔段长度合计 12 个因素作为神经网络模型的输入参数。岩石力学参数(杨氏模量、泊松比等)一般通过岩石力学实验获得。虽然其获得的力学参数结果可靠,但该方法耗时、昂贵,且并不是对每口井进行测试,因此岩石力学参数资料十分有限。鉴于此,基于测井资料计算岩石力学参数的方法得到广泛应用[33-34]。其中杨氏模量、泊松比、脆性指数和泥质含量的确定方法如下。

  • 杨氏模量

  • 杨氏模量可以通过密度测井及声波测井数据计算得到[3335-36]。杨氏模量的计算公式为:

  • Es=1.167×0.0929×ρ3Δts2-4Δtp2Δts2Δts2-Δtp20.016
    (1)
  • 其中:

  • Δts=Δtp1-1.151/ρ+1/ρ3exp(1/ρ)1.5
    (2)
  • ρ=0.31Vp0.25
    (3)
  • 泊松比

  • 与杨氏模量类似,利用岩石密度和横波时差数据计算可以得到泊松比,具体计算公式为[35-36]

  • μs=0.27×Δts2-2Δtp22Δts2-Δtp20.4
    (4)
  • 脆性指数

  • 在明确杨氏模量和泊松比的基础上,脆性指数计算公式为[37]

  • EBRIT=Es-EsminEsmax-Esmin×100%μBRIT=μs-μsminμsmax-μsmin×100%BI=EBRIT+μBRIT2
    (5)
  • 泥质含量

  • 地层中的泥质含量可以通过自然伽马测井曲线幅值的变化反映,泥质含量相对值的计算公式为[38]

  • IGR=GR-GRminGRmax-GRmin
    (6)
  • 1.3 裂缝长度及裂缝带宽度预测模型建立

  • 由于水平井采用分段多簇压裂方式,各压裂段的岩石物性参数根据射孔簇对应砂体物性参数加权平均确定。输出参数一般选取水平井各压裂段裂缝半长、裂缝带宽度和裂缝高度。统计研究区已有水平井裂缝监测资料发现水平井各压裂段的裂缝高度差异较小且裂缝通常呈现非对称分布。因此,为了方便 BP 神经网络模型的构建,提高模型预测的精度,分别选取各压裂段的裂缝长度和裂缝带宽度作为输出向量。此外,为了提高训练效率和预测精度,在训练之前需要对各参数进行归一化处理。设置隐含层为 1 层,隐含层节点数根据经验公式采用试凑法确定,图1为BP神经网络裂缝长度和裂缝带宽度预测模型结构。

  • 图1 BP神经网络裂缝长度及裂缝带宽度预测模型结构

  • Fig.1 Structure of BP neural network prediction model for fracture length and fracture zone width

  • 通过分析处理鄂尔多斯盆地FX区块14口水平井86个压裂段的裂缝监测资料、测井资料和压裂施工资料,构建BP神经网络样本库,其中79个压裂段 (13口井)作为学习样本,其余7个压裂段(1口井)作为测试样本。模型训练过程中,设置最大训练次数为1 000次,学习速率为0.01,最小训练误差为0.000 01,隐含层神经元传递函数为 logsig 函数,输出层神经元传递函数为 purelin 函数,训练函数为 trainlm 函数。确定隐含层节点数的经验公式为[24]

  • S=m+n+a
    (7)
  • 通过重复训练确定隐含层节点数为9时误差最小,因此选取9作为最佳隐含层节点数。

  • 由测试集 BP 神经网络预测模型预测值与实测值对比(图2)可见,BP 神经网络 7 个压裂段裂缝长度和裂缝带宽度模型预测值与实际值之间的误差相对较小,分别为 4.91% 和 2.42%,说明该模型预测结果可靠,可作为研究区一种有效的压裂段裂缝长度和裂缝带宽度预测方法。

  • 2 压裂段控制地质储量计算

  • 针对致密油藏多级压裂水平井,由于储层渗透率极低,认为压裂段改造体积内地质储量为该压裂段控制储量。考虑到砂体沿水平井方向不连续分布,为了相对准确地实现对各压裂段控制地质储量的计算,在明确水平井各压裂段裂缝长度和裂缝带宽度的基础上,根据水平井测井解释资料,通过确定水平井各压裂段控制砂体及其物性参数,利用容积法计算控制砂体的地质储量。进一步叠加实现对各压裂段控制地质储量的计算,其计算式为:

  • N=ρorBoii=1n liheϕiSai
    (8)
  • 图2 BP神经网络预测模型预测值与实测值对比

  • Fig.2 Contrast between predicted and actual values by BP neural network prediction model

  • 压裂段 1 控制 4~9 号砂体,压裂段 2 控制 10~14号砂体(图3)。

  • 图3 压裂段控制砂体示意

  • Fig.3 Schematic diagram of controlled sand bodies in fractured sections

  • 特别是当压裂段间距较小时,存在相邻压裂段改造区域重叠的情况。因此,不可避免地存在相邻压裂段控制同一砂体的情况(图4)。对于相邻压裂段控制同一砂体的情况,重叠区域砂体地质储量计算时裂缝长度取相邻压裂段裂缝长度的最大值,并根据相邻压裂段的裂缝长度riri+1劈分给相邻压裂段。重叠区域砂体地质储量计算公式为:

  • Ns=ρorsBailsheϕsSss
    (9)
  • 重叠区域砂体地质储量劈分到相邻压裂段 ii+1的地质储量计算式分别为:

  • Ns,i=Nsriri+ri+1
    (10)
  • Ns,i+1=Nsri+1ri+ri+1
    (11)
  • 图4 相邻压裂段改造区重叠区域砂体地质储量计算示意

  • Fig.4 Schematic diagram of calculating sand body geological reserves in overlapping simulated areas of adjacent fractured sections

  • 虽然水平井测井资料在解释储层地质特征横向连续变化方面优势明显,但其在刻画储层地质特征纵向变化方面存在明显不足,因此其难以确定控制砂体的有效厚度[39]。考虑到直井测井资料在反映储层地质特征纵向变化的优势,参考周围直井在水平井目的层段的有效厚度可以近似确定控制砂体的有效厚度。

  • 3 压裂段剩余油潜力定量研究

  • 在明确各压裂段控制地质储量的基础上,各压裂段累积产油量的确定是水平井各压裂段剩余油潜力定量研究的关键。假设各压裂段裂缝网络渗透率相同,根据各压裂段裂缝半长和裂缝带宽度,利用裂缝等效井径模型对水平井各压裂段产油量贡献比例进行研究。考虑到水平井各压裂段产油量是动态变化的,近似认为各压裂段产量递减状况相同,因此,可以根据各压裂段产油量贡献比例确定各压裂段的累积产油量。

  • 根据等效井径模型,对于多级压裂水平井,各压裂段主裂缝可以等效为一口直井(图5)。裂缝等效井径可以表示为[40]

  • rwe=2xfexp-32+fUm
    (12)
  • 其中:

  • UfD=KfwfKmxf
    (13)
  • fUm=j=1 πUfDj2j+πUfD(j+1)-πUfDπUmb+2
    (14)
  • 各压裂段的渗流包括压裂改造区内高渗透区域的渗流和压裂改造区外基质低渗透区域的渗流。裂缝等效井径模型的矩形泄油面积可以换算为等值的圆形泄油面积(图5),油藏泄油半径和压裂改造区泄油半径的表达式分别为[41]

  • re=wlπ
    (15)
  • rf=2xfbfπ
    (16)
  • 根据达西定律,压裂段产量为q时,压裂改造区外基质低渗透区域的渗流满足:

  • pe-pf=qμlnre/rf2πKmh
    (17)
  • 压裂改造区内高渗透区域的渗流满足:

  • pf-pw=qμlnrf/rwc2πKsh
    (18)
  • q=2πKmhpe-pwμlnre/rf+KmKslnrf/rwe
    (19)
  • 水平井初期产油量为Q,则有:

  • q=Q
    (20)
  • 由(19)式可知,各压裂段的流量由 ln(rc/rf)+KmKslnrf/rwe值决定,由于压裂改造区裂缝网络渗透率约为基质渗透率的102~103 倍,rwe小于0.5xf,显然第二项的值远小于第一项的值,各压裂段的流量主要由ln(rc/rf)决定。基于前文确定的裂缝带宽度和裂缝半长,根据(14)—(20)式可以确定各压裂改造区泄油半径以及水平井各压裂段产油量贡献比例。在此基础上,根据水平井的累积产油量和各压裂段控制地质储量可以实现对各压裂段剩余油潜力的定量研究。

  • 4 应用实例

  • 4.1 各压裂段剩余油潜力定量分析

  • 以研究区多级压裂水平井 R131-1为例,压裂段数为 5,其中各压裂段的岩石物性参数和压裂工程参数如表1所示。

  • 在BP神经网络预测模型输入参数之前,需要根据岩石密度和声波时差数据对杨氏模量、泊松比和脆性指数进行计算。利用 BP 神经网络裂缝长度和裂缝带宽度预测模型得到各压裂段裂缝长度分别为 194,204,207,211 和 213 m,裂缝带宽度分别为 55, 72,89,76和65 m。

  • 图5 裂缝等效井径模型示意

  • Fig.5 Schematic diagram of equivalent fractured well diameter model

  • 表1 多级压裂水平井R131-1各压裂段岩石物性及压裂工程参数

  • Table1 Rock physical properties and fracturing engineering parameters of each fractured section of multi-fracturing horizontal well R131-1

  • 水平井 R131-1 各压裂段控制砂体如图6 所示。在明确各压裂段裂缝长度和裂缝带宽度的基础上,首先根据(8)—(11)式确定各压裂段的控制地质储量。进一步根据(12)—(20)式可以确定各压裂改造区泄油半径以及水平井各压裂段产油量贡献比例。水平井 R131-1 压裂段压裂改造区泄油半径分别为 47.1,46.65,45.76,45.09 和 42.86 m,对应的各压裂段产油量贡献比例分别为 19.76%,20.43%,21.11%, 20.03%和18.67%。截止到2022年1月水平井R131-1累积产油量为3 344.8 t,由各压裂段的目前生产状况(表2)可以看出压裂段 3、压裂段 4 和压裂段 5 的储量动用程度较低,剩余地质储量丰富,是后续剩余油挖潜的重点对象。

  • 图6 水平井R131-1各压裂段控制砂体分布

  • Fig.6 Distribution of controlled sand body in each fractured section of horizontal wells

  • 4.2 矿场应用效果

  • 在明确 R131-1 井各压裂段剩余油潜力的基础上,利用双封单卡工具对水平井 5 个压裂段进行分段重复压裂,入地总液量为 2 366.5 m3 ,加砂量为 247 m3,施工排量为 10~12 m3 /min。其中单段入地液量和加砂量差异较大,对于剩余油丰富的压裂段 3,4和5,适当增加压裂规模,单段入地液量为567~603.5 m3 ,加砂量为 47~54.5 m3 ,施工排量为 10~12m3 /min。试验井初次压裂后平均单井日产油量为 8.61 t/d,重复压裂前平均单井日产油量为 1.54 t/d,重复压裂后初期平均单井日产油量为 7.87 t/d,为初次压裂后日产油量的91.4%。R131-1井附近水平井 Y306-1(压裂级数为5)和Z40-1(压裂级数为6)之前由于产量递减严重同样采用分段重复压裂,与 R131-1 井不同的是同一水平井单段入地液量和加砂量差异较小。2口水平井入地液量分别为2 413.5 和2 475.3 m3 ,加砂量分别为262和283 m3,施工排量为 10~12 m3 /min。重复压裂后初期平均单井日产油量分别为 4.8 和 5.29 t/d,为初次压裂后日产油量的 69.3% 和 75.4%。可以看出水平井重复压裂过程中,针对剩余油富集区适当地增加压裂规模可以显著改善水平井重复压裂效果。矿场试验结果从侧面表明所提出的方法在水平井压裂段剩余油定量研究方面较为可靠,可为水平井各类开发措施的制定提供理论指导,具有一定的应用价值。

  • 表2 水平井R131-1各压裂段生产现状

  • Table2 Current production situation for horizontal well R131-1

  • 5 结论

  • 基于水平井裂缝监测资料、测井资料和压裂施工资料,选择影响体积压裂储层改造体积大小的 12 个因素作为输入参数,并建立BP神经网络裂缝长度和裂缝带宽度预测模型。7个测试样本预测结果误差分别为 4.91% 和 2.42%,误差相对较小,说明该模型可以实现对压裂段裂缝长度和裂缝带宽度的快速、准确预测。

  • 在明确压裂段裂缝长度和裂缝带宽度的基础上,通过确定水平井各压裂段控制砂体及物性参数计算各压裂段控制地质储量,进一步结合裂缝等效井径模型可以实现对各压裂段剩余油潜力的定量研究。

  • 将该方法应用于 FX 区块 R131-1 水平井,针对压裂段剩余油潜力分布情况设计针对性重复压裂方案,矿场试验取得较好的效果,进一步验证了所提出的压裂段剩余油潜力定量研究方法的准确性和可靠性。

  • 符号解释

  • a——1~10的常数;

  • bf ——裂缝带宽度,m;

  • BI——脆性指数;

  • Boi——地层原油体积系数;

  • EBRIT——归一化的杨氏模量;

  • Es——杨氏模量,104 MPa;

  • GRGRmaxGRmin——目的层、纯砂岩层、纯泥岩层的自然伽马测井值,API;

  • he——油层有效厚度,m;

  • h——油藏厚度,m;

  • i——压裂段序号,i为自然数;

  • j——函数叠加过程的数学符号;

  • IGR——泥质含量相对值;

  • Kf ——裂缝渗透率,mD;

  • Km——基质渗透率,mD;

  • Ks——压裂改造区渗透率,mD;

  • l——油藏长度,m;

  • li ——压裂段在第i个砂体的控制长度,m;

  • ls——重叠区域砂体的长度,m;

  • mn——输入层和输出层节点数;

  • N——各压裂段控制地质储量,t;

  • Ns——重叠区域砂体地质储量,t;

  • Ns,iNs,i+1——重叠区域砂体地质储量劈分到相邻压裂段 ii+1的地质储量,t;

  • pe——供给边界压力,MPa;

  • pf ——压裂改造区泄油半径处压力,MPa;

  • pw——井底压力,MPa;

  • q——压裂段产量,m3 /s;

  • Q——水平井初期产油量

  • r——裂缝长度,m;

  • re——油藏泄油半径,m;

  • rf ——压裂改造区泄油半径,m;

  • ri ri+1——相邻压裂段ii+1的裂缝长度,m;

  • rs——相邻压裂段裂缝长度中的最大值max(riri+1),m;

  • rwe——裂缝等效井径,m;

  • S——隐含层节点数;

  • Soi ——压裂段控制的第i个砂体含油饱和度,%;

  • Sos——重叠区域砂体的含油饱和度,%;

  • Δts ——横波时差,μs/m;

  • Δtp——纵波时差,μs/m;

  • UfD——无量纲裂缝导流系数;

  • Vp——纵波速度,m/s;

  • w——油藏宽度,m;

  • wf ——裂缝宽度,m;

  • xf ——裂缝半长,m;

  • μ——油藏黏度,mPa•s;

  • μBRIT——归一化的泊松比;

  • μs ——泊松比;

  • ρ——地层岩石体积密度,g/cm3

  • ρo——地面脱气原油密度,kg/m3

  • ϕi ——压裂段控制的第i个砂体孔隙度,%;

  • ϕs ——重叠区域砂体的孔隙度,%。

  • 参考文献

    • [1] 魏海峰,凡哲元,袁向春.致密油藏开发技术研究进展[J].油气地质与采收率,2013,20(2):62-66.WEI Haifeng,FAN Zheyuan,YUAN Xiangchun.Review on new advances in foreign tight oil development technology and their enlightenment [J].Petroleum Geology and Recovery Efficiency,2013,20(2):62-66.

    • [2] 李忠兴,屈雪峰,刘万涛,等.鄂尔多斯盆地长7段致密油合理开发方式探讨[J].石油勘探与开发,2015,42(2):217-221.LI Zhongxing,QU Xuefeng,LIU Wantao,et al.Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin,NW China [J].Petroleum Exploration and Development,2015,42(2):217-221.

    • [3] 王文东,赵广渊,苏玉亮,等.致密油藏体积压裂技术应用[J].新疆石油地质,2013,34(3):345-348.WANG Wendong,ZHAO Guangyuan,SU Yuliang,et al.Application of network fracturing technology to tight oil reservoirs [J].Xinjiang Petroleum Geology,2013,34(3):345-348.

    • [4] 贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.JIA Chengzao,ZOU Caineng,LI Jianzhong,et al.Assessment criteria,main types,basic features and resource prospects of the tight oil in China[J].Acta Petrolei Sinica,2012,33(3):343-350.

    • [5] 孙龙德,邹才能,贾爱林,等.中国致密油气发展特征与方向 [J].石油勘探与开发,2019,46(6):1 015-1 026.SUN Longde,ZOU Caineng,JIA Ailin,et al.Development characteristics and orientation of tight oil and gas in China[J].Petroleum Exploration and Development,2019,46(6):1 015-1 026.

    • [6] 杜金虎,刘合,马德胜,等.试论中国陆相致密油有效开发技术[J].石油勘探与开发,2014,41(2):198-205.DU Jinhu,LIU He,MA Desheng,et al.Discussion on effective development techniques for continental tight oil in China [J].Petroleum Exploration and Development,2014,41(2):198-205.

    • [7] 杨华,李士祥,刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力[J].石油学报,2013,34(1):1-11.YANG Hua,LI Shixiang,LIU Xianyang.Characteristics and resource prospects of tight oil and shale oil in Ordos Basin [J].Acta Petrolei Sinica,2013,34(1):1-11.

    • [8] 康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477.KANG Yili,TIAN Jian,LUO Pingya,et al.Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs[J].Acta Petrolei Sinica,2020,41(4):467-477.

    • [9] 何海波.致密油水平井缝网增能重复压裂技术实践[J].特种油气藏,2018,25(4):170-174.HE Haibo.Practice of re-fracturing with network energization for horizontal well in tight oil reservoir [J].Special Oil & GasReservoirs,2018,25(4):170-174.

    • [10] 杨兆中,李扬,李小刚,等.页岩气水平井重复压裂关键技术进展及启示[J].西南石油大学学报:自然科学版,2019,41(6):75-86.YANG Zhaozhong,LI Yang,LI Xiaogang,et al.Key technology progress and enlightenment in refracturing of shale gas hori‐ zontal wells [J].Journal of Southwest Petroleum University:Sci‐ ence & Technology Edition,2019,41(6):75-86.

    • [11] 郭建春,陶亮,曾凡辉.致密油储集层水平井重复压裂时机优化——以松辽盆地白垩系青山口组为例[J].石油勘探与开发,2019,46(1):146-154.GUO Jianchun,TAO Liang,ZENG Fanhui,et al.Optimization of refracturing timing for horizontal wells in tight oil reservoirs:A case study of Cretaceous Qingshankou Formation,Songliao Basin,NE China [J].Petroleum Exploration and Development,2019,46(1):146-154.

    • [12] 高博禹,彭仕宓,王建波.剩余油形成与分布的研究现状及发展趋势[J].特种油气藏,2004,11(4):7-11,22.GAO Boyu,PENG Shimi,WANG Jianbo.Research status and development trend of residual oil generation and distribution [J].Special Oil & Gas Reservoirs,2004,11(4):7-11,22.

    • [13] 冉启佑.剩余油研究现状与发展趋势[J].油气地质与采收率,2003,10(5):49-51.RAN Qiyou.Present situation and development tendency of remaining oil research technology [J].Petroleum Geology and Recovery Efficiency,2003,10(5):49-51.

    • [14] 李洪玺,刘全稳,温长云,等.剩余油分布及其挖潜研究综述 [J].特种油气藏,2006,13(3):8-11.LI Hongxi,LIU Quanwen,WEN Changyun,et al.Residual oil distribution and potential tapping study[J].Special Oil & Gas Reservoirs,2006,13(3):8-11.

    • [15] 靳彦欣,林承焰,贺晓燕,等.油藏数值模拟在剩余油预测中的不确定性分析[J].石油大学学报:自然科学版,2004,28(3):22-24,29.JIN Yanxin,LIN Chengyan,HE Xiaoyan,et al.Uncertainty analysis of remaining oil predicted with reservoir numerical simulation [J].Journal of China University of Petroleum:Edition of Natural Science,2004,28(3):22-24,29.

    • [16] 周炜,唐仲华,温静,等.应用数值模拟技术研究剩余油分布规律[J].断块油气田,2010,17(3):325-329.ZHOU Wei,TANG Zhonghua,WEN Jing,et al.Study on distribution law of remaining oil by using reservoir numerical simulation technology[J].Fault-Block Oil & Gas Field,2010,17(3):325-329.

    • [17] 胡伟,杨胜来,李斯鸣,等.基于多层次模糊综合评价的剩余油分布研究方法[J].西南石油大学学报:自然科学版,2015,37(4):22-28.HU Wei,YANG Shenglai,LI Siming,et al.Application of multi level fuzzy comprehensive evaluation method in the research of remaining oil distribution in Xing 6 District [J].Journal of Southwest Petroleum University:Science & Technology Edi‐ tion,2015,37(4):22-28.

    • [18] 孙梦茹.基于模糊综合评判的剩余油分布定量描述[J].油气地质与采收率,2005,12(2):52-54.SUN Mengru.Quantitative description of remaining oil distribution based on fuzzy comprehensive discrimination analysis [J].Petroleum Geology and Recovery Efficiency,2005,12(2):52-54.

    • [19] 杨炳祥,杨英涛,李榕,等.井下微地震裂缝监测技术在水平井分段压裂中的应用[J].钻采工艺,2014,37(4):48-50.YANG Bingxiang,YANG Yingtao,LI Rong,et al.Application of downhole microseismic fracture monitoring technology in staged fracturing of horizontal well [J].Drilling & Production Technology,2014,37(4):48-50.

    • [20] 王长江,姜汉桥,张洪辉,等.水平井压裂裂缝监测的井下微地震技术[J].特种油气藏,2008,15(3):90-92.WANG Changjiang,JIANG Hanqiao,ZHANG Honghui,et al.Downhole microseismic technique for fracture monitoring in horizontal well fracturing process [J].Special Oil & Gas Reservoirs,2008,15(3):90-92.

    • [21] 王治中,邓金根,赵振峰,等.井下微地震裂缝监测设计及压裂效果评价[J].大庆石油地质与开发,2006,25(6):76-78.WANG Zhizhong,DENG Jingen,ZHAO Zhenfeng,et al.Downhole microseismic fracture monitoring design and fracturing results analysis[J].Petroleum Geology & Oilfield Development in Daqing,2006,25(6):76-78.

    • [22] DENNEY D.Pressure-transient testing of low-permeability multiple-fracture horizontal wells [J].Journal of Petroleum Technology,2014,66(2):112-115.

    • [23] 尹洪军,李兴科,赵二猛,等.体积压裂水平井不稳定试井解释研究[J].特种油气藏,2017,24(5):85-90.YIN Hongjun,LI Xingke,ZHAO Ermeng,et al.Interpretation of transient well test data in horizontal wells with volumetric fracturing [J].Special Oil & Gas Reservoirs,2017,24(5):85-90.

    • [24] 张奇斌,张同义,廖新维.水平井不稳定试井分析理论及应用 [J].大庆石油地质与开发,2005,25(5):59-61.ZHANG Qibin,ZHANG Tongyi,LIAO Xinwei.Theory and application of non-stabilized well testing analysis for horizontal well [J].Petroleum Geology & Oilfield Development in Daqing,2005,25(5):59-61.

    • [25] 纪天亮,卢双舫,唐明明,等.致密油藏水平井压裂后产能预测方法[J].大庆石油地质与开发,2016,35(2):165-169.JI Tianliang,LU Shuangfang,TANG Mingming,et al.Productivity predicting method of the fractured horizontal wells in the tight oil reservoirs [J].Petroleum Geology & Oilfield Development in Daqing,2016,35(2):165-169.

    • [26] 刘巍,刘威,谷建伟,等.利用卡尔曼滤波和人工神经网络相结合的油藏井间连通性研究[J].油气地质与采收率,2020,27(2):118-124.LIU Wei,LIU Wei,GU Jianwei,et al.Research on interwell connectivity of oil reservoirs based on Kalman filter and artificial neural network [J].Petroleum Geology and Recovery Efficiency,2020,27(2):118-124.

    • [27] 任双双,杨胜来,沈飞.BP神经网络预测最小混相压力[J].断块油气田,2010,17(2):216-218.REN Shuangshuang,YANG Shenglai,SHEN Fei.Prediction of minimum miscibility pressure with BP neural network [J].FaultBlock Oil and Gas Field,2010,17(2):216-218.

    • [28] 张学磊,沈楠,樊茹,等.神经网络技术在复杂断块油藏水淹层评价中的应用[J].复杂油气藏,2015,8(3):55-58.ZHANG Xuelei,SHEN Nan,FAN Ru,et al.Application of neural network technique in evaluating watered-out zone in complex faulted block reservoir [J].Complex Hydrocarbon Reservoirs,2015,8(3):55-58.

    • [29] HAGAN Martin T,DEMUTH Howard B,BEALE Mark.神经网络设计[M].戴葵,译.北京:机械工业出版社,2002.HAGAN Martin T,DEMUTH Howard B,BEALE Mark.Neural network design [M].DAI Kui,trans.Beijing:China Machine Press,2002.

    • [30] 姜瑞忠,王平,侯玉培,等.基于BP神经网络的油藏流场评价体系研究[J].断块油气田,2012,19(3):319-322.JIANG Ruizhong,WANG Ping,HOU Yupei,et al.Study on reservoir flow field evaluation system based on BP neural network[J].Fault-Block Oil & Gas Field,2012,19(3):319-322.

    • [31] 韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.HAN Liqun.Artificial neural network tutorial [M].Beijing:Beijing University of Posts and Telecommunications Press,2006.

    • [32] 崔明月,刘玉章,修乃领,等.形成复杂缝网体积(ESRV)的影响因素分析[J].石油钻采工艺,2014,36(2):82-87.CUI Mingyue,LIU Yuzhang,XIU Nailing,et al.Analysis of factors affecting the formation of Effective Stimulated Reservoir Volume(ESRV)[J].Oil Drilling & Production Technology,2014,36(2):82-87.

    • [33] 归榕,万永平.基于常规测井数据计算储层岩石力学参数—— 以鄂尔多斯盆地上古生界为例[J].地质力学学报,2012,18(4):418-424.GUI Rong,WAN Yongping.Rock mechanics parameter calculation based on conventional logging data:a case study of upper Paleozoic in Ordos Basin [J].Journal of Geomechanics,2012,18(4):418-424.

    • [34] 孙东生,王红才,侯默,等.影响水力压裂效果的因素及人工神经网络评价[J].地质力学学报,2006,12(4):485-491.SUN Dongsheng,WANG Hongcai,HOU Mo,et al.Factors influencing the effects of hydrofracturing in a low-permeability oilfield and potential evaluation using Artificial Neutral Network[J].Journal of Geomechanics,2006,12(4):485-491.

    • [35] 杨秀娟,张敏,闫相祯.基于声波测井信息的岩石弹性力学参数研究[J].石油地质与工程,2008,22(4):39-42.YANG Xiujuan,ZHANG Min,YAN Xiangzhen.Study on acoustic logging-based rock elasticity parameters [J].Petroleum Geology and Engineering,2008,22(4):39-42.

    • [36] 张立刚.松辽盆地深层火成岩破碎机理及破岩效率评价[D].大庆:东北石油大学,2014.ZHANG Ligang.Research on the igneous rock crushing mechanism and efficiency in deep reservoir of Songliao Basin [D].Daqing:Northeast Petroleum University,2014.

    • [37] 张少龙,闫建平,唐洪明,等.致密碎屑岩气藏可压裂性测井评价方法及应用——以松辽盆地王府断陷登娄库组为例[J].岩性油气藏,2018,30(3):133-142.ZHANG Shaolong,YAN Jianping,TANG Hongming,et al.Logging fracturing evaluation for tight clastic gas reservoir and its application:a case from Denglouku Formation in Wangfu fault depression,Songliao Basin [J].Lithologic Reservoirs,2018,30(3):133-142.

    • [38] 丁次乾.矿场地球物理[M].东营:石油大学出版社,1992.DING Ciqian.Geophysics well logging [M].Dongying:China University of Petroleum Press,1992.

    • [39] 郝建明,吴健,张宏伟.应用水平井资料开展精细油藏建模及剩余油分布研究[J].石油勘探与开发,2009,36(6):730-736.HAO Jianming,WU Jian,ZHANG Hongwei.Study on fine reservoir modeling and distribution of remaining oil with data of horizontal wells [J].Petroleum Exploration and Development,2009,36(6):730-736.

    • [40] 王晓冬,张义堂,刘慈群.垂直裂缝井产能及导流能力优化研究[J].石油勘探与开发,2004,31(6):78-81.WANG Xiaodong,ZHANG Yitang,LIU Ciqun.Productivity evaluation and conductivity optimization for vertical fractured wells [J].Petroleum Exploration and Development,2004,31(6):78-81.

    • [41] 翟云芳.渗流力学[M].3版.北京:石油工业出版社,2009.ZHAI Yunfang.Fluid flow in porous media [M].3rd ed.Beijing:Petroleum Industry Press,2009.

  • 参考文献

    • [1] 魏海峰,凡哲元,袁向春.致密油藏开发技术研究进展[J].油气地质与采收率,2013,20(2):62-66.WEI Haifeng,FAN Zheyuan,YUAN Xiangchun.Review on new advances in foreign tight oil development technology and their enlightenment [J].Petroleum Geology and Recovery Efficiency,2013,20(2):62-66.

    • [2] 李忠兴,屈雪峰,刘万涛,等.鄂尔多斯盆地长7段致密油合理开发方式探讨[J].石油勘探与开发,2015,42(2):217-221.LI Zhongxing,QU Xuefeng,LIU Wantao,et al.Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin,NW China [J].Petroleum Exploration and Development,2015,42(2):217-221.

    • [3] 王文东,赵广渊,苏玉亮,等.致密油藏体积压裂技术应用[J].新疆石油地质,2013,34(3):345-348.WANG Wendong,ZHAO Guangyuan,SU Yuliang,et al.Application of network fracturing technology to tight oil reservoirs [J].Xinjiang Petroleum Geology,2013,34(3):345-348.

    • [4] 贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.JIA Chengzao,ZOU Caineng,LI Jianzhong,et al.Assessment criteria,main types,basic features and resource prospects of the tight oil in China[J].Acta Petrolei Sinica,2012,33(3):343-350.

    • [5] 孙龙德,邹才能,贾爱林,等.中国致密油气发展特征与方向 [J].石油勘探与开发,2019,46(6):1 015-1 026.SUN Longde,ZOU Caineng,JIA Ailin,et al.Development characteristics and orientation of tight oil and gas in China[J].Petroleum Exploration and Development,2019,46(6):1 015-1 026.

    • [6] 杜金虎,刘合,马德胜,等.试论中国陆相致密油有效开发技术[J].石油勘探与开发,2014,41(2):198-205.DU Jinhu,LIU He,MA Desheng,et al.Discussion on effective development techniques for continental tight oil in China [J].Petroleum Exploration and Development,2014,41(2):198-205.

    • [7] 杨华,李士祥,刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力[J].石油学报,2013,34(1):1-11.YANG Hua,LI Shixiang,LIU Xianyang.Characteristics and resource prospects of tight oil and shale oil in Ordos Basin [J].Acta Petrolei Sinica,2013,34(1):1-11.

    • [8] 康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477.KANG Yili,TIAN Jian,LUO Pingya,et al.Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs[J].Acta Petrolei Sinica,2020,41(4):467-477.

    • [9] 何海波.致密油水平井缝网增能重复压裂技术实践[J].特种油气藏,2018,25(4):170-174.HE Haibo.Practice of re-fracturing with network energization for horizontal well in tight oil reservoir [J].Special Oil & GasReservoirs,2018,25(4):170-174.

    • [10] 杨兆中,李扬,李小刚,等.页岩气水平井重复压裂关键技术进展及启示[J].西南石油大学学报:自然科学版,2019,41(6):75-86.YANG Zhaozhong,LI Yang,LI Xiaogang,et al.Key technology progress and enlightenment in refracturing of shale gas hori‐ zontal wells [J].Journal of Southwest Petroleum University:Sci‐ ence & Technology Edition,2019,41(6):75-86.

    • [11] 郭建春,陶亮,曾凡辉.致密油储集层水平井重复压裂时机优化——以松辽盆地白垩系青山口组为例[J].石油勘探与开发,2019,46(1):146-154.GUO Jianchun,TAO Liang,ZENG Fanhui,et al.Optimization of refracturing timing for horizontal wells in tight oil reservoirs:A case study of Cretaceous Qingshankou Formation,Songliao Basin,NE China [J].Petroleum Exploration and Development,2019,46(1):146-154.

    • [12] 高博禹,彭仕宓,王建波.剩余油形成与分布的研究现状及发展趋势[J].特种油气藏,2004,11(4):7-11,22.GAO Boyu,PENG Shimi,WANG Jianbo.Research status and development trend of residual oil generation and distribution [J].Special Oil & Gas Reservoirs,2004,11(4):7-11,22.

    • [13] 冉启佑.剩余油研究现状与发展趋势[J].油气地质与采收率,2003,10(5):49-51.RAN Qiyou.Present situation and development tendency of remaining oil research technology [J].Petroleum Geology and Recovery Efficiency,2003,10(5):49-51.

    • [14] 李洪玺,刘全稳,温长云,等.剩余油分布及其挖潜研究综述 [J].特种油气藏,2006,13(3):8-11.LI Hongxi,LIU Quanwen,WEN Changyun,et al.Residual oil distribution and potential tapping study[J].Special Oil & Gas Reservoirs,2006,13(3):8-11.

    • [15] 靳彦欣,林承焰,贺晓燕,等.油藏数值模拟在剩余油预测中的不确定性分析[J].石油大学学报:自然科学版,2004,28(3):22-24,29.JIN Yanxin,LIN Chengyan,HE Xiaoyan,et al.Uncertainty analysis of remaining oil predicted with reservoir numerical simulation [J].Journal of China University of Petroleum:Edition of Natural Science,2004,28(3):22-24,29.

    • [16] 周炜,唐仲华,温静,等.应用数值模拟技术研究剩余油分布规律[J].断块油气田,2010,17(3):325-329.ZHOU Wei,TANG Zhonghua,WEN Jing,et al.Study on distribution law of remaining oil by using reservoir numerical simulation technology[J].Fault-Block Oil & Gas Field,2010,17(3):325-329.

    • [17] 胡伟,杨胜来,李斯鸣,等.基于多层次模糊综合评价的剩余油分布研究方法[J].西南石油大学学报:自然科学版,2015,37(4):22-28.HU Wei,YANG Shenglai,LI Siming,et al.Application of multi level fuzzy comprehensive evaluation method in the research of remaining oil distribution in Xing 6 District [J].Journal of Southwest Petroleum University:Science & Technology Edi‐ tion,2015,37(4):22-28.

    • [18] 孙梦茹.基于模糊综合评判的剩余油分布定量描述[J].油气地质与采收率,2005,12(2):52-54.SUN Mengru.Quantitative description of remaining oil distribution based on fuzzy comprehensive discrimination analysis [J].Petroleum Geology and Recovery Efficiency,2005,12(2):52-54.

    • [19] 杨炳祥,杨英涛,李榕,等.井下微地震裂缝监测技术在水平井分段压裂中的应用[J].钻采工艺,2014,37(4):48-50.YANG Bingxiang,YANG Yingtao,LI Rong,et al.Application of downhole microseismic fracture monitoring technology in staged fracturing of horizontal well [J].Drilling & Production Technology,2014,37(4):48-50.

    • [20] 王长江,姜汉桥,张洪辉,等.水平井压裂裂缝监测的井下微地震技术[J].特种油气藏,2008,15(3):90-92.WANG Changjiang,JIANG Hanqiao,ZHANG Honghui,et al.Downhole microseismic technique for fracture monitoring in horizontal well fracturing process [J].Special Oil & Gas Reservoirs,2008,15(3):90-92.

    • [21] 王治中,邓金根,赵振峰,等.井下微地震裂缝监测设计及压裂效果评价[J].大庆石油地质与开发,2006,25(6):76-78.WANG Zhizhong,DENG Jingen,ZHAO Zhenfeng,et al.Downhole microseismic fracture monitoring design and fracturing results analysis[J].Petroleum Geology & Oilfield Development in Daqing,2006,25(6):76-78.

    • [22] DENNEY D.Pressure-transient testing of low-permeability multiple-fracture horizontal wells [J].Journal of Petroleum Technology,2014,66(2):112-115.

    • [23] 尹洪军,李兴科,赵二猛,等.体积压裂水平井不稳定试井解释研究[J].特种油气藏,2017,24(5):85-90.YIN Hongjun,LI Xingke,ZHAO Ermeng,et al.Interpretation of transient well test data in horizontal wells with volumetric fracturing [J].Special Oil & Gas Reservoirs,2017,24(5):85-90.

    • [24] 张奇斌,张同义,廖新维.水平井不稳定试井分析理论及应用 [J].大庆石油地质与开发,2005,25(5):59-61.ZHANG Qibin,ZHANG Tongyi,LIAO Xinwei.Theory and application of non-stabilized well testing analysis for horizontal well [J].Petroleum Geology & Oilfield Development in Daqing,2005,25(5):59-61.

    • [25] 纪天亮,卢双舫,唐明明,等.致密油藏水平井压裂后产能预测方法[J].大庆石油地质与开发,2016,35(2):165-169.JI Tianliang,LU Shuangfang,TANG Mingming,et al.Productivity predicting method of the fractured horizontal wells in the tight oil reservoirs [J].Petroleum Geology & Oilfield Development in Daqing,2016,35(2):165-169.

    • [26] 刘巍,刘威,谷建伟,等.利用卡尔曼滤波和人工神经网络相结合的油藏井间连通性研究[J].油气地质与采收率,2020,27(2):118-124.LIU Wei,LIU Wei,GU Jianwei,et al.Research on interwell connectivity of oil reservoirs based on Kalman filter and artificial neural network [J].Petroleum Geology and Recovery Efficiency,2020,27(2):118-124.

    • [27] 任双双,杨胜来,沈飞.BP神经网络预测最小混相压力[J].断块油气田,2010,17(2):216-218.REN Shuangshuang,YANG Shenglai,SHEN Fei.Prediction of minimum miscibility pressure with BP neural network [J].FaultBlock Oil and Gas Field,2010,17(2):216-218.

    • [28] 张学磊,沈楠,樊茹,等.神经网络技术在复杂断块油藏水淹层评价中的应用[J].复杂油气藏,2015,8(3):55-58.ZHANG Xuelei,SHEN Nan,FAN Ru,et al.Application of neural network technique in evaluating watered-out zone in complex faulted block reservoir [J].Complex Hydrocarbon Reservoirs,2015,8(3):55-58.

    • [29] HAGAN Martin T,DEMUTH Howard B,BEALE Mark.神经网络设计[M].戴葵,译.北京:机械工业出版社,2002.HAGAN Martin T,DEMUTH Howard B,BEALE Mark.Neural network design [M].DAI Kui,trans.Beijing:China Machine Press,2002.

    • [30] 姜瑞忠,王平,侯玉培,等.基于BP神经网络的油藏流场评价体系研究[J].断块油气田,2012,19(3):319-322.JIANG Ruizhong,WANG Ping,HOU Yupei,et al.Study on reservoir flow field evaluation system based on BP neural network[J].Fault-Block Oil & Gas Field,2012,19(3):319-322.

    • [31] 韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.HAN Liqun.Artificial neural network tutorial [M].Beijing:Beijing University of Posts and Telecommunications Press,2006.

    • [32] 崔明月,刘玉章,修乃领,等.形成复杂缝网体积(ESRV)的影响因素分析[J].石油钻采工艺,2014,36(2):82-87.CUI Mingyue,LIU Yuzhang,XIU Nailing,et al.Analysis of factors affecting the formation of Effective Stimulated Reservoir Volume(ESRV)[J].Oil Drilling & Production Technology,2014,36(2):82-87.

    • [33] 归榕,万永平.基于常规测井数据计算储层岩石力学参数—— 以鄂尔多斯盆地上古生界为例[J].地质力学学报,2012,18(4):418-424.GUI Rong,WAN Yongping.Rock mechanics parameter calculation based on conventional logging data:a case study of upper Paleozoic in Ordos Basin [J].Journal of Geomechanics,2012,18(4):418-424.

    • [34] 孙东生,王红才,侯默,等.影响水力压裂效果的因素及人工神经网络评价[J].地质力学学报,2006,12(4):485-491.SUN Dongsheng,WANG Hongcai,HOU Mo,et al.Factors influencing the effects of hydrofracturing in a low-permeability oilfield and potential evaluation using Artificial Neutral Network[J].Journal of Geomechanics,2006,12(4):485-491.

    • [35] 杨秀娟,张敏,闫相祯.基于声波测井信息的岩石弹性力学参数研究[J].石油地质与工程,2008,22(4):39-42.YANG Xiujuan,ZHANG Min,YAN Xiangzhen.Study on acoustic logging-based rock elasticity parameters [J].Petroleum Geology and Engineering,2008,22(4):39-42.

    • [36] 张立刚.松辽盆地深层火成岩破碎机理及破岩效率评价[D].大庆:东北石油大学,2014.ZHANG Ligang.Research on the igneous rock crushing mechanism and efficiency in deep reservoir of Songliao Basin [D].Daqing:Northeast Petroleum University,2014.

    • [37] 张少龙,闫建平,唐洪明,等.致密碎屑岩气藏可压裂性测井评价方法及应用——以松辽盆地王府断陷登娄库组为例[J].岩性油气藏,2018,30(3):133-142.ZHANG Shaolong,YAN Jianping,TANG Hongming,et al.Logging fracturing evaluation for tight clastic gas reservoir and its application:a case from Denglouku Formation in Wangfu fault depression,Songliao Basin [J].Lithologic Reservoirs,2018,30(3):133-142.

    • [38] 丁次乾.矿场地球物理[M].东营:石油大学出版社,1992.DING Ciqian.Geophysics well logging [M].Dongying:China University of Petroleum Press,1992.

    • [39] 郝建明,吴健,张宏伟.应用水平井资料开展精细油藏建模及剩余油分布研究[J].石油勘探与开发,2009,36(6):730-736.HAO Jianming,WU Jian,ZHANG Hongwei.Study on fine reservoir modeling and distribution of remaining oil with data of horizontal wells [J].Petroleum Exploration and Development,2009,36(6):730-736.

    • [40] 王晓冬,张义堂,刘慈群.垂直裂缝井产能及导流能力优化研究[J].石油勘探与开发,2004,31(6):78-81.WANG Xiaodong,ZHANG Yitang,LIU Ciqun.Productivity evaluation and conductivity optimization for vertical fractured wells [J].Petroleum Exploration and Development,2004,31(6):78-81.

    • [41] 翟云芳.渗流力学[M].3版.北京:石油工业出版社,2009.ZHAI Yunfang.Fluid flow in porous media [M].3rd ed.Beijing:Petroleum Industry Press,2009.