-
页岩气作为常规能源的重要补充,其规模化开发促进了全球能源结构的调整和改变。据美国能源信息署报道,2040年全球页岩气产量将占天然气总量的 30%[1]。近 5 a 来中国非常规页岩气勘探开发也实现了跨越式进步,2022 年产气量突破 240× 108 m3 /a,累积探明地质储量超过2×1012 m3[2-4]。中国已成为除北美之外全球最大的页岩气生产国。地质勘探数据表明,页岩储层作为一种典型的沉积岩,具有埋藏深、低孔、低渗透、非均质性强等显著特征,其自身不具备油气资源的运输能力,需借助水力压裂等储层改造技术来提供人工裂缝网络,促进油气资源的生产运移,从而实现页岩气的商业化开发[3-5]。
-
均质岩体中水力压裂裂缝通常沿最大主应力方向扩展,而页岩中矿物组分复杂并存在大量天然裂缝和层理面,且结构具有明显各向异性[6-8],导致水力压裂裂缝沿基质、天然裂缝及层理发生穿透、捕获、转向及偏移等相互作用行为[5,9]。并且受岩石脆性矿物组分、不连续界面几何形态、物理力学性质、地质环境以及施工参数等因素影响,压裂缝网扩展规律及空间分布形态难以准确预测。为此,笔者基于页岩微观矿物组分非均质性及宏观结构非均质性2方面,结合近年来中外研究成果,对非均质性页岩储层水力压裂裂缝扩展形态的研究现状和存在问题进行阐述,总结影响水力压裂效果的关键因素,阐明不同水力压裂裂缝扩展模式的形成机制,为页岩储层压裂改造设计及页岩油气高效开发提供理论依据。
-
1 微观矿物组分对水力压裂裂缝扩展形态的影响
-
1.1 矿物组分特征
-
页岩是黏土矿物经由一定温压作用转化形成的沉积岩,发育过程中沉积环境的变化会引起压实、胶结、溶蚀和重结晶等作用的差异,从而影响岩石碳氢化合物的质量分数及空间分布[10-12]。由于受沉积环境的影响,页岩储层矿物组分相对复杂,包括硅酸盐、碳酸盐、黄铁矿等脆性矿物及黏土矿物和有机质(干酪根)等非脆性矿物,具有明显的非均质性特征[13-17]。由长宁地区龙马溪组页岩矿物组分 (表1)[18] 可以看出,同一地区不同层段页岩的矿物含量也有较大差异。
-
1.2 脆性矿物控缝机制
-
目前脆性指标已被广泛用来评价页岩储层的可压裂性。脆性受页岩矿物含量、矿物结构及其相互关系共同影响,而矿物组分法是评价页岩脆性特征的典型方法,主要通过脆性矿物含量与总矿物含量的占比来表征[19-22]。部分研究认为碳酸盐、石英和长石类均为脆性矿物,还有一部分研究则认为某一种矿物(如石英)可代表脆性矿物[23-24],尽管不同沉积环境中脆性矿物种类界定尚有争议,但一般来说脆性矿物含量越高,页岩的脆性越大,越易发生拉伸或剪切破裂并进一步形成网状裂缝。
-
表1 长宁地区龙马溪组页岩矿物组分(据文献[18]修改)
-
Table1 Mineral composition of Longmaxi Formation shale in Changning region(Modified by Reference [18])
-
页岩矿物组分的差异决定了其脆性程度并影响储层压裂效果。RICKMAN 等通过扫描电镜、X 射线衍射分析等方法比较了不同页岩储层的矿物组分,表明石英含量越高,水力压裂更易形成复杂裂缝网络[25]。沈骋等研究了四川盆地志留系龙马溪组页岩,提出了对压裂缝网形成起决定性作用的脆性矿物主要是长英质矿物和碳酸盐矿物[26]。王涛等通过断裂力学理论推导了含非均质矿物组分的岩石脆性指数公式,该公式表明脆性矿物含量越低储层改造区域越小,水力压裂裂缝扩展主要为韧性主导;而脆性矿物含量越高储层越容易被改造,水力压裂裂缝扩展主要为黏性主导[27]。
-
根据页岩矿物组分及其常规力学实验结果,已有许多学者致力于优化页岩脆性评价方法并探讨其与储层可压裂性的对应关系。窦法楷将储层非均质性引入页岩水力压裂数值模型[28],观察到低脆性矿物相对弹性模量的降低会导致水力压裂裂缝的开度增大,储层改造后的裂缝渗透率显著提高。
-
冯笑含建立了含局部高脆性区域和局部低脆性区域的岩石水力压裂模型[29],研究认为水力压裂裂缝由高脆性区域扩展进入低脆性区域后会发生转向并沿着垂直于低脆性区域边界方向扩展;而当水力压裂裂缝由低脆性区域扩展进入高脆性区域时会出现转向并沿着高脆性区域边界方向扩展的现象;局部脆性区域脆性越高,水力压裂裂缝延伸距离越远。梁冰等基于扩展有限元分析显示裂缝可沿矿物边界扩展或穿越矿物内部扩展[30],随后进一步建立了包含石英颗粒和黄铁矿颗粒的页岩微观模型[31-32],研究表明水力压裂裂缝形态受矿物界面刚度和脆性矿物含量的影响显著,矿物界面刚度增大更易形成短而宽的水力压裂裂缝,脆性矿物含量占比增大更易形成长而宽的水力压裂裂缝。
-
然而,目前中外学者大多基于矿物脆性讨论非均质性对页岩水力压裂裂缝扩展规律,微观非均质性对页岩储层压裂效果的影响机理仍不清晰。亟需进一步讨论页岩微观结构、矿物组分、含量及粒径对水力压裂裂缝扩展路径、扩展特征及压裂缝网形态的影响,分析水力压裂过程中页岩典型矿物/有机质的物理力学特征演化规律,为更好地评价储层可压裂性并选择压裂施工参数提供科学依据及理论指导。
-
2 天然裂缝对水力压裂裂缝扩展形态的影响
-
页岩储层具有低孔、低渗透的特征,但天然裂缝发育广泛(图1)[33],已成为页岩储层的重要储集空间和渗流通道。天然裂缝的存在有利于提高储层改造体积(SRV)或阻碍水力压裂裂缝扩展。水力压裂裂缝与天然裂缝交互连通是压裂缝网形成的关键,并且天然裂缝发育规模(长度、密度、裂缝间隔)及产状(走向与倾角)对水力压裂裂缝延伸走向和扩展规律影响显著[34-37]。目前研究结果表明,水力压裂裂缝与天然结构面相互作用导致的压裂液滤失、天然结构面剪切或张拉破坏以及水力压裂裂缝与天然裂缝之间穿透、捕获、转向等相互作用行为(图2)均会增大压裂缝网的复杂程度[38-40]。
-
2.1 水力压裂裂缝与天然裂缝相互作用模式判别准则
-
为了评价水力压裂过程中天然裂缝的破坏特征,中外学者已提出一系列理论准则去预测水力压裂裂缝与天然裂缝相互作用模式。BLANTON通过理论分析指出当水力压裂裂缝尖端液压高于作用在天然裂缝面上的正应力时,地层中的天然裂缝发生膨胀[41]。WARPINSKI等基于莫尔-库伦准则建立了天然裂缝在围压及流体共同作用下的张开、闭合、剪切滑移模型[42]。RENSHAW 等基于线弹性断裂力学考虑了水力压裂裂缝的应力状态和远场地应力,提出了预测水力压裂裂缝是否穿过正交无摩擦滑移界面的判别准则[43]。GU 等拓宽了 REN‐ SHAW 等提出准则的适用范围,研究了非正交角度下水力压裂裂缝与具有黏聚力的天然裂缝交叉扩展情况[44]。考虑天然裂缝的黏聚力和黏附性,SAR‐ MADIVALEH 又进一步扩展了 RENSHAW 等建立的判别准则,提出了针对非正交和正交角度的黏聚界面修正准则[45]。程万在前人研究的基础上,通过对水力压裂裂缝尖端和天然裂缝面附近应力场进行分析,提出了一个新的三维空间下水力压裂裂缝穿透天然裂缝的判别准则[46],并通过真三轴水力压裂模拟实验予以验证。JIANG 等考虑天然裂缝摩擦性、应力状态和逼近角,建立了煤-岩界面水力压裂裂缝断裂行为预测模型[47]。张然等在弹性力学理论的框架下推导了水力压裂裂缝穿透天然裂缝后的穿出角度解析解[48]。ZENG等基于水力压裂裂缝尖端应力场的分布模式[49],进一步提出了Ⅰ/Ⅱ混合型水力压裂裂缝与天然裂缝交互准则。LLANOS 等通过耦合流体流动和固体弹性变形,提出了韧性主控的水力压裂裂缝与天然裂缝相交判别准则[50-51],该准则考虑了泵注速率、水力压裂裂缝半长、逼近距离、断裂韧性、杨氏模量和地应力的影响。上述理论解较好地分析了地质参数对水力压裂裂缝与天然裂缝相互作用模式的影响,并得到了一系列室内实验和数值仿真的广泛验证。然而,对于三维空间、复杂地应力以及复杂天然裂缝力学性质下的水力压裂裂缝扩展行为仍难以准确预测。
-
图1 地表露头页岩天然裂缝发育程度(据文献[33]修改)
-
Fig.1 Development degree of natural fractures in surface exposed shale(Modified by Reference [33])
-
图2 水力压裂裂缝和天然裂缝相互作用示意
-
Fig.2 Interaction between fractures by hydraulic fracturing and natural fractures
-
2.2 水力压裂裂缝与天然裂缝相互作用模式主控因素
-
页岩储层水力压裂裂缝扩展的主控因素可分为地质因素(地应力、逼近角、天然裂缝倾角、天然裂缝力学性质等)和工程因素(压裂液排量、黏度等)2 大类。为了揭示单一地质参数或压裂施工参数对水力压裂裂缝与天然裂缝相互作用模式的影响,前人已针对含单一预制裂缝试样开展了大量水力压裂物理模拟实验及数值仿真研究。
-
2.2.1 地质因素
-
地应力和逼近角对水力压裂裂缝与天然裂缝相互作用模式影响显著。BLANTON结合理论分析和室内实验认为在较低的地应力差和逼近角条件下,水力压裂裂缝易被天然裂缝捕获(图3a)或沿天然裂缝扩展(图3b);在高地应力差和逼近角条件下,水力压裂裂缝更倾向于穿透天然裂缝(图3c)[41]。周健等系统开展了不同逼近角下的大尺寸真三轴水力压裂物理模拟实验,观察到高逼近角时会形成单条横贯的水力压裂裂缝[52-54]。根据天然裂缝的张开特征,将其划分为剪切型、剪胀型和剪切剪胀混合型。在高地应力差和低逼近角条件下,天然裂缝主要发生剪胀破坏;而当逼近角较小且天然裂缝宽度较大时,主要发生剪切破坏[55]。陈勉研究了水力压裂裂缝与天然裂缝交叉、转向及延伸扩展的规律[56],提出水平地应力差越大,裂缝转向后宽度越窄,且水力压裂裂缝转向后发展为Ⅰ,Ⅱ和Ⅲ的混合型裂缝扩展模式,需采用复合裂缝扩展方程进行判断。王涛等通过分析水力压裂裂缝扩展过程中的应力场分布,建立了水力压裂裂缝与天然裂缝相交后穿透、打开及滑移行为的预测模型[57]。 ZHAO等建立了韧性主导下的水力压裂裂缝穿越天然裂缝判断准则[58],表明地应力差和最大地应力的增大并不总能促进水力压裂裂缝穿越天然裂缝,相反在某些条件下可能起阻碍作用。
-
图3 水力压裂裂缝与预制裂缝相互作用模式(据文献[39] 修改)
-
Fig.3 Interaction modes between fractures by hydraulic fracturing and pre-existing fractures(Modified by Reference [39])
-
除逼近角和地应力外,天然裂缝力学性质也是影响水力压裂裂缝与天然裂缝相互作用模式的主要因素。WANG 等考虑了天然裂缝胶结强度的影响[59],研究结果表明天然裂缝胶结厚度小且胶结强度高时更易被水力压裂裂缝穿透;而胶结厚度大、胶结强度低时,水力压裂裂缝更易转向。ZHANG 等研究认为当天然裂缝的胶结强度较低时,需更高的泵注压力才能使压裂液进入天然裂缝且水力压裂裂缝扩展速度减慢[60]。KHOEI 等考虑摩擦型天然裂缝中的水力压裂过程,观察到当天然裂缝摩擦系数较小时更易发生剪切滑移,导致水力压裂裂缝沿天然裂缝扩展[61]。KRESSE等指出天然裂缝渗透性对水力压裂裂缝扩展特征的影响不可忽略[62]。 ZHOU等通过开展不同裂缝渗透率和基质渗透率下的水力压裂模拟,提出岩石基质渗透系数越大,压裂液滤失程度越大,水力压裂裂缝更易穿透天然裂缝[63]。
-
2.2.2 工程因素
-
压裂液黏度和注入速率显著影响水力压裂裂缝的扩展方向和扩展形态[64-66]。BEUGELSDIJK 等进行室内模拟实验观察到高注入速率和高流体黏度有利于水力压裂裂缝贯穿天然裂缝并形成单一主裂缝[67],而低注入速率和低流体黏度将导致大量压裂液滤失并进入天然裂缝,主裂缝长度较短且形成复杂压裂缝网[68-70]。研究认为高注入速率和高流体黏度能产生较长的主裂缝,而低注入速率或低流体黏度将首先激活天然裂缝。
-
天然裂缝的存在对水力压裂的影响是双重的。一方面,天然裂缝使水力压裂裂缝扩展方向发生改变,增加压裂缝网复杂程度,提高储层改造效果和裂缝导流能力。另一方面,天然裂缝张开诱使局部压裂液滤失量增加,从而抑制了水力压裂裂缝的扩展。因此,如何结合室内实验和数值仿真结果,建立获得最大压裂体积的合理施工参数仍需进一步研究。笔者认为可通过分析各种敏感因素的影响差异,并赋予其可靠的权重系数,为实际工程中的储层压裂改造效果提供指导意见。
-
3 层理面对水力压裂裂缝扩展形态的影响
-
页岩作为一种典型的沉积岩,在地质历史的特定沉积环境中受物理、化学、生物等共同作用,层理面十分发育,呈连续或断续分布[71]。层理面的存在使页岩弹性模量和抗剪切强度等力学性质均具有各向异性[72-75]。现场取样资料显示,垂直层理方向取心将产生张拉裂缝与剪切裂缝共存的破坏形态,而平行层理方向取心会产生纵向张拉劈裂破坏,垂直层理方向取心的岩样弹性模量普遍低于平行层理方向[76]。含不同层理面倾角的页岩单轴压缩实验表明单轴抗压强度曲线随层理面倾角的增大呈斜N 型变化[77]。层理发育会改变页岩储层的渗透性和导流能力,水力压裂裂缝萌生、扩展及相互作用机制更加复杂[78-81](图4)。
-
随着水力压裂裂缝的萌生和扩展,泵压-时间曲线波动频繁呈锯齿状,基于该曲线可将水力压裂裂缝扩展模式归纳为 4 种类型:①水力压裂裂缝均沿层理方向起裂和扩展,且以单一主裂缝为主。②水力压裂裂缝均垂直于层理方向起裂和扩展,且为单一主裂缝。③水力压裂裂缝的起裂和扩展均垂直于层理方向,之后被层理面捕获。④水力压裂裂缝起裂和扩展均垂直于层理方向,之后沿层理面发生偏移。含多层理页岩水力压裂裂缝扩展模式主要受层理面倾角、胶结强度、密度和层间物理性质差异的影响。
-
图4 龙马溪组页岩典型水力压裂裂缝扩展形态(据文献[81] 修改)
-
Fig.4 Propagation patterns of typical fractures of Longmaxi Formationshale samples by hydraulic fracturing (Modified by Reference [81])
-
3.1 层理面倾角
-
为了更好地了解水力压裂裂缝的产生机理和空间分布规律,中外学者结合 CT 扫描和声发射技术研究了含不同层理面倾角页岩中水力压裂缝网的形成机制[82-84]。李晓等通过页岩试样水力压裂实验发现层理面倾角低于 30°时,试样压裂后新生裂缝增多且随着层理面倾角的增大急剧减小[77]。孙可明等通过室内压裂实验进一步探讨了层理面倾角与地应力对水力压裂裂缝扩展形态的影响[85],观察到垂直最小地应力扩展的水力压裂裂缝与层理相交时,层理面与裂缝初始扩展方向夹角越大,水力压裂裂缝越易贯穿层理面继续扩展,而夹角越小,越易沿着层理面方向扩展。
-
3.2 层理面胶结强度
-
层理面力学性质对水力压裂裂缝与层理相互作用模式起决定性作用。层理面胶结强度通常控制层理是否易于开启,当层理面胶结强度较强时,水力压裂裂缝更易穿过层理面;当层理面胶结强度较弱时,水力压裂裂缝倾向于被层理面捕获或偏转[76,86]。史璨等也通过实验观察到垂直于层理时,水力压裂裂缝在层理面胶结强度较弱处易发生分叉、转向等现象,并且弱胶结强度降低了其穿层的可能,更易形成网状裂缝[87-88]。
-
3.3 层理密度
-
一般认为,页岩中层理面的存在将增加压裂改造的裂缝密度和缝网空间形态复杂度,从而改善储层有效体积。然而李彦超等通过三维多层理页岩体积压裂模拟表明层理密度越大,单位改造体积内缝网密度越大,油气渗流通道越多,但过多层理将限制水力压裂裂缝在长度与高度方向上的延伸范围,大幅度制约储层压裂改造效果[81]。
-
3.4 层间物理性质差异当层理发育程度较高
-
当层理发育程度较高时层间物理性质变化明显。当水力压裂裂缝从硬岩起裂向软岩扩展时,其所受扩展阻力较小,通过缝内压力的惯性作用便可实现水力压裂裂缝穿层;若从软岩起裂向硬岩扩展,则会发生穿透界面、停止扩展、产生多裂缝、张开界面等多种形式[89]。潘睿通过室内水力压裂实验发现在注液量一致的条件下,随着岩层间弹性模量差增加,水力压裂裂缝总面积及穿层面积均会减小[90]。
-
4 结论与展望
-
页岩微观矿物组分是影响页岩脆性特征的主要参数,岩石中脆性矿物含量的增加使岩石脆性增强,从而导致水力压裂过程中裂缝起裂压力减小,更易形成压裂缝网。水力压裂裂缝与天然裂缝会发生穿透、捕获及转向等不同的相互作用行为,在高地应力差、高逼近角、天然裂缝弱胶结强度及压裂液高注入速率、高黏度条件下,水力压裂裂缝更易穿透天然裂缝并继续向前延伸,层理面倾角、胶结强度、密度和层间物理性质差异都会影响水力压裂裂缝的扩展形态,沉积层理发育处易发生水力压裂裂缝分叉、转向并生成与主裂缝相交的次生裂缝。
-
通过综合评述页岩微观矿物组分非均质性及宏观结构非均质性对水力压裂裂缝扩展形态的影响,未来水力压裂研究可以从以下方向取得突破:地质因素和工程因素是影响水力压裂裂缝扩展的主控因素,可通过分析各种敏感因素的影响差异,并赋予其可靠的权重系数,为实际工程中的储层压裂改造效果提供指导意见;微观矿物组分非均质性对页岩储层压裂效果的影响机理仍不清晰,可进一步研究页岩微观矿物组分、含量、粒径对水力压裂裂缝扩展的影响机制,深入探讨微尺度下缝网形态的演化规律;进一步开展室内物理模拟实验及数值仿真,研究三维空间中非正交逼近角度下水力压裂裂缝与天然裂缝相互作用过程;水平井多段多簇压裂改造是目前中国获得页岩油气稳定产能的关键手段,然而目前研究主要分析单一井孔压裂作用下的裂缝扩展规律,故亟需探究水平井作用下纹层状页岩压裂缝网形成机制,提出水平井分段压裂的最优施工方案。
-
参考文献
-
[1] 邹才能,朱如凯,董大忠,等.页岩油气科技进步、发展战略及政策建议[J].石油学报,2022,43(12):1 675-1 686.ZOU Caineng,ZHU Rukai,DONG Dazhong,et al.Scientific and technological progress,development strategy and policy suggestion regarding shale oil and gas [J].Acta Petrolei Sinica,2022,43(12):1 675-1 686.
-
[2] 周安富,谢伟,邱峋晰,等.泸州区块龙一14小层页岩气勘探开发潜力[J].特种油气藏,2022,29(6):20-28.ZHOU Anfu,XIE Wei,QIU Xunxi,et al.On exploration and development potential of shale gas in Longyi14 sub-bed in Lu‐ zhou block [J].Special Oil & Gas Reservoirs,2022,29(6):20-28.
-
[3] 蒋廷学,卞晓冰,王海涛,等.深层页岩气水平井体积压裂技术 [J].天然气工业,2017,37(1):90-96.JIANG Tingxue,BIAN Xiaobing,WANG Haitao,et al.Volume fracturing of deep shale gas horizontal wells [J].Natural Gas Industry,2017,37(1):90-96.
-
[4] 郭昊,魏旭,张永平,等.考虑非均质性的致密储层改造效果评价[J].油气地质与采收率,2019,26(3):111-116.GUO Hao,WEI Xu,ZHANG Yongping,et al.Stimulation evaluation of tight reservoir considering heterogeneity effect [J].Petroleum Geology and Recovery Efficiency,2019,26(3):111-116.
-
[5] 杨典森,周云,周再乐.含界面储层水力压裂试验与数值模拟研究进展[J].岩石力学与工程学报,2022,41(9):1 771-1 794.YANG Diansen,ZHOU Yun,ZHOU Zaile.A review of experimental and numerical simulation of hydraulic fracturing in reservoirs with interfaces [J].Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1 771-1 794.
-
[6] 金衍,程万,陈勉.页岩气储层压裂数值模拟技术研究进展[J].力学与实践,2016,38(1):1-9.JIN Yan,CHENG Wan,CHEN Mian.A review of numerical simulation of hydro-fracking in shale gas reservoir [J].Mechanics in Engineering,2016,38(1):1-9.
-
[7] 位云生,贾爱林,何东博,等.中国页岩气与致密气开发特征与开发技术异同[J].天然气工业,2017,37(11):43-52.WEI Yunsheng,JIA Ailin,HE Dongbo,et al.Comparative analysis of development characteristics and technologies between shale gas and tight gas in China [J].Natural Gas Industry,2017,37(11):43-52.
-
[8] LI Gensheng,SHENG Mao,TIAN Shouceng,et al.Key issues and investigation of horizontal well drilling and multistage fracturing in shale gas reservoir [J].Chinese Science Bulletin,2016,61(26):2 883-2 890.
-
[9] 柳占立,王涛,高岳,等.页岩水力压裂的关键力学问题[J].固体力学学报,2016,37(1):34-49.LIU Zhanli,WANG Tao,GAO Yue,et al.The key mechanical problems on hydraulic fracture in shale [J].Chinese Journal of Solid Mechanics,2016,37(1):34-49.
-
[10] 侯中帅,陈世悦.东营凹陷沙四段上亚段—沙三段下亚段泥页岩成岩演化及其对储层发育的影响[J].油气地质与采收率,2019,26(1):119-128.HOU Zhongshuai,CHEN Shiyue.Diagenesis evolution characteristics of shale in Upper Es4 to Lower Es3 Members in Dongying Sag and its influence on the formation of reservoir [J].Petroleum Geology and Recovery Efficiency,2019,26(1):119-128.
-
[11] 江凯禧,彭丽,何文祥,等.页岩气储层非均质性研究——以四川盆地下寒武统筇竹寺组为例[J].海洋地质前沿,2014,30(8):47-54.JIANG Kaixi,PENG Li,HE Wenxiang,et al.Research of shale gas reservoir heterogeneity:a case of the lower Cambrian qiongzhusi formation of the Sichuan basin [J].Marine Geology Frontiers,2014,30(8):47-54.
-
[12] 王红梅,黄杰,郭发军,等.束鹿凹陷馆陶组储层微观孔隙结构及其成岩作用的影响[J].大庆石油地质与开发,2021,40(2):50-59.WANG Hongmei,HUANG Jie,GUO Fajun,et al.Micro pore structures and the influences of the diagenesis on these structures for Guantao-Formation(Ng)reservoir in Shulu Sag [J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):50-59.
-
[13] 谷志宇,刘恩涛,王香增,等.鄂尔多斯盆地东南部延长组七段页岩发育特征及勘探潜力[J].油气地质与采收率,2021,28(1):95-105.GU Zhiyu,LIU Entao,WANG Xiangzeng,et al.Development characteristics and exploration potential of shale in Chang7 Member in southeast of Ordos Basin [J].Petroleum Geology and Recovery Efficiency,2021,28(1):95-105.
-
[14] 付海峰,才博,庚勐,等.基于储层纵向非均质性的水力压裂裂缝三维扩展模拟[J].天然气工业.2022,42(5):56-68.FU Haifeng,CAI Bo,GENG Meng,et al.Three dimensional simulation of hydraulic fracture propagation based on vertical reservoir heterogeneity [J].Natural Gas Industry,2022,42(5):56-68.
-
[15] HOU Bing,DIAO Ce,LI Dandan.An experimental investigation of geomechanical properties of deep tight gas reservoirs [J].Journal of Natural Gas Science and Engineering,2017,47(5):22-33.
-
[16] 王玉满,董大忠,李建忠,等.川南下志留统龙马溪组页岩气储层特征[J].石油学报,2012,33(4):551-561.WANG Yuman,DONG Dazhong,LI Jianzhong,et al.Reser‐ voir characteristic of shale gas in Longmaxi formation of the Lower Silurian,southern Sichuan [J].Acta Petrolei Sinica,2012,33(4):551-561.
-
[17] 杨恒林,申瑞臣,付利.含气页岩组分构成与岩石力学特性[J].石油钻探技术,2013,41(5):31-35.YANG Henglin,SHEN Ruichen,FU Li.Composition and mechanical properties of gas shale [J].Petroleum Drilling Techniques,2013,41(5):31-35.
-
[18] 张晨晨,王玉满,董大忠,等.川南长宁地区五峰组—龙马溪组页岩脆性特征[J].天然气地球科学,2016,27(9):1 629-1 639.ZHANG Chenchen,WANG Yuman,DONG Dazhong,et al.Brittleness characteristics of Wufeng-Longxi shale in Changning region,Southern Sichuan,China [J].Natural Gas Geoscience,2016,27(9):1 629-1 639.
-
[19] 王濡岳,胡宗全,赖富强,等.川东北地区下侏罗统自流井组大安寨段陆相页岩脆性特征及其控制因素[J].石油与天然气地质,2023,44(2):366-378.WANG Ruyue,HU Zongquan,LAI Fuqiang,et al.Brittleness features and controlling factors of continental shale from Da’anzhai Member of the Lower Jurassic Ziliujing Formation,northeastern Sichuan Basin [J].Oil & Gas Geology,2023,44(2):366-378.
-
[20] 王濡岳,胡宗全,董立,等.页岩气储层表征评价技术进展与思考[J].石油与天然气地质,2021,42(1):54-65.WANG Ruyue,HU Zongquan,DONG Li,et al.Advancement and trends of shale gas reservoir characterization and evaluation [J].Oil & Gas Geology,2021,42(1):54-65.
-
[21] 李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1 680-1 685.LI Qinghui,CHEN Mian,JIN Yan,et al.Indoor evaluation method for shale brittleness and improvement [J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1 680-1 685.
-
[22] 徐火龙,赵迪斐.深层页岩储层脆性评价及综合脆性指标评价优化路径研究——以Z-3井五峰组—龙马溪组为例[J].非常规油气,2023,10(1):84-92.XU Huolong,ZHAO Difei.Research on brittleness evaluation of deep shale reservoirs and optimization approach of comprehensive brittleness index evaluation:A case study of WufengLongxi Formation from well Z-3 [J].Unconventional Oil & Gas,2023,10(1):84-92.
-
[23] JARVIE D M,HILL R J,RUBLE T E,et al.Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment [J].AAPG Bulletin,2007,91(4):475-499.
-
[24] 陈吉,肖贤明.南方古生界3套富有机质页岩矿物组成与脆性分析[J].煤炭学报,2013,38(5):822-826.CHEN Ji,XIAO Xianming.Mineral composition and brittleness of three sets of Paleozoic organic-rich shales in China South area [J].Journal of China Coal Society,2013,38(5):822-826.
-
[25] RICKMAN R,MULLEN M,PETRE E,et al.A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett shale [C].Denver:SPE Annual Technical Conference and Exhibition,2008.
-
[26] 沈骋,任岚,赵金洲,等.页岩岩相组合划分标准及其对缝网形成的影响——以四川盆地志留系龙马溪组页岩为例[J].石油与天然气地质,2021,42(1):98-106.SHEN Cheng,REN Lan,ZHAO Jinzhou,et al.Division of shale lithofacies associations and their impact on fracture network formation in the Silurian Longmaxi Formation,Sichuan Basin [J].Oil & Gas Geology,2021,42(1):98-106.
-
[27] 王涛,柳占立,庄茁.页岩气高效开采的可压裂度和射孔簇间距预测[J].力学学报,2022,54(2):517-525.WANG Tao,LIU Zhanli,ZHUANG Zhuo.Fracturing degree and prediction of perforation cluster spacing for efficient exploi‐ tation of shale gas [J].Chinese Journal of Theoretical and Ap‐ plied Mechanics,2022,54(2):517-525.
-
[28] 窦法楷.页岩细观力学特性对水力压裂裂缝扩展规律的影响及定量评价研究[D].北京:中国矿业大学(北京),2020.DOU Fakai.Influences of shale meso-mechanical properties on hydraulic fracture propagation and its quantitative evaluation [D].Beijing:China University of Mining and Technology(Beijing),2020.
-
[29] 冯笑含.致密岩体局部脆性表征及水力压裂裂缝扩展机理研究[D].大庆:东北石油大学,2022.FENG Xiaohan.Characterization of rock local brittleness and study on fracture propagation mechanism of hydraulic fracturingin dense rock mass [D].Daqing:Northeast Petroleum University,2022.
-
[30] 梁冰,岳鹭飞,孙维吉.页岩矿物组分对裂缝扩展影响的数值模拟分析[J].海相油气地质,2019,24(4):97-101.LIANG Bing,YUE Lufei,SUN Weiji.The influence of shale mineral composition on crack growth:numerical simulation [J].Marine Origin Petroleum Geology,2019,24(4):97-101.
-
[31] 候梦如.基于矿物界面效应的页岩水力压裂裂缝扩展规律研究[D].阜新:辽宁工程技术大学,2022.HOU Mengru.Research on fracture propagation law of shale hydraulic fracturing based on mineral interface effect [D].Fuxin:Liaoning Technical University,2022.
-
[32] 候梦如,梁冰,孙维吉,等.矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究[J].油气藏评价与开发,2023,13(1):100-107.HOU Mengru,LIANG Bing,SUN Weiji,et al.Influence of mineral interface stiffness on fracture propagation law of shale hydraulic fracturing [J].Petroleum Reservoir Evaluation and Development,2023,13(1):100-107.
-
[33] 彭先锋,邓虎成,何建华,等.鄂尔多斯盆地大牛地气田中奥陶统马家沟组裂缝特征及成因[J].石油实验地质,2022,44(1):41-50.PENG Xianfeng,DENG Hucheng,HE Jianhua,et al.Characteristics and genesis of fractures in Middle Ordovician Majiagou Formation,Daniudi Gas Field,Ordos Basin [J].Petroleum Geology & Experiment,2022,44(1):41-50.
-
[34] 万晓龙,高春宁,王永康,等.人工裂缝与天然裂缝耦合关系及其开发意义[J].地质力学学报,2009,15(3):245-252.WAN Xiaolong,GAO Chunning,WANG Yongkang,et al.Coupled relationship between created and natural fractures and its implication to development [J].Journal of Geomechanics,2009,15(3):245-252.
-
[35] 尹陈,石学文,才博,等.天然裂缝复杂程度对致密储层破裂特征的影响[J].高校地质学报,2023,29(1):128-137.YIN Chen,SHI Xuewen,CAI Bo,et al.The effect of pre-existing fracture complexity on rupture characteristics of tight reservoir [J].Geological Journal of China Universities,2023,29(1):128-137.
-
[36] DEHGHAN A N,GOSHTASBI K,AHANGARI K,et al.The effect of natural fracture dip and strike on hydraulic fracture propagation [J].International Journal of Rock Mechanics and Mining Sciences,2015,75:210-215.
-
[37] ZHANG Qi,ZHANG Xiaoping,SUN Wei.A review of laboratory studies and theoretical analysis for the interaction mode between induced hydraulic fractures and pre-existing fractures [J].Journal of Natural Gas Science and Engineering,2021,86:103719.
-
[38] ZHANG Xi,JEFFREY R G,THIERCELIN M.Deflection and propagation of fluid-driven fractures at frictional bedding interfaces:A numerical investigation [J].Journal of Structural Geology,2007,29(3):396-410.
-
[39] DEHGHAN A N.An experimental investigation into the influence of pre-existing natural fracture on the behavior and lengthof propagating hydraulic fracture [J].Engineering Fracture Mechanics,2020,240:107330.
-
[40] GHADERI A,TAHERI-SHAKIB J,SHARIF N M A.The distinct element method(DEM)and the extended finite element method(XFEM)application for analysis of interaction between hydraulic and natural fractures [J].Journal of Petroleum Science and Engineering,2018,171:422-430.
-
[41] BLANTON T L.An experimental study of interaction between hydraulically induced and pre-existing fractures [C].Pittsburgh:SPE Unconventional Gas Recovery Symposium,1982.
-
[42] WARPINSKI N R,TEUFEL L W.Influence of geologic discontinuities on hydraulic fracture propagation(includes associated papers 17011 and 17074)[J].Journal of Petroleum Technology,1987,39(2):209-220.
-
[43] RENSHAW C E,POLLARD D D.An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle,linear elastic materials [J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(3):237-249.
-
[44] GU H,WENG X,LUND J,et al.Hydraulic fracture crossing natural fracture at nonorthogonal angles:A criterion and its validation [J].SPE Production & Operations,2012,27(1):20-26.
-
[45] SARMADIVALEH M.Experimental and numerical study of interaction of a preexisting natural interface and an induced hydraulic fracture [D].Perth:Curtin University,2012.
-
[46] 程万.三维空间下裂缝性页岩储层水力裂缝扩展机理研究[D].北京:中国石油大学(北京),2016.CHENG Wan.Mechanism of hydraulic fracture propagation in fractured shale reservoir in three dimensional space [D].Beijing:China University of Petroleum(Beijing),2016.
-
[47] JIANG Yulong,LIAN Haojie,NGUYEN Vinh Phu,et al.Propagation behavior of hydraulic fracture across the coal-rock interface under different interfacial friction coefficients and a new prediction model [J].Journal of Natural Gas Science and Engi‐ neering,2019,68:102894.
-
[48] 张然,李根生,赵志红,等.压裂中水力裂缝穿过天然裂缝判断准则[J].岩土工程学报,2014,36(3):585-588.ZHANG Ran,LI Gensheng,ZHAO Zhihong,et al.New criteria for hydraulic fracture crossing natural fractures [J].Chinese Journal of Geotechnical Engineering,2014,36(3):585-588.
-
[49] ZENG Yijin,CHENG Wan,ZHANG Xu,et al.A criterion for identifying a mixed-mode I/II hydraulic fracture crossing a natural fracture in the subsurface [J].Energy Exploration & Exploita‐ tion,2020,38(6):2 507-2 520.
-
[50] LLANOS E M,JEFFREY R G,HILLIS R,et al.Hydraulic fracture propagation through an orthogonal discontinuity:A laboratory,analytical and numerical study [J].Rock Mechanics and Rock Engineering,2017,50(8):2 101-2 118.
-
[51] ZHAO Yu,HE Pengfei,ZHANG Yongfa,et al.A new criterion for a toughness-dominated hydraulic fracture crossing a natural frictional interface [J].Rock Mechanics & Rock Engineering,2019,52(8):2 617-2 629.
-
[52] 周健,陈勉,金衍,等.多裂缝储层水力裂缝扩展机理试验[J].中国石油大学学报:自然科学版,2008,32(4):51-54,59.ZHOU Jian,CHEN Mian,JIN Yan,et al.Experiment of propa‐ gation mechanism of hydraulic fracture in multi-fracture reservoir [J].Journal of China University of Petroleum:Edition of Natural Science,2008,32(4):51-54,59.
-
[53] DEHGHAN A N,GOSHTASBI K,AHANGARI K,et al.The effect of natural fracture dip and strike on hydraulic fracture propagation [J].International Journal of Rock Mechanics and Mining Sciences,2015,75:210-215.
-
[54] DEHGHAN A N,GOSHTASBI K,AHANGARI K,et al.Mechanism of fracture initiation and propagation using a tri-axial hydraulic fracturing test system in naturally fractured reservoirs [J].European Journal of Environmental and Civil Engineering,2015,20(5):560-585.
-
[55] KOLAWOLE O,ISPAS I.Interaction between hydraulic fractures and natural fractures:current status and prospective directions [J].Journal of Petroleum Exploration and Production Technology,2020,10(4):1 613-1 634.
-
[56] 陈勉.页岩气储层水力裂缝转向扩展机制[J].中国石油大学学报:自然科学版,2013,37(5):88-94.CHEN Mian.Re-orientation and propagation of hydraulic fractures in shale gas reservoir [J].Journal of China University of Petroleum:Edition of Natural Science,2013,37(5):88-94.
-
[57] 王涛,柳占立,高岳,等.基于给定参数的水力裂缝与天然裂缝相互作用结果的预测准则[J].工程力学,2018,35(11):216-222.WANG Tao,LIU Zhanli,GAO Yue,et al.A prediction criterion for the interaction between hydraulic fractures and natural fractures based on given parameters [J].Engineering Mechanics,2018,35(11):216-222.
-
[58] ZHAO Yu,HE Pengfei,ZHANG Yongfa,et al.A new criterion for a toughness-dominated hydraulic fracture crossing a natural frictional interface [J].Rock Mechanics and Rock Engineering,2019,52(8):2 617-2 629.
-
[59] WANG Weiwei,OLSON J E,PRODANOVIĆ M,et al.Interaction between cemented natural fractures and hydraulic fractures assessed by experiments and numerical simulations [J].Journal of Petroleum Science and Engineering,2018,167:506-516.
-
[60] ZHANG Xi,JEFFREY R G.The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal preexisting fractures [J].Geophysical Journal International,2006,166(3):1 454-1 465.
-
[61] KHOEI A R,VAHAB M,HIRMAND M.Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique [J].International Journal of Fracture,2016,197(1):1-24.
-
[62] KRESSE O,WENG X.Hydraulic fracturing in formations with permeable natural fractures [C].Brisbane:ISRM International Conference for Effective and Sustainable Hydraulic Fracturing,2013.
-
[63] ZHOU Yun,YANG Diansen,ZHANG Xi,et al.Numerical investigation of the interaction between hydraulic fractures andnatural fractures in porous media based on an enriched FEM [J].Engineering Fracture Mechanics,2020,235(1):107175.
-
[64] 侯振坤,杨春和,王磊,等.大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J].岩土力学,2016,37(2):407-414.HOU Zhenkun,YANG Chunhe,WANG Lei,et al.Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test [J].Rock and Soil Mechanics,2016,37(2):407-414.
-
[65] 张丰收,吴建发,黄浩勇,等.提高深层页岩裂缝扩展复杂程度的工艺参数优化[J].天然气工业,2021,41(1):125-135.ZHANG Fengshou,WU Jianfa,HUANG Haoyong,et al.Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs [J].Natural Gas Industry,2021,41(1):125-135.
-
[66] 张同景,郑永香,郑超越,等.注液速率对页岩水力压裂起裂的影响规律研究[J].河北工程大学学报:自然科学版,2022,39(4):100-105.ZHANG Tongjing,ZHENG Yongxiang,ZHENG Chaoyue,et al.The influence of injection rate on initiation of hydraulic frac‐ tures in shale [J].Journal of Hebei University of Engineering:Natural Science Edition,2022,39(4):100-105.
-
[67] BEUGELSDIJK L J L,PATER D H,SATO K.Experimental hydraulic fracture propagation in a multi-fractured medium [C].Yokohama:SPE Asia Pacific Conference on Integrated Model‐ ling for Asset Management,2000.
-
[68] YUE Yuqing,PENG Shoujian,LIU Yixin,et al.Investigation of acoustic emission response and fracture morphology of rock hydraulic fracturing under true triaxial stress [J].Acta Geophysica,2019,67(4):1 017-1 024.
-
[69] XU Wenjun,ZHAO Jinzhou,RAHMAN S S,et al.A comprehensive model of a hydraulic fracture interacting with a natural fracture:Analytical and numerical solution [J].Rock Mechanics and Rock Engineering,2019,52(4):1 095-1 113.
-
[70] GUO Tiankui,ZHANG Shicheng,QU Zhanqing,et al.Experimental study of hydraulic fracturing for shale by stimulated reservoir volume [J].Fuel,2014,128:373-380.
-
[71] 邹才能,赵群,董大忠,等.页岩气基本特征、主要挑战与未来前景[J].天然气地球科学,2017,28(12):1 781-1 796.ZOU Caineng,ZHAO Qun,DONG Dazhong,et al.Geological characteristics,main challenges and future prospect of shale gas [J].Natural Gas Geoscience,2017,28(12):1 781-1 796.
-
[72] 胡月,陈雷,周昊,等.海相页岩纹层特征及其对页岩储层发育的影响——以川南长宁地区龙马溪组为例[J].断块油气田,2021,28(2):145-150.HU Yue,CHEN Lei,ZHOU Hao,et al.Lamina characteristics of marine shale and its influence on shale reservoir development:a case study of Longmaxi Formation,Changning area,South Sichuan Basin [J].Fault-Block Oil & Gas Field,2021,28(2):145-150.
-
[73] 孙可明,张树翠,辛利伟.页岩气储层层理方向对水力压裂裂纹扩展的影响[J].天然气工业,2016,36(2):45-51.SUN Keming,ZHANG Shucui,XIN Liwei.Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation [J].Natural Gas Industry,2016,36(2):45-51.
-
[74] 解经宇,陆洪智,陈磊,等.龙马溪组层状页岩微观非均质性及力学各向异性特征[J].地质科技通报,2021,40(3):67-77.XIE Jingyu,LU Hongzhi,CHEN Lei,et al.Micro scropic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation [J].Bulletin of Geological Science and Technology,2021,40(3):67-77.
-
[75] 张伯虎,马浩斌,田小朋,等.层状页岩力学参数的各向异性研究[J].地下空间与工程学报,2020,16(S2):634-638.ZHANG Bohu,MA Haobin,TIAN Xiaopeng,et al.Deep layered shale mechanical parameters anisotropy study [J].Chinese Journal of Underground Space and Engineering,2020,16(S2):634-638.
-
[76] 周彤,王海波,李凤霞,等.层理发育的页岩气储集层压裂裂缝扩展模拟[J].石油勘探与开发,2020,47(5):1 039-1 051.ZHOU Tong,WANG Haibo,LI Fengxia,et al.Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs [J].Petroleum Exploration and Development,2020,47(5):1 039-1 051.
-
[77] 李晓,赫建明,尹超,等.页岩结构面特征及其对水力压裂的控制作用[J].石油与天然气地质,2019,40(3):653-660.LI Xiao,HE Jianming,YIN Chao,et al.Characteristics of the shale bedding planes and their control on hydraulic fracturing [J].Oil & Gas Geology,2019,40(3):653-660.
-
[78] 温继伟,项天,朱茂,等.基于扩展有限元分析的页岩水力压裂裂缝扩展规律探究[J].钻探工程,2022,49(5):177-188.WEN Jiwei,XIANG Tian,ZHU Mao,et al.Investigation of shale hydraulic fracturing propagation laws based on extended finite element analysis [J].Drilling Engineering,2022,49(5):177-188.
-
[79] 王强,赵金洲,胡永全,等.页岩水力裂缝网络形态及激活机制研究[J].西南石油大学学报:自然科学版,2022,44(6):71-86.WANG Qiang,ZHAO Jinzhou,HU Yongquan,et al.Investigation on the morphology and activation mechanism of hydraulic fracture network in shale [J].Journal of Southwest Petroleum University:Science Technology Edition,2022,44(6):71-86.
-
[80] 孙可明,张树翠.含层理页岩气藏水力压裂裂纹扩展规律解析分析[J].力学学报,2016,48(5):1 229-1 237.SUN Keming,ZHANG Shucui.Hydraulic fracture propagation in shale gas bedding reservoir analytical analysis [J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(5):1 229-1 237.
-
[81] 李彦超,马新仿,李宁,等.层理对页岩储层压裂改造效果影响的实验研究[J].西安石油大学学报:自然科学版,2017,32(5):62-67.LI Yanchao,MA Xinfang,LI Ning,et al.Experimental study on influence of bedding planes on stimulation effect of hydraulic fracturing in shale reservoir [J].Journal of Xi’an Shiyou University:Natural Science Edition,2017,32(5):62-67.
-
[82] 郭印同,杨春和,贾长贵,等.页岩水力压裂物理模拟与裂缝表征方法研究[J].岩石力学与工程学报,2014,33(1):52-59.GUO Yintong,YANG Chunhe,JIA Changgui,et al.Research on hydraulic fracturing physical simulation of shale and fracture characterization methods [J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):52-59.
-
[83] 衡帅,杨春和,曾义金,等.页岩水力压裂裂缝形态的试验研究 [J].岩土工程学报,2014,36(7):1 243-1 251.HENG Shuai,YANG Chunhe,ZENG Yijin,et al.Experimental study on hydraulic fracture geometry of shale [J].Chinese Journal of Geotechnical Engineering,2014,36(7):1 243-1 251.
-
[84] 李芷,贾长贵,杨春和,等.页岩水力压裂水力裂缝与层理面扩展规律研究[J].岩石力学与工程学报,2015,34(1):12-20.LI Zhi,JIA Changgui,YANG Chunhe,et al.Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale [J].Chinese Journal of Rock Mechanics and Engineering,2015,34(1):12-20.
-
[85] 孙可明,冀洪杰,张树翠.页岩层理方位及强度对水力压裂的影响[J].实验力学,2020,35(2):343-348.SUN Keming,JI Hongjie,ZHANG Shucui.Influence of bedding azimuth and strength on hydraulic fracturing in shale [J].Journal of Experimental Mechanics,2020,35(2):343-348.
-
[86] 邹雨时,石善志,张士诚,等.薄互层型页岩油储集层水力裂缝形态与支撑剂分布特征[J].石油勘探与开发,2022,49(5):1 025-1 032.ZOU Yushi,SHI Shanzhi,ZHANG Shicheng,et al.Hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs [J].Petroleum Exploration and Development,2022,49(5):1 025-1 032.
-
[87] 史璨,林伯韬.页岩储层压裂裂缝扩展规律及影响因素研究探讨[J].石油科学通报,2021,6(1):92-113.SHI Can,LIN Botao.Principles and influencing factors for shale formations [J].Petroleum Science Bulletin,2021,6(1):92-113.
-
[88] WANG Weiwei,OLSON J E,PRODANOVIĆ M,et al.Interaction between cemented natural fractures and hydraulic fractures assessed by experiments and numerical simulations [J].Journal of Petroleum Science and Engineering,2018,167:506-516.
-
[89] WU H,CHUDNOVSKY A,DUDLEY J W,et al.A map of fracture behavior in the vicinity of an interface [C].Houston:the 6th North America Rock Mechanics Symposium Texas,2004.
-
[90] 潘睿.薄互层岩石断裂特性研究及在水力压裂中的应用[D].北京:中国石油大学(北京),2021.PAN Rui.Fracture characteristics of thin interbedded rocks and its application in hydraulic fracturing [D].Beijing:China University of Petroleum(Beijing),2021.
-
摘要
水力压裂是目前中国构建页岩油气储层复杂裂缝网络的主要技术之一,而页岩储层内部矿物组分差异以及不连续界面 (层理、天然裂缝)的广泛分布使其具有强烈的非均质性,直接影响并制约了储层水力压裂改造效果。基于页岩微观矿物组分非均质性和宏观结构非均质性2方面,系统阐述了水力压裂裂缝扩展形态的研究进展。首先,分析了矿物组分差异引起的脆性程度对水力压裂裂缝扩展形态的影响;其次,总结了影响水力压裂裂缝与天然裂缝相互作用模式的关键地质因素和工程因素,探讨了水力压裂裂缝与天然裂缝相互作用机制;最后,研究了页岩层理对水力压裂裂缝穿层扩展的影响机理,阐述了层理面倾角、胶结强度及密度等关键参数对层理面开裂、水力压裂裂缝穿层和扩展形态的影响规律。综述了现阶段非均质性页岩水力压裂研究中存在的问题及发展趋势,为压裂设计优化提供了重要的理论依据。
Abstract
Hydraulic fracturing techniques have been widely used in China to create complex fracture networks in shale reservoirs, while shale reservoirs exhibit high heterogeneity due to the difference in mineral compositions and the widespread presence of discontinuous interfaces(beddings and natural fractures),which directly affects and constrains the hydraulic fracturing effects in reservoirs. Based on the heterogeneity of microscopic mineral composition and macroscopic structure of shale,the research progress of fracture propagation patterns of hydraulic fracturing is systematically described. Firstly,the impact of brittle degree caused by mineral composition differences on the fracture propagation patterns of hydraulic fracturing is analyzed. Secondly,the key geological and engineering factors affecting the interaction modes between fractures by hydraulic fracturing and natural fractures are summarized,and the interaction mechanisms between fractures by hydraulic fracturing and natural fractures are discussed. Finally,the influence mechanisms of shale bedding on the fracture propagation of hydraulic fracturing is studied,and the influence law of key parameters such as bedding plane inclination,cementation strength,and density on the bedding plane cracking and fracture penetration and propagation patterns of hydraulic fracturing is expounded. This paper reviews the existing problems and development trends in the research on hydraulic fracturing of heterogeneous shale and provides an important theoretical basis for the optimization of fracture design.
Keywords
heterogeneity ; mineral composition ; natural fractures ; bedding plane ; hydraulic fracturing