en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

时贤(1984—),男,山东聊城人,副教授,博士,从事多尺度岩石力学表征、地质力学建模、非常规地质工程一体化压裂设计、清洁/无水压裂技术、井壁失稳、大数据石油工程应用等方面的研究。E-mail:nikebill@163.com。

中图分类号:TE344

文献标识码:A

文章编号:1009-9603(2023)04-0167-06

DOI:10.13673/j.pgre.202204019

参考文献 1
问晓勇,李宪文,张燕明,等.致密碳酸盐岩应用“体积加砂”压裂技术探讨[J].钻采工艺,2020,43(2):61-63,67.WEN Xiaoyong,LI Xianwen,ZHANG Yanming,et al.Research on the application of volumetric fracturing with proppant fracture technology in tight carbonate[J].Drilling & Production Technology,2020,43(2):61-63,67.
参考文献 2
牟春国,邝聃,何平,等.奥陶系深层碳酸盐岩酸压机理与深度酸压工艺优化[J].油气地质与采收率,2021,28(4):113-119.MOU Chunguo,KUANG Dan,HE Ping,et al.Acid-fracturing mechanism and deep acid-fracturing technique optimization of Ordovician deep carbonate rocks[J].Petroleum Geology and Re‐ covery Efficiency,2021,28(4):113-119.
参考文献 3
郭建春,苟波,秦楠,等.深层碳酸盐岩储层改造理念的革新——立体酸压技术[J].天然气工业,2020,40(2):61-74.GUO Jianchun,GOU Bo,QIN Nan,et al.An innovative concept on deep carbonate reservoir stimulation:three-dimensional acid fracturing technology[J].Natural Gas Industry,2020,40(2):61-74.
参考文献 4
BALE A,SMITH M B,KLEIN H H.Stimulation of carbonates combining acid fracturing with proppant(CAPF):a revolutionary approach for enhancement of final fracture conductivity and effective fracture half-length[C].Florence:SPE Annual Technical Conference and Exhibition,2010:SPE-134307-MS.
参考文献 5
DING Yunhong,LI Yongping,XU Yun,et al.Propped fracturing with a novel surface cross-linked acid in high temperature deep carbonate formation[C].Cairo:North Africa Technical Conference and Exhibition,2010:SPE-127312-MS.
参考文献 6
XIE Peiyan,GAO Zhiqian,LI Congcong,et al.Conductivity of hydraulic fracturing in tight carbonate intra-platform shoal reservoirs[J].Journal of Petroleum Science and Engineering,2020,189:106976.
参考文献 7
蒋廷学,周珺,贾文峰,等.顺北油气田超深碳酸盐岩储层深穿透酸压技术[J].石油钻探技术,2019,47(3):140-147.JIANG Tingxue,ZHOU Jun,JIA Wenfeng,et al.Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J].Petroleum Driling Techniques,2019,47(3):140-147.
参考文献 8
于吉旺,庞雄奇,郑定业,等.普光地区深层碳酸盐岩气藏主控因素及有利区预测[J].特种油气藏,2022,29(3):28-35.YU Jiwang,PANG Xiongqi,ZHENG Dingye,et al.Main controlling factors and favorable area prediction of deep carbonate gas reservoirs in Puguang Area[J].Special Oil & Gas Reservoirs,2022,29(3):28-35.
参考文献 9
周林波,刘红磊,李丹,等.碳酸盐岩油藏高温超深井高导流自支撑酸化压裂技术[J].特种油气藏,2022,29(3):144-149.ZHOU Linbo,LIU Honglei,LI Dan,et al.Acid fracturing technology for high-conductivity unpropped fractures in ultra-deep wells with high temperature in carbonate reservoirs[J].Special Oil & Gas Reservoirs,2022,29(3):144-149.
参考文献 10
蔡珺君,彭先,李隆新,等.超深层碳酸盐岩气田产能评价的扩展“一点法”[J].断块油气田,2022,29(4):446-454.CAI Junjun,PENG Xian,LI Longxin,et al.Extended“one point method”for productivity evaluation of ultra-deep carbonate gas fields[J].Fault-Block Oil and Gas Field,2022,29(4):446-454.
参考文献 11
付天宇,刘启国,岑雪芳,等.碳酸盐岩三重介质气藏NPI产量递减分析研究[J].油气藏评价与开发,2021,11(6):905-910,916.FU Tianyu,LIU Qiguo,CEN Xuefang,et al.Normalized pressure integral production analysis of triporate-uniphase parallel interporosity flow model[J].Reservoir Evaluation and Development,2021,11(6):905-910,916.
参考文献 12
ZHANG Lufeng,ZHOU Fujian,WANG Jie,et al.An experimen‐ tal investigation of long-term acid propped fracturing conductivity in deep carbonate reservoirs[C].Seattle,Washington:52nd U.S.Rock Mechanics/Geomechanics Symposium,2018:ARMA2018-545.
参考文献 13
李宪文,侯雨庭,古永红,等.白云岩储层酸蚀裂缝导流能力实验研究[J].油气地质与采收率,2021,28(1):88-94.LI Xianwen,HOU Yuting,GU Yonghong,et al.Experimental study on conductivity of acid etched fractures in dolomite reservoirs[J].Petroleum Geology and Recovery Efficiency,2021,28(1):88-94.
参考文献 14
周少伟,高伟,祖凯,等.致密碳酸盐岩储层水力加砂支撑裂缝导流能力实验研究[J].油气地质与采收率,2016,23(4):117-121.ZHOU Shaowei,GAO Wei,ZU Kai,et al.An experimental research on flow conductivity of propped fracture by hydraulic sand fracturing in tight carbonate gas reservoirs[J].Petroleum Geology and Recovery Efficiency,2016,23(4):117-121.
参考文献 15
周佳佳,邹洪岚,朱大伟,等.低弹性模量碳酸盐岩储层裂缝导流能力实验研究[J].石油钻采工艺,2020,42(6):752-756.ZHOU Jiajia,ZOU Honglan,ZHU Dawei,et al.Experimental study on the fracture conductivity in the carbonate reservoirs with low elastic modulus[J].Oil Drilling & Production Technology,2020,42(6):752-756.
参考文献 16
SULEIMENOVA A,WANG X,ZHU D,et al.Comparative study of acid fracturing and propped hydraulic fracturing for a tight carbonate formation[C].Vienna:SPE Europec featured at 78th EAGE Conference and Exhibition,2016:SPE-180114-MS.
参考文献 17
何青,李克智,徐兵威,等.致密碳酸盐岩气藏前置酸加砂酸压工艺研究及应用[J].钻采工艺,2014,37(5):71-73.HE Qing,LI Kezhi,XU Bingwei,et al.Research and application of pad acid sand fracturing technology in tight carbonate reser‐ voir[J].Drilling & Production Technology,2014,37(5):71-73.
参考文献 18
WEN Qingzhi,ZHANG Shicheng,WANG Lei,et al.Influence of proppant embedment on fracture long-term flow conductivity[J].Natural Gas Industry,2005,25(5):65-68.
参考文献 19
赫安乐,齐宁,崔明月,等.白云岩储层酸岩反应控制模式界限 [J].中国石油大学学报:自然科学版,2021,45(1):110-116.HE Anle,QI Ning,CUI Mingyue,et al.Limitation on acid-rock reaction and its control mode in dolomite formation[J].Journal of China University of Petroleum:Edition of Natural Sciences,2021,45(1):110-116.
参考文献 20
徐加祥,丁云宏,杨立峰,等.致密油藏分段多簇压裂水平井复杂缝网表征及产能分析[J].油气地质与采收率,2019,26(5):132-138.XU Jiaxiang,DING Yunhong,YANG Lifeng,et al.Complex fracture network characterization and productivity analysis of multistage fractured horizontal well in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(5):132-138.
目录contents

    摘要

    为了探讨加砂压裂技术在白云岩储层改造中的适应性,开展了致密白云岩储层加砂压裂裂缝导流能力实验,分析不同因素对加砂压裂裂缝导流能力的影响。实验结果表明,影响白云岩储层加砂压裂裂缝导流能力因素依次为支撑剂粒径、铺砂浓度、加砂模式、铺砂方式、支撑剂强度。对比单一支撑剂类型,混合支撑剂铺设时可以获得较好的导流能力,且粒径越大支撑剂占比越高,导流能力表现则越好。脉冲加砂模式下的裂缝导流能力变化波动较大,但是同样可以满足白云岩储层改造的裂缝导流能力。结合压裂施工效果和经济成本,优选支撑剂强度为69 MPa,平均铺砂浓度为1.8 kg/m2 的加砂参数即可满足白云岩储层现场加砂压裂的需要。白云岩储层由于杨氏模量高、闭合应力大,所以缝宽较小,而通过实施脉冲加砂模式则可以一定程度降低加砂压裂过程中的砂堵风险。

    Abstract

    Experiments on the conductivity of propped fracture in tight dolomite reservoirs were conducted to analyze the effects of different factors on the conductivity of propped fractures and thus explore the adaptability of proppant fracturing technology to dolomite reservoir stimulation. The experimental results showed that the factors affecting the conductivity of propped fractures in dolomite reservoirs are as follows:the particle sizes of proppants,proppant concentrations,proppant injection modes,proppant laying methods,and proppant strength. Compared with a single proppant,the mixed proppant can obtain better conductivity,and a larger particle size is accompanied by a higher proportion of proppants and better conductivity. In addition,the conductivity of fractures registers significant fluctuations under the pulsed proppant injection mode,but it can satisfy the stimulation requirement of dolomite reservoirs. Considering the fracturing effect and cost,the on-site sand fracturing needs in the dolomite reservoir can be met with the proppant strength of 69 MPa and an average proppant concentration of 1.8 kg/m2 . The dolomite reservoir has a small fracture width because of the large Young’s modulus and high closure stress. Hence,the risk of proppant plugs in proppant fracturing can be reduced to a certain extent by the pulsed proppant injection mode.

  • 鄂尔多斯盆地马家沟组碳酸盐岩储层具有丰富的油气资源,目前探明的总资源量高达 2.55×1012 m3,表现出巨大的勘探开发潜力[1-3]。然而,该地区很多新发现的碳酸盐岩储层主要以充填程度高的白云岩为主,整体表现为低孔、低渗透等特征,且闭合应力高,增产开发难度大,研究适合该地区的储层改造技术极为必要。

  • 酸化和加砂压裂技术是进行碳酸盐岩储层开发的重要手段,两者虽然目的都旨在创造高导流能力的裂缝通道,但是却具有截然不同的造缝增产机理,所以应用适应性存在较大差异[4-7]。碳酸盐岩储层酸化效果和酸岩反应效果密切相关,如储层与酸液的配伍性、地层温度、酸液性质(浓度、排量、酸岩接触时间)等因素都决定着酸化改造效果。一般而言,酸化改造形成以溶蚀为主的刻蚀裂缝,裂缝长度一般较短且壁面粗糙,造成酸化裂缝导流能力持续时间比较有限,特别是在闭合应力较高的储层开展酸化改造后,其产量递减生产特征会表现得更为迅速[8-12]。加砂压裂可以通过支撑剂的加入使得裂缝具有更稳定的导流能力,所以被认为更加适用于深部高温高压碳酸盐岩储层的增产开发。为了分析不同储层改造技术在碳酸盐岩中的适用开发效果,有必要开展目的储层裂缝导流能力研究。李宪文等开展了白云岩酸蚀裂缝导流能力实验研究,分析储层物性、酸液浓度等条件影响下酸蚀裂缝导流能力的变化规律,认为白云岩反应速度较灰岩更慢,且酸液交替注入可以有效的提高非均匀刻蚀程度[13]。周少伟等研究了不同条件下灰岩加砂压裂裂缝导流能力,且探讨了不同粒径支撑剂组合对裂缝导流能力的影响[14]。周佳佳等则对低杨氏模量灰岩储层开展了酸压导流能力测试,发现对于杨氏模量低于 20 GPa 的碳酸盐岩储层而言,酸压效果要比加砂压裂效果差[15]。可以看出,过往的加砂压裂裂缝导流能力研究主要针对灰岩为主的碳酸盐岩储层,同时针对白云岩储层的裂缝导流能力研究也主要以酸化导流能力测试实验为主,而涉及白云岩储层加砂压裂裂缝导流能力的相关研究较少。为此,笔者针对鄂尔多斯盆地马家沟组白云岩储层的高温、高闭合应力特征,进行加砂压裂裂缝导流能力实验,研究不同条件下裂缝导流能力的影响因素,以期为优化白云岩储层增产改造方法、探索合理的白云岩储层加砂压裂施工设计方案提供借鉴。

  • 1 加砂压裂裂缝导流能力实验设计

  • 1.1 样品制备

  • 实验所用岩心取自鄂尔多斯盆地马家沟组白云岩储层,埋深为 3 850 m,闭合应力约为 60~80 MPa,且两向水平应力差为 7~8 MPa。通过矿物组分分析发现,实验样品以灰褐色以及深灰色白云岩为主,其中白云石含量在99%以上,纯度较高。镜下薄片进一步显示白云岩储层的原生和次生充填程度较高。通过室内三轴岩石试验对白云岩样品的整体力学性质进行了测试分析,发现其强度较高,其中杨氏模量为 32.3~54.7 GPa,泊松比为 0.2~0.23。将白云岩样品进一步按照 API 标准加工成实验岩板,具体尺寸规格是长度为 20 cm、宽度约为4 cm、高度为0.8~1.0 cm 的长方体,并根据实验仪器的导流室规格,对实验岩板边沿进行处理,保证其两端磨成半圆形,以更好地贴合导流室边沿。

  • 1.2 实验装置

  • 采用的白云岩加砂压裂裂缝导流能力测试设备是中国石油大学(华东)非常规油气重点实验室的 FCES-100 导流仪。选用的支撑剂是目前碳酸盐岩储层加砂压裂改造中常见的20/40,40/70,80/90目等不同粒径的陶粒支撑剂。

  • 将白云岩岩板放入导流室内,然后对岩板施加闭合应力,并采用盐水测量不同闭合应力作用下的裂缝导流能力。在导流室内,流体的流动遵循达西定律,因此加砂压裂裂缝导流能力的计算公式为:

  • Kfwf=QμLAΔp
    (1)
  • 为了分析加砂压裂在白云岩储层中的适用性,整个裂缝导流能力实验设计考虑因素主要有支撑剂粒径、闭合应力、支撑剂强度、铺砂浓度、铺砂方式、加砂模式等。设计 5 种实验方案:①不同闭合应力 (10~70 MPa)和不同支撑剂粒径(20/40,40/70,80/ 90 目);②不同支撑剂强度(52,69 和 86 MPa);③不同铺砂浓度(0.6,1.8,4.0 kg/m2);④不同铺砂方式(1∶0, 2∶1,1∶1,1∶2,0∶1);⑤不同加砂模式(常规和脉冲)。

  • 2 裂缝导流能力影响因素分析

  • 2.1 支撑剂粒径

  • 选择不同粒径但强度相同的陶粒开展实验,其中闭合应力为 10~70 MPa,支撑剂粒径分别为 20/ 40,40/70,80/90 目,铺砂浓度设置为 1.8 kg/m2。从图1 可以看出,不同粒径支撑剂对应的裂缝导流能力都随着闭合应力的增加呈现逐渐下降的趋势。在相同闭合应力条件下,20/40目支撑剂对应的裂缝导流能力最高,而80/90目支撑剂对应的裂缝导流能力最低。同时,当闭合应力从 10 MPa 逐渐增加到 70 MPa时,不同粒径支撑剂对应的裂缝导流能力下降幅度也各不相同,其中 20/40 目支撑剂对应的裂缝导流能力从 103 μm2 ·cm 下降至 70 μm2 ·cm,40/70 目的从60 μm2 ·cm下降至29 μm2 ·cm,而80/90目的从29 μm2·cm下降至14 μm2·cm,相对下降幅度最低。

  • 图1 支撑剂粒径对裂缝导流能力的影响

  • Fig.1 Effect of proppant particle size on fracture conductivity

  • 当闭合应力为40 MPa左右时,裂缝导流能力出现了比较明显的下降拐点,说明当闭合应力高于此值,支撑剂之间的排列方式会出现更明显的变化。在相同闭合应力条件下,选择大粒径的支撑剂更易保持裂缝导流能力,主要在于大粒径的裂缝初始孔隙度和裂缝宽度较高,但是支撑剂受压破碎后,大粒径支撑剂的堆积方式也容易出现更大变化,致使裂缝宽度下降,使最终的支撑裂缝导流能力出现更明显的波动。

  • 2.2 支撑剂强度

  • 选择强度(52,69 和 86 MPa)不同的 20/40 目支撑剂开展实验,其中铺砂浓度统一设置为1.8 kg/m2 。从实验结果(图2)来看,在低闭合应力条件下(闭合应力<30 MPa时),支撑剂强度本身对裂缝导流能力的影响较小,但是在高闭合应力条件下(闭合应力>30 MPa 时),低强度支撑剂对应的裂缝导流能力下降幅度开始逐渐增加,其中闭合应力为30 MPa是白云岩储层加砂压裂裂缝导流能力下降的拐点。同时,不同强度支撑剂对应的裂缝导流能力也具有不同的下降规律,闭合应力从 10 MPa 增加到 70 MPa 时,强度为52 MPa的支撑剂对应的裂缝导流能力从 100 µm2 ·cm下降到 59 µm2 ·cm,而强度为69 MPa的从103 µm2 ·cm下降至70 µm2 ·cm,强度为86 MPa的从 105 µm2 ·cm 下降至 69 µm2 ·cm。相较而言,强度为 69和 86 MPa的支撑剂对应的裂缝导流能力下降幅度相差较小。

  • 由于白云岩强度相对较高,可以不考虑支撑剂嵌入的风险而只考虑支撑剂的破碎风险,选择高强度的支撑剂有助于白云岩储层更长时间的保持加砂裂缝的导流能力。但是,考虑支撑剂强度增加会带来支撑剂投资成本的增加,所以69 MPa强度的支撑剂已经可以满足该区白云岩储层加砂压裂的应用。

  • 图2 支撑剂强度对裂缝导流能力的影响

  • Fig.2 Effect of proppant strength on fracture conductivity

  • 2.3 铺砂浓度

  • 铺砂浓度是影响裂缝导流能力的重要因素。选择 20/40,40/70,80/90 目 3 种类型的支撑剂,研究不同闭合应力条件下铺砂浓度(0.6,1.8和4.0 kg/m2)对白云岩储层加砂压裂裂缝导流能力的影响。由 80/ 90 目支撑剂对应的裂缝导流能力随铺砂浓度的变化(图3a)可见,当铺砂浓度为4.0 kg/m2 时,裂缝导流能力随闭合应力的增加从 70 µm2 ·cm 下降到 26 µm2 ·cm;当铺砂浓度为 1.8 kg/m2 时,从 29 µm2 ·cm 下降到14 µm2 ·cm;当铺砂浓度为0.6 kg/m2 时,从14 µm2 ·cm 下降到 0 µm2 ·cm。同时,在闭合应力小于 40 MPa时,铺砂浓度对裂缝导流能力的影响较为明显,出现了明显拐点,特别是铺砂浓度为 0.6 kg/m2 时,可能因为铺砂浓度过低裂缝导流能力已经完全丧失。80/90 目小粒径支撑剂对应的裂缝导流能力随着铺砂浓度的增加逐渐增加,特别是在低闭合应力下更为突出。对于40/70目支撑剂,闭合应力的增大同样会导致不同铺砂浓度对应的裂缝导流能力呈现下降趋势(图3b)。当铺砂浓度为 4.0 kg/m2 时,裂缝导流能力随闭合应力的增加从 228 µm2 ·cm 下降到 121 µm2 ·cm;当铺砂浓度为 1.8 kg/m2 时,从 60 µm2 ·cm 下降到 29 µm2 ·cm;当铺砂浓度为 0.6 kg/m2 时,从22 µm2 ·cm下降到0 µm2 ·cm。同样在40 MPa 时存在下降拐点,其中低铺砂浓度 0.6 kg/m2 对应的裂缝导流能力已经完全丧失。对于 20/40目大粒径支撑剂而言,当铺砂浓度从 0.6 kg/m2 上升到 4.0 kg/ m2 时,裂缝导流能力同样呈现增加的趋势,而随着闭合应力的逐渐增大,裂缝导流能力也逐渐下降(图3c)。同时可以发现,虽然裂缝导流能力下降趋势也是在 40 MPa 时出现拐点,但是直到闭合应力为 60 MPa时,低铺砂浓度 0.6 kg/m2 对应的裂缝导流能力才完全丧失,说明增大支撑剂的粒径可以一定程度上弥补铺砂浓度下降对裂缝导流能力的影响。白云岩储层加砂压裂裂缝导流能力随着铺砂浓度的增大而增大,且导流能力增加越明显,其主要原因在于相同裂缝壁面面积,增大铺砂浓度有助于保证阻碍裂缝闭合,且粒径越小,导流能力增加效果越显著。

  • 图3 不同铺砂浓度的裂缝导流能力变化规律

  • Fig.3 Variation laws of fracture conductivity under different proppant concentrations

  • 2.4 铺砂方式

  • 比较不同目数组合条件下白云岩储层加砂压裂裂缝导流能力的变化规律,其中 40/70和 80/90目支撑剂的混合比例分别设置为 1∶0,2∶1,1∶1,1∶2, 0∶1。从实验结果(图4)来看,混合铺砂方式的裂缝导流能力与闭合应力存在较好的负相关关系;对于支撑剂混合比例为 1∶0 的组合,裂缝导流能力随闭合应力的增加从60 µm2 ·cm下降到29 µm2 ·cm;混合比例为2∶1的从51 µm2 ·cm下降到21 µm2 ·cm;混合比例为1∶1的从43 µm2 ·cm下降到18 µm2 ·cm;混合比例为1∶2的从36 µm2·cm下降到15 µm2·cm;混合比例为0∶1的从29 µm2·cm下降到14 µm2·cm。可见小粒径支撑剂占比越高,对应的裂缝导流能力越低,同时也发现在40 MPa时存在裂缝导流能力下降的拐点。

  • 图4 混合铺砂不同比例条件的裂缝导流能力变化规律

  • Fig.4 Variation laws of fracture conductivity at mixed proppants with different proportions

  • 2.5 加砂模式

  • 考虑到白云岩储层本身较高的杨氏模量和所处的高闭合应力环境,形成的裂缝宽度通常较小,传统的连续加砂模式有可能会存在砂堵风险,为此探讨脉冲加砂模式下的裂缝导流能力变化规律,并以分段铺置的模式近似模拟脉冲加砂模式。其中,40/70 和 80/90目支撑剂的混合比例仍然分别设置为 1∶0, 2∶1,1∶1,1∶2,0∶1。从实验结果(图5)来看,在脉冲加砂模式下,混合比例为2∶1时,裂缝导流能力随闭合应力的增加从56 µm2 ·cm下降到22 µm2 ·cm,混合比例为1∶1时从42 µm2 ·cm下降到19 µm2 ·cm,混合比例为 1∶2 时从 39 µm2 ·cm 下降到 12 µm2 ·cm。同样可以发现,40/70 目支撑剂占比越高,则最后对应的脉冲加砂模式下的裂缝导流能力越高。同一闭合应力条件下,当 80/90目支撑剂占比较高时,裂缝导流能力明显下降,同时可以看出在闭合应力高于 40 MPa时,裂缝导流能力的波动更为明显。

  • 图5 脉冲加砂模式下不同支撑剂混合比例裂缝导流能力变化规律

  • Fig.5 Variation laws of fracture conductivity at mixed proppants with different proportions under pulsed injection mode

  • 脉冲加砂模式下的裂缝导流能力都要弱于常规连续加砂模式下的,但同样可以满足现场压裂改造需求。脉冲加砂模式下的裂缝导流能力曲线波动性更强,主要在于脉冲加砂模式下支撑剂成团或成簇,无法对整个裂缝壁面进行完全支撑。相较常规连续加砂模式,脉冲加砂模式可以降低高强度加砂引起的砂堵风险。

  • 3 讨论

  • 为明确高闭合应力下影响裂缝导流能力的主控因素,分析70 MPa时不同影响因素对应的裂缝导流能力,并计算其变化幅度。铺砂浓度为1.8 kg/m2 时, 80/90,40/70,20/40目支撑剂对应的裂缝导流能力分别为 14,29,70 µm2 ·cm,变化幅度为-80%;对于 20/40 目支撑剂,铺砂浓度为 1.8 kg/m2,支撑剂强度分别为 52,69和 86 MPa时,对应的裂缝导流能力分别为 59,70,69 µm2 ·cm,变化幅度为-14.5%;80/90, 40/70,20/40 目支撑剂铺砂浓度变化对应的裂缝导流能力变化幅度分别为-69.2%,-89.3%,-80.9%,平均为-79.8%;混合铺砂模式下,40/70和80/90目混合比例为1∶0,2∶1,1∶1,1∶2,0∶1对应的裂缝导流能力变化幅度分别为-51.7%,-58.8%,-58.1%,-58.3%,-51.7%,平均为-55.7%;40/70和80/90目支撑剂混合比例为2∶1,1∶1,1∶2脉冲加砂模式对应裂缝导流能力变化幅度分别为-60.7%,-54.8%,-69.2%,平均为-61.6%。因此,从整体来看,影响白云岩储层加砂压裂裂缝导流能力因素依次排序为:支撑剂粒径、铺砂浓度、加砂模式、铺砂方式以及支撑剂强度。其主要原因在于,支撑剂颗粒越小,裂缝排列越紧密,高闭合应力条件下不容易发生变形和嵌入,因此裂缝导流能力更高。铺砂浓度越高则颗粒和颗粒之间更容易形成支撑,保证裂缝不发生闭合。

  • 混合铺砂和脉冲加砂对混合支撑剂铺设条件下的裂缝导流能力影响不大,但是低密度的支撑剂比例增高会增加裂缝的导流能力,混合铺砂模式更加适应于裂缝系统相对复杂的白云岩储层,其中小粒径和大粒径的支撑剂可以分别进入具有不同缝宽的改造裂缝中,实现多尺度裂缝导流能力的同步提升[16-20]。脉冲加砂模式还会降低白云岩储层压裂改造裂缝缝宽有限所导致的砂堵风险。因为选用的支撑剂整体强度较高,在支撑剂强度高于 69 MPa 时,裂缝导流能力之间的差异相对较小,但是过高强度的支撑剂会增加成本,因此强度为69 MPa的支撑剂即可满足现场的施工需求。

  • 4 结论

  • 白云岩储层加砂压裂裂缝导流能力随着支撑剂粒径的减少而增大,支撑剂强度对裂缝导流能力影响相对较小,铺砂浓度的提升则有助于提高裂缝导流能力,组合铺砂方式的裂缝导流能力处于高目数支撑剂和低目数支撑剂对应裂缝导流能力之间,同时高目数支撑剂比例增加,将会导致裂缝导流能力呈下降趋势。增大铺砂浓度有助于阻碍裂缝闭合,且粒径越小,裂缝导流能力增加效果越显著。常规连续加砂和脉冲加砂方式的裂缝导流能力差距不大,但脉冲加砂模式下裂缝导流能力变化幅度较大。

  • 影响白云岩储层加砂压裂裂缝导流能力的因素依次排序为:支撑剂粒径、铺砂浓度、加砂模式、铺砂方式以及支撑剂强度。其中,在闭合应力升至 40 MPa时裂缝导流能力存在明显下降拐点,因此需要进一步优选支撑剂和压裂液类型以适应白云岩储层改造。

  • 根据研究区白云岩储层的高闭合应力条件,综合考虑压裂施工效果和经济成本,优选支撑剂强度为69 MPa,平均铺砂浓度为1.8 kg/m2 的加砂参数即可满足现场加砂压裂需要。白云岩储层因为杨氏模量高、闭合应力大,所以形成缝宽相对较小,如果加砂强度需求较高,则有必要利用脉冲加砂模式来降低加砂压裂中的砂堵风险。

  • 符号解释

  • A——导流室面积,cm2

  • Kfwf ——裂缝导流能力,μm2 ·cm;

  • L——测压孔之间的长度,cm;

  • Q——流体流量,cm3 /s;

  • μ——流体黏度,mPa·s;

  • Δp——压差,kPa。

  • 参考文献

    • [1] 问晓勇,李宪文,张燕明,等.致密碳酸盐岩应用“体积加砂”压裂技术探讨[J].钻采工艺,2020,43(2):61-63,67.WEN Xiaoyong,LI Xianwen,ZHANG Yanming,et al.Research on the application of volumetric fracturing with proppant fracture technology in tight carbonate[J].Drilling & Production Technology,2020,43(2):61-63,67.

    • [2] 牟春国,邝聃,何平,等.奥陶系深层碳酸盐岩酸压机理与深度酸压工艺优化[J].油气地质与采收率,2021,28(4):113-119.MOU Chunguo,KUANG Dan,HE Ping,et al.Acid-fracturing mechanism and deep acid-fracturing technique optimization of Ordovician deep carbonate rocks[J].Petroleum Geology and Re‐ covery Efficiency,2021,28(4):113-119.

    • [3] 郭建春,苟波,秦楠,等.深层碳酸盐岩储层改造理念的革新——立体酸压技术[J].天然气工业,2020,40(2):61-74.GUO Jianchun,GOU Bo,QIN Nan,et al.An innovative concept on deep carbonate reservoir stimulation:three-dimensional acid fracturing technology[J].Natural Gas Industry,2020,40(2):61-74.

    • [4] BALE A,SMITH M B,KLEIN H H.Stimulation of carbonates combining acid fracturing with proppant(CAPF):a revolutionary approach for enhancement of final fracture conductivity and effective fracture half-length[C].Florence:SPE Annual Technical Conference and Exhibition,2010:SPE-134307-MS.

    • [5] DING Yunhong,LI Yongping,XU Yun,et al.Propped fracturing with a novel surface cross-linked acid in high temperature deep carbonate formation[C].Cairo:North Africa Technical Conference and Exhibition,2010:SPE-127312-MS.

    • [6] XIE Peiyan,GAO Zhiqian,LI Congcong,et al.Conductivity of hydraulic fracturing in tight carbonate intra-platform shoal reservoirs[J].Journal of Petroleum Science and Engineering,2020,189:106976.

    • [7] 蒋廷学,周珺,贾文峰,等.顺北油气田超深碳酸盐岩储层深穿透酸压技术[J].石油钻探技术,2019,47(3):140-147.JIANG Tingxue,ZHOU Jun,JIA Wenfeng,et al.Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J].Petroleum Driling Techniques,2019,47(3):140-147.

    • [8] 于吉旺,庞雄奇,郑定业,等.普光地区深层碳酸盐岩气藏主控因素及有利区预测[J].特种油气藏,2022,29(3):28-35.YU Jiwang,PANG Xiongqi,ZHENG Dingye,et al.Main controlling factors and favorable area prediction of deep carbonate gas reservoirs in Puguang Area[J].Special Oil & Gas Reservoirs,2022,29(3):28-35.

    • [9] 周林波,刘红磊,李丹,等.碳酸盐岩油藏高温超深井高导流自支撑酸化压裂技术[J].特种油气藏,2022,29(3):144-149.ZHOU Linbo,LIU Honglei,LI Dan,et al.Acid fracturing technology for high-conductivity unpropped fractures in ultra-deep wells with high temperature in carbonate reservoirs[J].Special Oil & Gas Reservoirs,2022,29(3):144-149.

    • [10] 蔡珺君,彭先,李隆新,等.超深层碳酸盐岩气田产能评价的扩展“一点法”[J].断块油气田,2022,29(4):446-454.CAI Junjun,PENG Xian,LI Longxin,et al.Extended“one point method”for productivity evaluation of ultra-deep carbonate gas fields[J].Fault-Block Oil and Gas Field,2022,29(4):446-454.

    • [11] 付天宇,刘启国,岑雪芳,等.碳酸盐岩三重介质气藏NPI产量递减分析研究[J].油气藏评价与开发,2021,11(6):905-910,916.FU Tianyu,LIU Qiguo,CEN Xuefang,et al.Normalized pressure integral production analysis of triporate-uniphase parallel interporosity flow model[J].Reservoir Evaluation and Development,2021,11(6):905-910,916.

    • [12] ZHANG Lufeng,ZHOU Fujian,WANG Jie,et al.An experimen‐ tal investigation of long-term acid propped fracturing conductivity in deep carbonate reservoirs[C].Seattle,Washington:52nd U.S.Rock Mechanics/Geomechanics Symposium,2018:ARMA2018-545.

    • [13] 李宪文,侯雨庭,古永红,等.白云岩储层酸蚀裂缝导流能力实验研究[J].油气地质与采收率,2021,28(1):88-94.LI Xianwen,HOU Yuting,GU Yonghong,et al.Experimental study on conductivity of acid etched fractures in dolomite reservoirs[J].Petroleum Geology and Recovery Efficiency,2021,28(1):88-94.

    • [14] 周少伟,高伟,祖凯,等.致密碳酸盐岩储层水力加砂支撑裂缝导流能力实验研究[J].油气地质与采收率,2016,23(4):117-121.ZHOU Shaowei,GAO Wei,ZU Kai,et al.An experimental research on flow conductivity of propped fracture by hydraulic sand fracturing in tight carbonate gas reservoirs[J].Petroleum Geology and Recovery Efficiency,2016,23(4):117-121.

    • [15] 周佳佳,邹洪岚,朱大伟,等.低弹性模量碳酸盐岩储层裂缝导流能力实验研究[J].石油钻采工艺,2020,42(6):752-756.ZHOU Jiajia,ZOU Honglan,ZHU Dawei,et al.Experimental study on the fracture conductivity in the carbonate reservoirs with low elastic modulus[J].Oil Drilling & Production Technology,2020,42(6):752-756.

    • [16] SULEIMENOVA A,WANG X,ZHU D,et al.Comparative study of acid fracturing and propped hydraulic fracturing for a tight carbonate formation[C].Vienna:SPE Europec featured at 78th EAGE Conference and Exhibition,2016:SPE-180114-MS.

    • [17] 何青,李克智,徐兵威,等.致密碳酸盐岩气藏前置酸加砂酸压工艺研究及应用[J].钻采工艺,2014,37(5):71-73.HE Qing,LI Kezhi,XU Bingwei,et al.Research and application of pad acid sand fracturing technology in tight carbonate reser‐ voir[J].Drilling & Production Technology,2014,37(5):71-73.

    • [18] WEN Qingzhi,ZHANG Shicheng,WANG Lei,et al.Influence of proppant embedment on fracture long-term flow conductivity[J].Natural Gas Industry,2005,25(5):65-68.

    • [19] 赫安乐,齐宁,崔明月,等.白云岩储层酸岩反应控制模式界限 [J].中国石油大学学报:自然科学版,2021,45(1):110-116.HE Anle,QI Ning,CUI Mingyue,et al.Limitation on acid-rock reaction and its control mode in dolomite formation[J].Journal of China University of Petroleum:Edition of Natural Sciences,2021,45(1):110-116.

    • [20] 徐加祥,丁云宏,杨立峰,等.致密油藏分段多簇压裂水平井复杂缝网表征及产能分析[J].油气地质与采收率,2019,26(5):132-138.XU Jiaxiang,DING Yunhong,YANG Lifeng,et al.Complex fracture network characterization and productivity analysis of multistage fractured horizontal well in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(5):132-138.

  • 参考文献

    • [1] 问晓勇,李宪文,张燕明,等.致密碳酸盐岩应用“体积加砂”压裂技术探讨[J].钻采工艺,2020,43(2):61-63,67.WEN Xiaoyong,LI Xianwen,ZHANG Yanming,et al.Research on the application of volumetric fracturing with proppant fracture technology in tight carbonate[J].Drilling & Production Technology,2020,43(2):61-63,67.

    • [2] 牟春国,邝聃,何平,等.奥陶系深层碳酸盐岩酸压机理与深度酸压工艺优化[J].油气地质与采收率,2021,28(4):113-119.MOU Chunguo,KUANG Dan,HE Ping,et al.Acid-fracturing mechanism and deep acid-fracturing technique optimization of Ordovician deep carbonate rocks[J].Petroleum Geology and Re‐ covery Efficiency,2021,28(4):113-119.

    • [3] 郭建春,苟波,秦楠,等.深层碳酸盐岩储层改造理念的革新——立体酸压技术[J].天然气工业,2020,40(2):61-74.GUO Jianchun,GOU Bo,QIN Nan,et al.An innovative concept on deep carbonate reservoir stimulation:three-dimensional acid fracturing technology[J].Natural Gas Industry,2020,40(2):61-74.

    • [4] BALE A,SMITH M B,KLEIN H H.Stimulation of carbonates combining acid fracturing with proppant(CAPF):a revolutionary approach for enhancement of final fracture conductivity and effective fracture half-length[C].Florence:SPE Annual Technical Conference and Exhibition,2010:SPE-134307-MS.

    • [5] DING Yunhong,LI Yongping,XU Yun,et al.Propped fracturing with a novel surface cross-linked acid in high temperature deep carbonate formation[C].Cairo:North Africa Technical Conference and Exhibition,2010:SPE-127312-MS.

    • [6] XIE Peiyan,GAO Zhiqian,LI Congcong,et al.Conductivity of hydraulic fracturing in tight carbonate intra-platform shoal reservoirs[J].Journal of Petroleum Science and Engineering,2020,189:106976.

    • [7] 蒋廷学,周珺,贾文峰,等.顺北油气田超深碳酸盐岩储层深穿透酸压技术[J].石油钻探技术,2019,47(3):140-147.JIANG Tingxue,ZHOU Jun,JIA Wenfeng,et al.Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J].Petroleum Driling Techniques,2019,47(3):140-147.

    • [8] 于吉旺,庞雄奇,郑定业,等.普光地区深层碳酸盐岩气藏主控因素及有利区预测[J].特种油气藏,2022,29(3):28-35.YU Jiwang,PANG Xiongqi,ZHENG Dingye,et al.Main controlling factors and favorable area prediction of deep carbonate gas reservoirs in Puguang Area[J].Special Oil & Gas Reservoirs,2022,29(3):28-35.

    • [9] 周林波,刘红磊,李丹,等.碳酸盐岩油藏高温超深井高导流自支撑酸化压裂技术[J].特种油气藏,2022,29(3):144-149.ZHOU Linbo,LIU Honglei,LI Dan,et al.Acid fracturing technology for high-conductivity unpropped fractures in ultra-deep wells with high temperature in carbonate reservoirs[J].Special Oil & Gas Reservoirs,2022,29(3):144-149.

    • [10] 蔡珺君,彭先,李隆新,等.超深层碳酸盐岩气田产能评价的扩展“一点法”[J].断块油气田,2022,29(4):446-454.CAI Junjun,PENG Xian,LI Longxin,et al.Extended“one point method”for productivity evaluation of ultra-deep carbonate gas fields[J].Fault-Block Oil and Gas Field,2022,29(4):446-454.

    • [11] 付天宇,刘启国,岑雪芳,等.碳酸盐岩三重介质气藏NPI产量递减分析研究[J].油气藏评价与开发,2021,11(6):905-910,916.FU Tianyu,LIU Qiguo,CEN Xuefang,et al.Normalized pressure integral production analysis of triporate-uniphase parallel interporosity flow model[J].Reservoir Evaluation and Development,2021,11(6):905-910,916.

    • [12] ZHANG Lufeng,ZHOU Fujian,WANG Jie,et al.An experimen‐ tal investigation of long-term acid propped fracturing conductivity in deep carbonate reservoirs[C].Seattle,Washington:52nd U.S.Rock Mechanics/Geomechanics Symposium,2018:ARMA2018-545.

    • [13] 李宪文,侯雨庭,古永红,等.白云岩储层酸蚀裂缝导流能力实验研究[J].油气地质与采收率,2021,28(1):88-94.LI Xianwen,HOU Yuting,GU Yonghong,et al.Experimental study on conductivity of acid etched fractures in dolomite reservoirs[J].Petroleum Geology and Recovery Efficiency,2021,28(1):88-94.

    • [14] 周少伟,高伟,祖凯,等.致密碳酸盐岩储层水力加砂支撑裂缝导流能力实验研究[J].油气地质与采收率,2016,23(4):117-121.ZHOU Shaowei,GAO Wei,ZU Kai,et al.An experimental research on flow conductivity of propped fracture by hydraulic sand fracturing in tight carbonate gas reservoirs[J].Petroleum Geology and Recovery Efficiency,2016,23(4):117-121.

    • [15] 周佳佳,邹洪岚,朱大伟,等.低弹性模量碳酸盐岩储层裂缝导流能力实验研究[J].石油钻采工艺,2020,42(6):752-756.ZHOU Jiajia,ZOU Honglan,ZHU Dawei,et al.Experimental study on the fracture conductivity in the carbonate reservoirs with low elastic modulus[J].Oil Drilling & Production Technology,2020,42(6):752-756.

    • [16] SULEIMENOVA A,WANG X,ZHU D,et al.Comparative study of acid fracturing and propped hydraulic fracturing for a tight carbonate formation[C].Vienna:SPE Europec featured at 78th EAGE Conference and Exhibition,2016:SPE-180114-MS.

    • [17] 何青,李克智,徐兵威,等.致密碳酸盐岩气藏前置酸加砂酸压工艺研究及应用[J].钻采工艺,2014,37(5):71-73.HE Qing,LI Kezhi,XU Bingwei,et al.Research and application of pad acid sand fracturing technology in tight carbonate reser‐ voir[J].Drilling & Production Technology,2014,37(5):71-73.

    • [18] WEN Qingzhi,ZHANG Shicheng,WANG Lei,et al.Influence of proppant embedment on fracture long-term flow conductivity[J].Natural Gas Industry,2005,25(5):65-68.

    • [19] 赫安乐,齐宁,崔明月,等.白云岩储层酸岩反应控制模式界限 [J].中国石油大学学报:自然科学版,2021,45(1):110-116.HE Anle,QI Ning,CUI Mingyue,et al.Limitation on acid-rock reaction and its control mode in dolomite formation[J].Journal of China University of Petroleum:Edition of Natural Sciences,2021,45(1):110-116.

    • [20] 徐加祥,丁云宏,杨立峰,等.致密油藏分段多簇压裂水平井复杂缝网表征及产能分析[J].油气地质与采收率,2019,26(5):132-138.XU Jiaxiang,DING Yunhong,YANG Lifeng,et al.Complex fracture network characterization and productivity analysis of multistage fractured horizontal well in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(5):132-138.