-
致密油藏作为重要的石油接替资源,普遍采用水平井多级压裂衰竭式开发[1-9]。由于地层能量亏空,水平井产量递减快,一次采收率低,通常小于 10%[10-14]。因此,如何有效补充地层能量成为致密油藏水平井高效开发的关键。研究表明,注水吞吐是致密油藏水平井开发的一种重要的补充地层能量方法[15-20]。然而,多轮次吞吐后,水平井产量下降严重。此外,由于水平井各压裂段的压裂规模和裂缝网络渗透率差异,仍有大量剩余油残存在储层中无法有效采出。近年来相关学者提出利用水平井缝间异步注采技术来改善水平井目标压裂段的开发效果[21-27]。但是,由于该工艺操作过程复杂、风险高和成本高等缺点,目前矿场应用较少。已有研究表明,注水吞吐的累积产油量与注水量之间存在正相关关系[28-30]。因此,通过调整压裂段之间的流量分布,可以提高改造规模较小、裂缝网络渗透率较低压裂段的注水吞吐采收率,进一步改善多轮次后注水吞吐开发效果。颗粒暂堵剂是目前最常用的分流技术,其主要通过在高渗透区域形成低渗透滤饼,从而将注入水分流到低渗透区域。由于其自身可完全降解且不会对地层造成伤害,被广泛应用于基质酸化和压裂处理[31-40]。目前关于暂堵剂封堵特性和数学模型开展了大量的研究[41-45]。其中DOER‐ LER 等 1987 年建立的考虑暂堵剂注入速度和浓度的暂堵剂封堵特性模型目前应用较广[43]。鉴于以上分析,提出暂堵强化注水吞吐工艺,即通过在注水吞吐注入阶段注入暂堵剂溶液调节各压裂段的吸水能力,扩大注入水的波及面积,从而提高改造规模较小、裂缝网络渗透率低、储量丰富压裂段采收率和注入水的换油率,改善多轮次后注水吞吐开发效果。
-
以鄂尔多斯盆地延长组富县长8致密砂岩样品为例,首先借助核磁共振技术,通过并联不同开度造缝岩心来模拟不同裂缝网络渗透率压裂段,研究注水吞吐和暂堵强化注水吞吐对不同开度造缝岩心样品的原油动用程度。进一步在暂堵剂封堵特性实验的基础上,建立多级压裂水平井暂堵分流数学模型,并分析暂堵剂质量浓度和注入速度对分流效率的影响,从而为暂堵剂段塞优化以及暂堵强化注水吞吐方案设计提供一定理论指导。
-
1 实验部分
-
1.1 实验材料及设备
-
实验样品取自鄂尔多斯盆地延长组富县长8致密储层,岩心长度为 4.60~6.20 cm,直径约为 2.50 cm,基本参数如表1 所示。实验用水为模拟地层水,矿化度约为14 300 mg/L,水型为CaCl2型,pH值为 7.4。实验用油由富县长 8 脱气原油与煤油按体积比为2∶1配制而成,50℃时密度为0.814 g/cm3,黏度为 1.24 mPa·s。实验用 Frd-1 暂堵剂为淡黄色粉末,粒度小于 80 μm,在水中可以自由分散,油溶率大于95%。
-
实验设备主要包括吞吐实验装置(图1)和暂堵剂滤饼封堵特性实验装置(图2)。
-
图1 吞吐实验装置
-
Fig.1 Huff and puff equipment
-
1.2 实验步骤
-
1.2.1 吞吐实验
-
通过并联不同开度造缝岩心样品来模拟不同裂缝网络渗透率压裂段,对比分析 2 种吞吐方式对不同开度造缝岩心样品的原油动用程度。实验步骤主要包括:①岩心钻取、洗油和劈裂造缝。②抽真空饱和油。③利用核磁共振设备测定饱和油岩心样品的T2谱分布。④在2号岩心裂缝面均匀铺置 60 目石英砂,并将其放入其中一个岩心夹持器,用于模拟裂缝网络渗透率较高压裂段;此外,将1号造缝岩心直接放入另一个岩心夹持器,用于模拟裂缝网络渗透率较低压裂段。⑤设置围压为20 MPa,以 3 mL/min的注入速度注入模拟地层水(加入 20 000 mg/L MnCl2)直至注入压力升至 10 MPa 停泵,记录注入体积,关闭岩心夹持器入口端阀门焖井 48 h。 ⑥焖井结束后,打开出口阀门,待压力表压力降为0 且岩心夹持器出口端不再出液稳定 2 h 后取出岩心,测试吞吐后岩心的弛豫时间T2谱。
-
图2 暂堵剂滤饼封堵特性实验装置
-
Fig.2 Equipment for plugging characteristic experiment of filter cake of temporary plugging agents
-
取 3号和 4号造缝岩心按步骤④—⑥进行暂堵强化注水吞吐实验,与注水吞吐实验不同的是在步骤⑤之前注入暂堵剂溶液。由于吞吐注入阶段注入水主要进入大开度造缝岩心样品,考虑到 2 号岩心和 4 号岩心的长度差别不大,因此保持暂堵强化注水吞吐实验与注水吞吐实验的注入量相同。在暂堵剂溶液注入过程中,保持出口阀门打开,以 3 mL/min 的恒定速度注入,待 4 号造缝岩心样品(大开度造缝岩心样品)出口流量明显降低时停泵,记录注入岩心内的暂堵剂溶液体积。之后,关闭出口阀门,以 3 mL/min 的注入速度注入模拟地层水,直至暂堵剂溶液与注入水体积之和与注水吞吐注入体积相等时停泵焖井48 h。然后继续步骤⑥。
-
1.2.2 暂堵剂滤饼封堵特性实验
-
首先对直径为 25 mm,长度为 400 mm 的填砂管填充60目的石英砂并压实,垂直放置。然后对填砂管驱替饱和模拟地层水,并测量其渗透率。将准备好的质量浓度为 300 g/L 的暂堵剂溶液以恒定速度注入填砂管,实验过程记录暂堵剂溶液注入时间和填砂管入口端注入压力和压力监测口两处压力差。实验结束后,通过对填砂管注入模拟油进行解堵。然后,测量填砂管渗透率。改变暂堵剂溶液注入速度,分别以 2,3和5 mL/min的注入速度进行实验。
-
1.3 结果分析
-
1.3.1 暂堵强化注水吞吐与注水吞吐效果对比
-
通过对比吞吐前后岩心样品T2谱分布(图3)的面积差异可以得到各岩心样品的吞吐采收率(图4)。结果表明:对于注水吞吐和暂堵强化注水吞吐实验,大开度造缝岩心样品的采收率均高于小开度造缝岩心样品的采收率。这是由于大开度造缝岩心样品渗流阻力小,裂缝与基质接触面积大,大量的注入水进入其中,渗吸排油几率高导致的。相比于注水吞吐,暂堵强化注水吞吐后不同开度造缝岩心的采收率均得到提高,累积提高5.17%,其中小开度造缝岩心样品提高了 1.71%,大开度造缝岩心样品提高了 3.46%。分析认为,暂堵剂溶液的注入使得不同开度造缝岩心样品的裂缝均得到一定程度的封堵,两者之间的裂缝渗透率差异减小,进液量逐渐均衡。此外,暂堵剂溶液的注入使得后续注水过程注入压力增加,岩心端面受到的流体压力增加。小开度造缝岩心样品的进液量增加一方面使得岩心样品裂缝开度增加,裂缝与基质接触面积增大,渗吸排油几率增加,另一方面使得缝内流体压力增加,强化了渗吸采油作用。因此,暂堵后小开度造缝岩心样品吞吐采收率得到提高。对于大开度造缝岩心样品,暂堵剂溶液的注入虽然使得其进液量降低,但由于岩心端面的流体压力增加,强化了渗吸排油作用,因此暂堵后大开度造缝岩心样品吞吐采收率也得到提高。由此可见,暂堵强化注水吞吐可以有效改善裂缝网络渗透率较低压裂段的开发效果,并对裂缝网络渗透率较高压裂段采收率的提高有一定积极作用。
-
1.3.2 暂堵剂滤饼封堵特性
-
由不同注入速度下通过暂堵剂滤饼的压降与注入时间的关系(图5)可以看出,在暂堵剂溶液开始注入阶段通过滤饼的压降变化较小,注入后期通过滤饼的压降与注入时间呈现近似线性关系。通过拟合注入后期数据可以得到不同注入速度下通过暂堵剂滤饼的压降与注入时间的线性关系系数,分别为0.001 6,0.004 4和0.011 5。
-
HILL等假设暂堵剂形成的滤饼不可压缩,流体在其中的渗流满足达西定律,因此通过暂堵剂滤饼的压降可以表示为[34]:
-
图3 吞吐前后岩心样品T2谱分布
-
Fig.3 T2 spectrum distribution of core samples before and after huff and puff
-
图4 注水吞吐与暂堵强化注水吞吐采收率对比
-
Fig.4 Comparison of oil recovery between water injection huff and puff and temporary plugging enhancing water injection huff and puff
-
图5 不同注入速度下通过暂堵剂滤饼的压降与注入时间的关系
-
Fig.5 Relationship between pressure drop through filter cake of temporary plugging agents and injection time at different injection rates
-
暂堵剂滤饼厚度随着暂堵剂溶液的注入而不断增加,其与暂堵剂溶液注入体积之间存在的关系为:
-
联立(1)式和(2)式可得:
-
由于暂堵剂滤饼极薄,厚度几乎无法得到,因此 Kcake 和 ϕcake 难以独立得到,定义滤饼阻力系数为[34]:
-
因此通过暂堵剂滤饼的压降满足:
-
由于V=Qcaket,因此有:
-
根据实验得到通过暂堵剂滤饼的压降与注入时间的线性关系系数,确定α为1.13×108,1.12×108, 1.14×108 m-2,可以看出不同注入速度下滤饼阻力系数接近,因此α取平均值1.13×108 m-2 。
-
2 暂堵分流数学模型建立及求解
-
2.1 暂堵分流数学模型建立
-
2.1.1 井筒变质量流
-
多级压裂水平井井筒流体流动模型如图6 所示。根据 SU 等的水平井井筒变质量流模型,水平井各压裂段的注入压力可以通过射孔区域的沿程摩阻压降、未射孔区域的沿程摩阻压降和加速度压降计算得到,即[46]:
-
图6 多级压裂水平井井筒流体流动模型
-
Fig.6 Fluid flow model in wellbore of multistage fracturing horizontal wells
-
其中井筒壁面摩擦压降(包括射孔区域的沿程摩阻压降和未射孔区域的沿程摩阻压降)可以通过 the Darcy-Weisbach方程得到[47]:
-
其中[49]:
-
基于动量守恒原理,加速度压降可以通过每个流动区域上下游的平均流速ui+1和ui计算:
-
综上:
-
2.1.2 压裂段内渗流
-
假设水平井各压裂段裂缝高度等于油藏厚度,裂缝对称分布,流体在压裂段内的流动遵循达西定律。水平井各压裂段的渗流可以简化为远离井筒的线性流和靠近井筒的径向流(图7)。
-
图7 水平井各压裂段流体流动示意
-
Fig.7 Diagram of fluid flow in each fracturing section of horizontal wells
-
靠近井筒的半径为 h/2的径向流产生的压降满足:
-
远离井筒线性流产生的压降满足:
-
(15)式和(16)式联立可得压裂段的流量:
-
每个压裂段流量之和等于总的注入液量Qi:
-
2.1.3 考虑暂堵剂溶液注入的水平井压裂段内渗流
-
暂堵剂滤饼封堵特性实验结果表明通过暂堵剂滤饼的压降与暂堵剂累积注入体积密切相关。为了考虑暂堵剂溶液注入的影响,暂堵剂溶液注入过程中暂堵剂滤饼产生的压降可以用表皮系数Scake 表示:
-
将(6)式代入(19)式可得:
-
因此考虑暂堵剂溶液注入的水平井第 i压裂段内渗流满足:
-
此外,流体流经水平井压裂段射孔孔眼产生附加压降为:
-
联立(21)式和(22)式可得暂堵分流过程中第i压裂段注入压力pi与注入量qi之间的关系:
-
2.2 求解方法
-
暂堵分流数学模型可以通过迭代法进行求解,具体求解方法如下:①给定水平井注入流量Q,初始暂堵剂滤饼表皮系数Scake,i( t0 )=0。②假设水平井趾端第 1个压裂段流量 q1(t0)为较小值 σ,根据(23)式计算得到该压裂段注入压力p1(t0),进一步根据(14) 式和(23)式计算第2个压裂段注入压力和流量q2(t0)。 ③由(23)式和(14)式依次计算初始时刻各压裂段注入压力pi(t0)和流量qi(t0)。④如果 不满足计算精度γ,则给 增加较小值δ,重复步骤②和 ③直至达到计算精度,输出初始时刻 t0各压裂段的流量 。⑤根据(19)式计算出 Δt时间各压裂段增加的暂堵剂滤饼表皮系数 Scake,i( t1),此时各压裂段的暂堵剂滤饼表皮系数为∑Scake,i(t1)。重复步骤 ②—④计算 t1时刻各压裂段流量 qi(t1)。⑥重复步骤⑤直至达到 T 时刻,最终输出 T 时刻各压裂段流量qi(tn)。
-
2.3 参数敏感性分析
-
假设水平井各压裂段改造体积相同,利用所建立的模型,基于表2数据,研究了暂堵剂质量浓度和注入速度对暂堵分流效果的影响。
-
由不同暂堵剂溶液注入速度和暂堵剂质量浓度下水平井各压裂段流量随时间的变化曲线(图8,图9)可以看出,随着注入速度和暂堵剂质量浓度的增大,水平井各压裂段流量达到均衡的时间缩短,分流效率提高。这是由于各压裂段流量的变化是由各压裂段的暂堵剂累积注入体积决定的。注入速度和暂堵剂质量浓度的增大使得单位时间进入压裂段的暂堵剂体积增加,暂堵剂滤饼产生的渗流阻力增加,因此各压裂段流量均衡所需时间缩短。简而言之,水平井各压裂段流量达到均衡的时间缩短是由于各压裂段暂堵剂注入体积达到流量均衡时暂堵剂注入体积所需时间缩短导致的。虽然暂堵剂质量浓度和注入速度的增加可以提高暂堵剂的分流效率,但同样大幅度提高了泵注设备和管线的压力,因此,建议在泵注设备和管线允许的前提下有限度地提高暂堵剂质量浓度和注入速度来改善暂堵剂分流效率。
-
图8 不同注入速度下水平井各压裂段流量变化
-
Fig.8 Flow changes in each fracturing section of horizontal wells at different injection rates
-
图9 不同暂堵剂质量浓度下水平井各压裂段流量变化
-
Fig.9 Flow changes in each fracturing section of horizontal wells at different mass concentrations of temporary plugging agents
-
3 结论
-
相较于注水吞吐,暂堵强化注水吞吐由于暂堵剂溶液的注入使得不同开度造缝岩心样品采收率均得到提高,其中大、小开度造缝岩心样品采收率分别提高 3.46% 和 1.71%。结果表明暂堵强化注水吞吐可以有效改善裂缝网络渗透率较低压裂段的开发效果,并对裂缝网络渗透率较高压裂段采收率的提高有一定积极作用。
-
暂堵剂滤饼封堵特性实验结果表明通过滤饼的压降与注入时间近似呈现线性关系。由于暂堵剂形成滤饼的渗透率和孔隙度难以独立得到,因此定义与滤饼渗透率和孔隙度相关的滤饼阻力系数。根据通过滤饼的压降与注入时间的关系明确滤饼阻力系数为1.13×108 m-2。
-
应用所建立的考虑井筒变质量流的多级压裂水平井暂堵分流数学模型,明确了暂堵剂质量浓度和注入速度对暂堵分流效果的影响,即随着注入速度和暂堵剂质量浓度的增大,水平井各压裂段流量达到均衡的时间缩短,分流效率增加,从而扩大了注入水波及面积。
-
符号解释
-
A——滤饼横截面积,m2;
-
A1,A2——不同射孔参数下的经验值,常数;
-
b——压裂段裂缝带宽度,m;
-
B——与未射孔壁面摩擦系数相关的函数;
-
C——校正系数;
-
Cf ——暂堵剂质量浓度,kg/m3;
-
dp——射孔直径,m;
-
D——井筒内径,m;
-
fi ——流动区域壁面摩擦系数;
-
fperf——射孔区域井筒井壁摩擦因子;
-
fwall——未射孔区域井筒井壁摩擦因子;
-
fperfi ——射孔i段壁面摩擦系数;
-
fwalli ——未射孔i段壁面摩擦系数;
-
h——油层厚度,m;
-
i——第i压裂段;
-
Kcake——滤饼的渗透率,m2;
-
Kf ——压裂段等效渗透率,m2;
-
Kfi ——第i压裂段的裂缝渗透率,m2;
-
Lcake——滤饼的厚度,m;
-
ΔL——流动区域长度,m;
-
ΔLi ——第i射孔段长度,i=1,2,…,n,m;
-
Δli ——第i未射孔段长度,i=1,2,…,n,m;
-
n——射孔数,个;
-
np——射孔密度,孔/m;
-
pe——油藏压力,MPa;
-
pi ——第i压裂段的注入压力,MPa;
-
——径向流边界压力,MPa;
-
pw——入口压力,MPa;
-
Δp——井筒壁面摩擦压降,MPa;
-
Δpacci ——加速度压降,MPa;
-
Δpcake——通过不可压缩滤饼的压降,MPa;
-
Δpp——射孔孔眼产生附加压降,MPa;
-
Δpperfi ——射孔区域的沿程摩阻压降,MPa;
-
Δpwalli ——未射孔区域的沿程摩阻压降,MPa;
-
q——压裂段的流量,m3 /s;
-
qi——趾端第i个压裂段的流量,i=1,2,…,n,m3 /s;
-
Q——水平井注入流量,m3;
-
Qcake——暂堵剂溶液流量,m3 /s;
-
Qi ——总的注入液量,m3;
-
rw——井筒半径,m;
-
Re——雷诺数;
-
Scake——暂堵剂滤饼表皮系数;
-
Scake,i ——第i压裂段暂堵剂滤饼表皮系数
-
t——暂堵剂溶液注入时间,min;
-
t0——初始时刻,min;
-
tn——第n个Δt时间末,min;
-
Δt——时间间隔,min;
-
T——暂堵剂溶液注入时间,min;
-
ui ——第i压裂段未射孔区域平均流速,m/s;
-
u2i ——第i压裂段射孔区域平均流速,m/s;
-
ui+1——流动区域上游平均流速,m/s;
-
ui-1——流动区域下游平均流速,m/s;
-
——射孔半径、射孔密度和井筒直径的函数;
-
V——暂堵剂溶液累积注入体积,m3 ;
-
Vi ——第i个压裂段累积注入暂堵剂溶液体积,m3 ;
-
xf ——裂缝半长,m;
-
ε——管壁的绝对粗糙度;
-
μ——流体黏度,Pa•s;
-
μcake——暂堵剂溶液黏度,Pa•s;
-
ρ——流体密度,kg/m3;
-
ρcake——暂堵剂密度,kg/m3;
-
ϕcake——暂堵剂滤饼孔隙度;
-
α——滤饼阻力系数,m-2;
-
σ——假设水平井趾端第 1 个压裂段流量的较小值,常数;
-
δ——压裂段流量较小值的增加值,常数;
-
γ——计算精度,常数。
-
参考文献
-
[1] 贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景 [J].石油勘探与开发,2012,39(2):129-136.JIA Chengzao,ZHENG Min,ZHANG Yongfeng.Unconvention‐ al hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):129-136.
-
[2] 孙龙德,邹才能,贾爱林,等.中国致密油气发展特征与方向[J].石油勘探与开发,2019,46(6):1 015-1 026.SUN Longde,ZOU Caineng,JIA Ailin,et al.Development characteristics and orientation of tight oil and gas in China[J].Petroleum Exploration and Development,2019,46(6):1 015-1 026.
-
[3] 魏海峰,凡哲元,袁向春.致密油藏开发技术研究进展[J].油气地质与采收率,2013,20(2):62-66.WEI Haifeng,FAN Zheyuan,YUAN Xiangchun.Review on new advances in foreign tight oil development technology and their enlightenment[J].Petroleum Geology and Recovery Efficiency,2013,20(2):62-66.
-
[4] HU Jinghong,ZHANG Chong,RUI Zhenhua,et al.Fractured horizontal well productivity prediction in tight oil reservoirs[J].Journal of Petroleum Science and Engineering,2017,151:159-168.
-
[5] MCGLADE C E.A review of the uncertainties in estimates of global oil resources[J].Energy,2012,47(1):262-270.
-
[6] HU Jinghong,SUN Ruofan,ZHANG Yuan.Investigating the horizontal well performance under the combination of micro-fractures and dynamic capillary pressure in tight oil reservoirs[J].Fuel,2020,269:117375.
-
[7] 赵国翔,姚约东,王链,等.基于三维嵌入式离散裂缝模型的致密油藏体积压裂水平井数值模拟[J].大庆石油地质与开发,2022,41(6):143-152.ZHAO Guoxiang,YAO Yuedong,WANG Lian,et al.3D EDFMbased numerical simulation of volume fractured horizontal wells in tight oil reservoirs[J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2022,41(6):143-152.
-
[8] 张怿赫,盛家平,李情霞,等.CO2吞吐技术应用进展[J].特种油气藏,2021,28(6):1-10.ZHANG Yihe,SHENG Jiaping,LI Qingxia,et al.Advances in the application of CO2 stimulation technology[J].Special Oil & Gas Reservoirs,2021,28(6):1-10.
-
[9] 罗群,高阳,张泽元,等.中国与美国致密油形成条件对比研究 [J].石油实验地质,2022,44(2):199-209.LUO Qun,GAO Yang,ZHANG Zeyuan,et al.A comparative study of geological conditions of tight oils in China and USA[J].Petroleum Geology & Experiment,2022,44(2):199-209.
-
[10] 杜金虎,刘合,马德胜,等.试论中国陆相致密油有效开发技术 [J].石油勘探与开发,2014,41(2):198-205.DU Jinhu,LIU He,MA Desheng,et al.Discussion on effective development techniques for continental tight oil in China[J].Petroleum Exploration and Development,2014,41(2):198-205.
-
[11] WANG Wendong,SHAHVALI M,SU Yuliang.A semi-analytical fractal model for production from tight oil reservoirs with hydraulically fractured horizontal wells[J].Fuel,2015,158:612-618.
-
[12] SORENSEN J A,BRAUNBERGER J R,LIU Guoxiang,et al.Characterization and evaluation of the Bakken petroleum system for CO2 enhanced oil recovery[C].San Antonio:AAPG Unconventional Resources Technology Conference,2015:1-21.
-
[13] KONG Bing,WANG Shuhua,CHEN Shengnan.Simulation and optimization of CO2 huff-and-puff processes in tight oil reservoirs[C].Tulsa:SPE Improved Oil Recovery Conference,2016:1-14.
-
[14] SHENG J J.Critical review of field EOR projects in shale and tight reservoirs[J].Journal of Petroleum Science and Engineering,2017,159:654-665.
-
[15] 高涛,赵习森,党海龙,等.延长油田致密油藏注水吞吐机理及应用[J].特种油气藏,2018,25(4):134-137.GAO Tao,ZHAO Xisen,DANG Hailong,et al.Mechanism of cyclic water injection and its application in tight oil reservoirs in Yanchang Oilfield[J].Special Oil & Gas Reservoirs,2018,25(4):134-137.
-
[16] 吴忠宝,曾倩,李锦,等.体积改造油藏注水吞吐有效补充地层能量开发的新方式[J].油气地质与采收率,2017,24(5):78-83,92.WU Zhongbao,ZENG Qian,LI Jin,et al.New effective energysupplement development method of waterflood huff and puff for the oil reservoir with stimulated reservoir volume fracturing[J].Petroleum Geology and Recovery Efficiency,2017,24(5):78-83,92.
-
[17] 樊建明,王冲,屈雪峰,等.鄂尔多斯盆地致密油水平井注水吞吐开发实践——以延长组长7油层组为例[J].石油学报,2019,40(6):706-715.FAN Jianming,WANG Chong,QU Xuefeng,et al.Development and practice of water flooding huff-puff in tight oil horizontal well,Ordos Basin:a case study of Yanchang Formation Chang7 oil layer[J].Acta Petrolei Sinica,2019,40(6):706-715.
-
[18] 杨凯.裂缝性低渗透油藏注水吞吐开发影响因素分析[J].特种油气藏,2010,17(2):82-84,91.YANG Kai.Influencing factors of water flooding development for fractured low-permeability reservoir[J].Special Oil & Gas Reservoirs,2010,17(2):82-84,91.
-
[19] 邸士莹,程时清,代力,等.致密油藏水平井注水吞吐效果评价方法[J].特种油气藏,2022,29(2):91-97.DI Shiying,CHENG Shiqing,DAI Li,et al.Evaluation method of water-flood stimulation effect of horizontal wells in tight oil reservoirs[J].Special Oil & Gas Reservoirs,2022,29(2):91-97.
-
[20] 邸士莹,程时清,白文鹏,等.裂缝性致密油藏注水吞吐转不稳定水驱开发模拟[J].石油钻探技术,2022,50(1):89-96.DI Shiying,CHENG Shiqing,BAI Wenpeng,et al.Simulation of transformation from water-injection huff and puff to unstable water-flooding in developing fractured tight reservoirs[J].Petroleum Drilling Techniques,2022,50(1):89-96.
-
[21] GAO Shusheng,YANG Yi,LIAO Guangzhi,et al.Experimental research on inter-fracture asynchronous injection-production cycle for a horizontal well in a tight oil reservoir[J].Journal of Petroleum Science and Engineering,2022,208(Part D):109647.
-
[22] HE Youwei,CHAI Zhi,HUANG Jingwei,et al.Simulation of inter-fracture injection and production in tight reservoirs based on compartmental embedded discrete fracture model[C].Galveston:SPE Reservoir Simulation Conference,2019:1-19.
-
[23] HE Youwei,CHENG Shiqing,SUN Zhe,et al.Improving oil recovery through fracture injection and production of multiple fractured horizontal wells[J].Journal of Energy Resources Technology,2020,142(5):053002.
-
[24] LIAO Songze,HU Jinghong,ZHANG Yuan.Investigation on the influence of multiple fracture interference on hydraulic fracture propagation in tight reservoirs[J].Journal of Petroleum Science and Engineering,2022,211:110160.
-
[25] KANG Shaofei,PU Chunsheng,WANG Kai,et al.Study on mechanisms and influencing factors of the inter-fracture asynchronous huff-n-puff technology of horizontal well in the tight oil reservoir[C].Kamakura:IOP Conference Series:Earth and Environmental Science,2021(859):102018.
-
[26] 程时清,段炼,于海洋,等.水平井同井注采技术[J].大庆石油地质与开发,2019,38(4):51-60.CHENG Shiqing,DUAN Lian,YU Haiyang,et al.Injection-production technique for the same horizontal well[J].Petroleum Ge‐ ology & Oilfield Development in Daqing,2019,38(4):51-60.
-
[27] 程时清,汪洋,郎慧慧,等.致密油藏多级压裂水平井同井缝间注采可行性[J].石油学报,2017,38(12):1 411-1 419.CHENG Shiqing,WANG Yang,LANG Huihui,et al.Feasibility of inter-fracture injection and production for the same multistage fractured horizontal well in tight oil reservoir[J].Acta Petrolei Si‐ nica,2017,38(12):1 411-1 419.
-
[28] QIN Guowei,DAI Xu,SUI Lei,et al.Study of massive water huff-n-puff technique in tight oil field and its field application[J].Journal of Petroleum Science and Engineering,2021,196:107514.
-
[29] 代旭.大液量注水吞吐技术在致密油藏水平井中的应用[J].大庆石油地质与开发,2017,36(6):134-139.DAI Xu.Application of massive waterflooding huff-puff technique in the tight oil reservoir for horizontal wells[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(6):134-139.
-
[30] 陶登海,詹雪函,高敬文,等.三塘湖盆地马中致密油藏注水吞吐探索与实践[J].石油钻采工艺,2018,40(5):614-619.TAO Denghai,ZHAN Xuehan,GAO Jingwen,et al.Study and practice of cyclic water injection in Mazhong tight oil reservoir in the Santanghu Basin[J].Oil Drilling & Production Technology,2018,40(5):614-619.
-
[31] YI Shiting,SHARMA M.A model for refracturing operations in horizontal wells employing diverting agents[C].Beijing:SPE Asia Pacific Hydraulic Fracturing Conference,2016:1-18.
-
[32] ARNOLD D,BOULIS A,FRAGACHAN F.Eco-friendly biodegradable materials for zonal isolation of multiple perforation clusters during refracturing of a horizontal well:case history from marcellus shale hydraulic fracturing[C].Charleston:SPE Eastern Regional Meeting,2014:1-7.
-
[33] RETNANTO A,ORELLANA E,RYAN A.Dealing with uncertainty of reservoir heterogeneity and pressure depletion to optimize acid placement in thick carbonate reservoirs[C].Al-Khobar:SPE Saudi Arabia Section Technical Symposium and Exhibition,2013:1-15.
-
[34] HILL A D,ROSSEN W R.Fluid placement and diversion in ma‐ trix acidizing[C].Tulsa:University of Tulsa Centennial Petro‐ leum Engineering Symposium,1994:1-11.
-
[35] 孟莲香,刘红星,姜勇,等.水平井酸化暂堵转向施工工艺优化研究[J].钻采工艺,2013,36(5):100-102.MENG Lianxiang,LIU Hongxing,JIANG Yong,et al.Optimization of temporary plugging diversion technology during horizontal well acidization[J].Drilling & Production Technology,2013,36(5):100-102.
-
[36] 罗跃,张煜,杨祖国,等.长庆低渗油藏暂堵酸化技术研究[J].钻井液与完井液,2008,25(2):48-50.LUO Yue,ZHANG Yu,YANG Zuguo,et al.Temporary plugging acidizing technology for low permeability reservoirs in Changqing Oilfield[J].Drilling Fluid & Completion Fluid,2008,25(2):48-50.
-
[37] 赖南君,陈科,马宏伟,等.水溶性压裂暂堵剂的性能评价[J].油田化学,2014,31(2):215-218.LAI Nanjun,CHEN Ke,MA Hongwei,et al.Performance evaluation of water soluble temporary plugging agent for fracturing [J].Oilfield Chemistry,2014,31(2):215-218.
-
[38] 梁兴,朱炬辉,石孝志,等.缝内填砂暂堵分段体积压裂技术在页岩气水平井中的应用[J].天然气工业,2017,37(1):82-89.LIANG Xing,ZHU Juhui,SHI Xiaozhi,et al.Staged fracturing of horizontal shale gas wells with temporary plugging by sand filling[J].Natural Gas Industry,2017,37(1):82-89.
-
[39] 苏良银,庞鹏,达引朋,等.低渗透油田暂堵重复压裂堵剂用量优化与现场试验[J].断块油气田,2014,21(1):114-117.SU Liangyin,PANG Peng,DA Yinpeng,et al.Usage optimization and field test of blocking agent for temporal-blocked refracturing in low permeability oilfield[J].Fault-Block Oil & Gas Field,2014,21(1):114-117.
-
[40] 许江文,张谷畅,李建民,等.暂堵剂形状对裂缝封堵影响规律的实验研究[J].断块油气田,2022,29(6):842-847.XU Jiangwen,ZHANG Guchang,LI Jianmin,et al.Experimental study on influence law of temporary plugging agent shape on fracture plugging[J].Fault-Block Oil & Gas Field,2022,29(6):842-847.
-
[41] HILL A D,GALLOWAY P J.Laboratory and theoretical modeling of diverting agent behavior[J].Journal of Petroleum Technology,1984,36(7):1 157-1 163.
-
[42] TAHA R,HILL A D,SEPEHRNOORI K.Simulation of sandstone-matrix acidizing in heterogeneous reservoirs[J].Journal of Petroleum Technology,1986,38(7):753-767.
-
[43] DOERLER N,PROUVOST L P.Diverting agents:laboratory study and modeling of resultant zone injectivities[C].San Antonio:SPE International Symposium on Oilfield Chemistry,1987:1-12.
-
[44] SAFARI R,SHAHRI M P,SMITH C,et al.Analysis and design method for particulate diversion in carbonate acidizing[C].Lexington:SPE Eastern Regional Meeting,2017:1-15.
-
[45] TAN Xuehao,PAYNE C,PANGA M.Modeling the effectiveness of diverters for matrix acidizing based on filter cake characteristics[C].Lafayette:SPE International Conference and Exhibition on Formation Damage Control,2018:1-12.
-
[46] SU Ze,GUDMUNDSSON J S.Pressure drop in perforated pipes:experiments and analysis[C].Melbourne:SPE Asia Pacific Oil and Gas Conference,1994:1-12.
-
[47] MUNSON B R,OKIISHI T H,HUEBSCH W W,et al.Fluid mechanics[M].Singapore:Wiley,2013.
-
[48] ITŌH,IMAI K.Energy losses at 90°pipe junctions[J].Journal of the Hydraulics Division,1973,99(9):1 353-1 368.
-
[49] GARDEL A.Les pertes de charge dans les Ecoulements au travers de branchement en te[J].Bulletin Technique de la Suisse Romande,1957,83(9):123-130.
-
[50] WEI Jianguang,LIN Xuesong,LIU Xuemei,et al.The experimental and model study on variable mass flow for horizontal wells with perforated completion[J].Journal of Energy Resources Technology,2017,139(6):062901.
-
摘要
为了提高压裂改造规模较小、裂缝网络渗透率较低、储量丰富压裂段的采收率,提出暂堵强化注水吞吐工艺,即通过在注水吞吐的注入阶段注入暂堵剂溶液扩大注入水的波及面积,从而改善多轮次后水平井注水吞吐开发效果。首先通过并联不同开度造缝岩心,对比分析注水吞吐和暂堵强化注水吞吐对不同开度造缝岩心样品原油的动用程度;之后,在暂堵剂滤饼封堵特性实验的基础上,建立考虑井筒变质量流的水平井暂堵分流数学模型并分析暂堵剂质量浓度和注入速度对分流效率的影响。研究结果表明,暂堵强化注水吞吐使得大、小开度造缝岩心样品采收率分别提高了3.46%和1.71%,可有效改善注水吞吐开发效果;根据通过暂堵剂滤饼的压降与注入时间的关系确定滤饼阻力系数为1.13×108 m-2 ;暂堵剂质量浓度越高,注入速度越高,分流效率越高。
Abstract
In order to enhance oil recovery in fracturing sections with a small fracturing scale,low fracture network permeability, and abundant reserves,the temporary plugging enhancing water injection huff and puff technology is proposed. The technology expands the swept area of injected water by injecting temporary plugging agents during water injection huff and puff,thus improving the water injection huff and puff development effect of horizontal wells after several cycles. In this paper,core samples with different fracture apertures are connected in parallel to comparatively analyze the producing ratio of the crude oil in the core samples with different fracture apertures during water injection huff and puff and temporary plugging enhancing water injection huff and puff. Then,experiments are carried out to explore the plugging characteristics of filter cake of the temporary plugging agents,and a mathematical model of temporary plugging and diversion for horizontal wells is established by considering the variable mass flow in the wellbore,so as to study the influence of temporary plugging agents’mass concentration and injection rate on diversion efficiency. Results show that temporary plugging enhancing water injection huff and puff can enhance oil recovery of the core samples with a large fracture aperture and a small fracture aperture by 3.46% and 1.71%,respectively,thus improving the development effect of the water injection huff and puff. According to the relationship between the pressure drop through the filter cake of the temporary plugging agents and the injection time,the drag coefficient of the filter cake is determined to be 1.13×108 m−2 . In addition,higher temporary plugging agents’mass concentration and injection rate indicate higher diversion efficiency