-
塔河油田上奥陶统厚覆盖区中—下奥陶统断溶体油藏为以深大断裂为核心、溶蚀扩大形成的碳酸盐岩缝洞型油藏[1]。针对上奥陶统厚覆盖区断溶体的岩溶成因,前人从海西运动早期岩溶水循环的角度提出各自的缝洞体发育模式,包括深层缓流岩溶模式[2]、非暴露型大气水岩溶下渗模式[3-4]、断裂带对流环岩溶模式[5] 等。笔者也从古水文地貌角度提出加里东运动中期Ⅱ幕的岩溶水循环及缝洞发育模式[6]。前期研究多着重于区域性岩溶背景下缝洞发育模式的构建,断溶体油藏开发实例更多的是从断裂角度开展圈闭划分研究[7-11],较少有从古岩溶水流动及循环路径为原则开展缝洞结构研究的实例。
-
塔河油田岩溶缝洞型油藏的开发实践表明,古岩溶水循环路径的认识对于原始岩溶缝洞体的空间结构刻画、洞穴连通判别发挥着至关重要的作用[12-15]。与主体上奥陶统剥蚀区的表生岩溶型缝洞体不同,受厚层上奥陶统的围限保护,厚覆盖区洞穴充填物少见陆源砂粒组分,而多见方解石充填[16],且埋藏过程中断裂所致的垮塌、充填等破坏作用相对较弱,导致洞穴之间的原始连通情况直接影响缝洞型油藏的注采连通关系。针对上奥陶统厚覆盖区缝洞体的岩溶水循环路径识别、洞穴成因研究,对缝洞体结构研究、井间连通路径判别和剩余油分布预测等具有重要的指导意义。
-
TH10421井区属于上奥陶统厚覆盖区的油气高累产单元,已部署 5 口井,单元累积产油量为 112× 104 t,单井平均累积产油量达22×104 t。目前的开发问题为油井高含水,注水、注气增油效果不理想,缝洞结构极其复杂,井间连通路径多解性强,缝洞体剩余油动用情况不清。为此,笔者基于前期加里东运动中期Ⅱ幕岩溶缝洞发育规律区域研究,参考现代岩溶迷宫型洞穴成因,重点对 TH10421井区的古水文地貌、断裂特征、洞穴结构、古岩溶水循环系统等展开研究,结合开发井的动态生产特征,进一步厘清迷宫型洞穴的原始岩溶缝洞路径以及油藏注采受效路径,为上奥陶统厚覆盖区断溶体油藏开发后期的剩余油挖潜提供重要的缝洞体连通判别依据。
-
1 现代迷宫型洞穴
-
迷宫型洞穴由许多闭合回路的管道组成,主要为相交裂缝或孔隙溶蚀扩大的结果[17],根据平面结构可分为网状、吻合状及海绵状等样式[18]。迷宫型洞穴可以是表生岩溶,也可能是深成岩溶成因;除了结构上的闭合回路特征,还具有溶蚀的同时性特征,即在岩溶网络中所有主要流动路线上以相当均匀的速率进行溶蚀[19]。深成迷宫型洞穴为大气成因岩溶水受限于夹心状不可溶地层,只能于远端上升排泄,在可溶岩中形成的承压迷宫型洞穴[20]。表生迷宫型洞穴的成因有 2 种,一种为岩溶水透过不溶盖层的扩散渗透成因,另一种为洪水成因[18],主要为地表水系由于坍塌堵塞,高流量高水头岩溶水进入地下裂缝网络从而岩溶扩大形成。
-
图1展示了典型的洪水成因迷宫型洞穴的发育过程。地表河道由于坍塌等原因造成堵塞,洪水期因为河道堵塞会造成河道上游形成大量积水,高压积水注入周围地层并形成裂隙网络的溶蚀扩大。印第安纳州蓝泉洞为典型的洪水成因迷宫型洞穴,该洞穴发育于主河道崩塌区域的石炭系灰岩中,走向及分布明显受控于灰岩地层中的节理/裂缝分布[21]。总之,洪水成因迷宫型洞穴系统的发育需具备以下条件:①因堵塞造成的封闭河道。②主河道周围断至地表的裂缝网络。③季节性高流量洪水。明确现代洪水成因迷宫型洞穴的成因机制,可为具备相似岩溶条件下的古岩溶迷宫型洞穴系统研究提供理论依据。
-
图1 典型洪水成因迷宫型洞穴发育过程(据文献[18]修改)
-
Fig.1 Origin of a typical maze-type cave caused by flood (Revised according to Literature [18])
-
2 研究区地质概况
-
塔河油田西部斜坡区位于塔里木盆地北部沙雅隆起阿克库勒低凸起与哈拉哈塘坳陷之间(图2a),加里东运动中期—海西运动早期的多次构造运动造成西部斜坡区上奥陶统、志留系、泥盆系等遭受不同程度剥蚀,导致中—下奥陶统碳酸盐岩的上覆地层分布较为复杂(图2b)。中—下奥陶统为主要目的层,其中一间房组以碳酸盐岩台地沉积的灰岩为主,鹰山组主要岩性为泥晶灰岩和白云质灰岩;上奥陶统为混积陆棚沉积,其中恰尔巴克组以泥晶灰岩和灰质泥岩为主,良里塔格组发育含泥灰岩,桑塔木组发育巨厚泥岩[22-23](图2c)。受厚层桑塔木组泥岩的封挡、围限,上奥陶统厚覆盖区对中—下奥陶统岩溶影响最大的主要为加里东运动中期 Ⅰ 幕和 Ⅱ 幕[16,24],加里东运动中期Ⅱ幕古水文、古地貌对上奥陶统厚覆盖区的缝洞体发育影响较大[5-6]。加里东期—海西期长期构造运动造成 NNE和 NNW 向“X” 型共轭走滑断层的发育[2],为古岩溶提供了优势溶蚀通道。
-
3 古水文地貌特征
-
残厚趋势面镜像与地貌趋势面组合法可用来恢复上奥陶统覆盖区加里东运动中期Ⅱ幕岩溶期的古地貌[6]。覆盖区加里东运动中期Ⅱ幕古地貌总体表现为北西高南东低,二级地貌可划分为岩溶台地、岩溶斜坡和岩溶盆地。TH10421 井区位于岩溶斜坡(图2a),以丘丛沟谷地貌为主,地表水系非常发育。
-
图2 塔河油田TH10421井区构造位置、古地貌及地层柱状图
-
Fig.2 Structural location,paleogeomorphology,and stratigraphic sequence of Well TH10421 Block in Tahe Oilfield
-
相干属性和趋势面属性对于古岩溶地表河道的解释取得较好效果[25]。良里塔格组顶面的相干属性 (图3a)和趋势面属性(图3b)分析结果表明, TH10421 井区良里塔格组顶部发育树枝状水系,由北部的指状分支向南汇流;从趋势面属性来看,河谷的相对幅度差值约为 30 ms(换算深度约为 50 m),河谷汇流后在TH10421井处发生转向,深度变浅、河谷变窄,河道局部堵塞造成在 TH10421井区形成一个深度约为 50 m、宽度约为 770 m、面积约为 3 km2 的岩溶湖泊(图3c)。河道转向堵塞部位刚好处于托普 12CX 主干断裂带,表明加里东运动中期Ⅱ幕的走滑断裂直接影响了地表水系的走向和发育规模; 同时,岩溶湖泊造成局部的大量积水有利于地表岩溶水向地下水的转换,高流量滞留水体为地下迷宫型洞穴的发育提供了重要的岩溶水补给条件。
-
图3 塔河油田TH10421井区加里东运动中期Ⅱ幕岩溶地表古水系平面分布
-
Fig.3 Plane distribution of karst surface paleo-drainage system in Well TH10421 Block in Tahe Oilfield during episode Ⅱ of middle Caledonian movement
-
4 断裂特征
-
近年来,张量梯度属性和精细相干属性广泛应用于塔里木盆地的断裂检测中[26]。通过提取塔河油田 TH10421 井区中—下奥陶统顶面以下 0~60 ms 相干属性和鹰山组下段(T7 6 —T7 8)张量梯度属性(图4a),对TH10421井区的次级断裂进行精细刻画。
-
如图4a 所示,托普 12CX 断裂带为西部斜坡区 NNE 向主干断裂,断穿奥陶系和寒武系,为区域基底走滑断裂,张量梯度属性显示蓝色越深的区域,其溶蚀强度越大,托普 12CX断裂带垂向溶蚀强度大,纵向溶蚀深度贯穿奥陶系。从相干属性看,托普 12CX主干断裂两侧浅层次级断裂发育,多组方向断裂相互交错形成复杂的网络结构。TH10421井区最为典型,从图4b 局部放大的相干属性可以看出, TH10421井区发育 4组 NW 向和 2组 NNE向次级断裂,与主干断裂交织形成“田”字型闭环结构。部署于2组断裂交汇处的开发井,如TH10421和TH10419 井都取得很好的产油效果。总体而言,托普 12CX 主干断裂西侧发育 NW 和 NNE 向的网格状次级断裂系统,可以给岩溶水提供有效通道及溶蚀空间。
-
图4 塔河油田TH10421井区中—下奥陶统断裂平面分布
-
Fig.4 Fault distribution in Middle-Lower Ordovician of Well TH10421 Block in Tahe Oilfield
-
5 迷宫型洞穴结构特征
-
5.1 岩溶洞穴分布及地震响应特征
-
5.1.1 岩溶洞穴分布
-
塔河油田岩溶洞穴在钻井、录井及测井资料上都有明显特征,钻时曲线显示钻时减少,发生放空以及钻井液漏失,测井曲线响应特征主要表现为自然伽马增大、深浅侧向电阻率降低、中子孔隙度和声波孔隙度增大以及密度孔隙度减小[27-28]。TH10421 井区直接钻遇溶洞的井有 TH10419,TH10421 和 TH10421CH 井;TK1024 和 TH10420X 井通过酸压沟通井旁大尺度岩溶洞穴,油井生产特征同样反映为洞穴型储层。
-
溶洞的地震响应特征主要表现为串珠状反射,而平行长洞穴管道的地震纵向剖面为连续强、短轴状反射,利用强地震振幅异常可以很好的识别岩溶洞穴[29]。通过将塔河油田TH10421井区中—下奥陶统顶面以下 0~60 ms 的平均绝对振幅和相干属性叠合(图5a)来刻画浅层洞穴系统,中—下奥陶统顶面以下 60~90 ms的平均绝对振幅和相干属性叠合 (图5b)来刻画深层洞穴系统,并完成研究区岩溶洞穴和断裂的空间体融合雕刻(图5c),多属性结合、深浅兼顾地刻画TH10421井区岩溶迷宫型洞穴系统的空间结构。
-
塔河油田TH10421井区发育断裂网格控制下的迷宫型岩溶洞穴(图5)。其平面分布特征为:①浅层洞穴的网格状迷宫分布特征最为显著,表现为沿着次级断裂网格的岩溶溶蚀空间扩大,强振幅多分布于 2 组断裂的交汇处,以 TH10421 和 TH10419 井的强振幅异常最为典型。②浅层不同方向次级断裂的岩溶存在差异,NNE向断裂的洞穴溶蚀强度要强于 NW 向断裂,2 条 NNE 向次级断裂也存在溶蚀差异,过TH10419和TH10421井东边的NNE向断裂溶蚀程度要强于过 TH10421CH 井西边的 NNE 向断裂。③不同于浅层网格状洞穴,深层洞穴相对较为孤立,未形成闭环溶蚀网络,过 TH10421CH 井的 NNE 向次级断裂深层溶蚀程度高,TK1024 井底部发育近EW向的深层溶蚀洞穴。
-
5.1.2 地震响应特征
-
利用高精度三维地震资料,对塔河油田 TH10421井区不同方向断裂上的洞穴分布及溶蚀路线进行分析。图6显示地表河发育段的良里塔格组被严重侵蚀变薄,河谷处地震响应呈现杂乱反射结构或异常强串珠反射,且这些溶蚀特征与其下一间房组的强振幅洞穴溶蚀特征紧密相连,指示地表岩溶水顺断裂发育,且自上而下强烈溶蚀。TH10421 井区一间房组迷宫型洞穴在空间上溶蚀不均衡,不同方向断裂的溶蚀程度相差较大。从图6 的 aa’ 剖面看,西边 NNE 向断裂垂向溶蚀深度几乎贯穿 T7 4 —T7 6层间碳酸盐岩地层,浅层洞穴发育较为分散,未能形成连续的横向洞穴管道,沿断面表现为向下溶蚀的相对孤立洞穴分布;深层洞穴相对更为连续,岩溶水以平缓的斜下溶蚀通道向WE方向流动。从图6 的 bb’剖面看,东边 NNE 向走滑断裂的浅层洞穴非常发育,浅层已形成连续的通畅洞穴管道,岩溶水由 N 向 S 沿着浅层洞穴管道汇入托普 12CX 主干断裂。从图6的 cc’剖面看,NW 向走滑断裂未形成连续洞穴管道,相对孤立,西侧发育垂向溶蚀为主的连续深溶洞,向西靠近主干断裂发育弱串珠,表现为向东相对较弱的溶蚀。从图6 的 dd’剖面看,过 TK1024 井的 NW 向走滑断裂发育强烈的浅层及深层岩溶,断裂西侧TK1024井附近发育强烈的垂向岩溶,浅层洞穴与深层洞穴具有紧密成因联系,断裂东侧表现为较连续的台阶状斜下强溶蚀条带。
-
图5 塔河油田TH10421井区迷宫型岩溶洞穴分布
-
Fig.5 Distribution of maze-type karst caves in Well TH10421 Block in Tahe Oilfield
-
图6 塔河TH10421井区迷宫型洞穴地震响应特征(剖面位置见图5a)
-
Fig.6 Seismic response characteristics of maze-type caves in Well TH10421 Block in Tahe Oilfield (See Fig.5a for section location)
-
综合平面属性及地震剖面特征,TH10421 井区迷宫型洞穴系统具有如下特征:①NNE 向断裂较 NW 向断裂的溶蚀程度更高,洞穴横向发育更为连续。②东、西 2条 NNE 向断裂溶蚀的强度和深度存在明显差异,东边NNE向走滑断裂的洞穴以浅层通畅型岩溶管道为主,西边NNE向走滑断裂的洞穴为浅层分散洞穴与深层通畅、垂向顺断裂溶蚀的洞穴组合,东、西 2 支走滑断裂的浅层、深层洞穴管道的交汇点在TH10421井处。③从岩溶水的流动方向来看,迷宫型洞穴的岩溶水在垂向上由浅而深、平面上由 NW 向 SE 方向流动,流向与古地貌趋势一致,托普12CX主干断裂为岩溶水的主要排泄区。
-
5.2 生产特征
-
5.2.1 井组生产压力特征
-
TH10421 井区能量充足,井组平均自喷期达到 1 000 d,平均自喷期产液量高达 17 × 104 t。从TH10421 井区的流压分布(图7)可知,TK1024, TH10419 和 TH10420X 等井属于同一压力系统。 TK1024 井投产最早,初始压力为 66.9 MPa;随着生产的推进,3 口井的流压总体维持在 61 MPa 左右。 TH10421井生产初期的流压为 55.9 MPa,至 2009年 6 月压力降至 53.4 MPa,流压持续下降的现象表明 TH10421井生产动用的洞穴不属于TH10419井的压力系统;TH10421井综合含水率迅速上升后,流压不减反增,上升趋势明显,最终稳定至 62.9 MPa,与 TH10419井所属系统压力趋势保持一致。
-
上述生产压力分布趋势进一步证明TH10421井区迷宫型洞穴系统具有浅层、深层2套洞穴的存在。TH10421 井为 2 套洞穴交汇的枢纽,该井早期动用浅层洞穴,随着浅层、深层洞穴之间生产压差的增大,以及南部水体的侵入,最终造成浅层、深层 2 套洞穴的压力趋同。
-
图7 塔河油田TH10421井区流压分布
-
Fig.7 Distribution of flow pressure in Well TH10421 Block in Tahe Oilfield
-
5.2.2 井间连通特征
-
TH10421 井区的井间连通关系明确,注水受效连通井组为 TK1024—TH10419 井组和 TH10421— TH10420X 井组,注气受效连通井组为 TH10421— TH10419 井组和 TH10420X—TH10419 井组(图8)。水驱路径沿洞穴底部驱油,气驱路径选择洞穴顶部高部位置换原油[30-32]。上述注-采受效井组进一步证明迷宫型洞穴系统深、浅连通性的差异,迷宫型洞穴系统东部表层洞穴连通性好,利于气驱,西部深层洞穴连通性较好,为水驱优势路线。
-
利用洞穴、裂缝预测结果可绘制 TH10421 井区的浅层、深层缝洞连通结构(图8),结合生产动态分析,可进一步识别井间注水、注气受效连通路径。分析认为TK1024—TH10419注水井组属于底部连通,先沿 NW 向断裂深层洞穴,在交汇点转为北部浅层洞穴管道;TH10421—TH10420X注水井组为顺着托普 12CX 主干断裂形成底部连通;TH10421— TH10419 井组和 TH10420X—TH10419 井组注气受效,属于沿浅层洞穴管道的顶部连通。依据上述注采连通路径可进一步推测缝洞体剩余油动态分布,迷宫型洞穴系统东部浅层洞穴大部分处于动用路径,其动用可能性大;西部 NNE 向次级断裂的大部分浅层洞穴未处于气、水驱替路径,其剩余油未动用可能性较大。
-
5.2.3 含水率变化规律
-
TH10421 井区各井投产顺序为 TH10421 井、 TK1024 井、TH10419 井、TH10420X 井,油井生产含水率迅速上升顺序为 TH10421 井、TH10420X 井、 TH10419 井、TK1024 井。研究区各油井一旦见水,含水率迅速上升至100%,含水率曲线表现为暴性水淹特征(图9)。结合研究区浅层、深层缝洞发育结构,从开发井含水率上升时间顺序可大概判断水体侵入路线:深层水体源自托普12CX主干断裂,由SE 向NW方向流动,初始侵入邻近托普12CX主干断裂的 TH10421 和 TH10420X 井,沿着 NNE 向断裂的浅层洞穴管道推进至 TH10419 井,最后才是 TK1024 井。
-
上述分析表明,生产过程中的水体侵入路线和迷宫型洞穴岩溶水原始溶蚀路线处于同一条路径,只不过方向是相反的(图8)。从水体推进的速度可以进一步推测迷宫型洞穴的连通程度,TH10421, TH10420X 和 TH10419 等 3 口井见水间隔时间相对很短(图9),表明迷宫型洞穴的连通性良好,这与预测的表层通畅洞穴管道是一致的;迷宫型洞穴系统西部 TK1024 井投产时间早,其见水时间却是最晚的,结合缝洞体预测,认为迷宫型洞穴系统西部的深层洞穴管道相对通畅,为水驱主要路径。
-
图8 塔河油田TH10421井区缝洞连通结构
-
Fig.8 Connected structure of fracture cavity in Well TH10421 Block in Tahe Oilfield
-
图9 塔河油田TH10421井区含水率曲线
-
Fig.9 Water content curves of Well TH10421 Block in Tahe Oilfield
-
5.2.4 开发应用效果
-
结合动、静态资料分析缝洞体连通性,结果表明:迷宫型洞穴西部NNE向断裂具有浅层洞穴相对孤立、深层洞穴相对连通的特点,东部 NNE 向断裂浅层洞穴管道连通性良好。迷宫型洞穴东部 NNE 向断裂洞穴剩余油挖潜的能力较小,西部NNE向断裂浅层洞穴孤立、深层洞穴连通的特点造成浅层的洞穴横向分隔特点显著,前期被生产动用的可能性较小,为后期开发部署的优选缝洞体。
-
基于迷宫型岩溶缝洞结构研究,结合注水注气连通关系、含水率变化和水体侵入路径分析,认为西边 NNE向断裂的洞穴仍有丰富阁楼式剩余油[22],已部署侧钻井 TH10421CH 井,自 2021 年 8 月投产,已无水自喷累积生产原油近万吨。该井投产效果有力地证明了迷宫型洞穴系统西边 NNE 向断裂的洞穴差异溶蚀特征和浅层洞穴横向分隔特征。2022 年针对西边NNE向断裂北部深层洞穴继续部署2口新井,预计取得较好油气效果的同时,注采井网的全面构建将进一步推进TH10421井区的剩余油挖潜。
-
5.3 岩溶水循环模式及岩溶洞穴演化模式
-
TH10421井区迷宫型洞穴的岩溶水循环模式和岩溶洞穴演化模式的构建,可以为相同岩溶背景的相邻井区的缝洞体结构连通关系判别提供重要的地质参考[33-35]。
-
5.3.1 岩溶水循环模式
-
地表岩溶水在良里塔格组厚度变薄区通过断裂下渗补给。TH10421 井区的地表水系深切,网格状次级断裂非常发育,地表水系受主干断裂影响形成岩溶湖泊,高流量积水可通过断裂下渗向地下转化。顺断裂下渗的岩溶水,受顶板良里塔格组和底板鹰山组灰质白云岩的围限,在一间房组和鹰山组上段沿着裂缝网格扩溶,进一步发育形成网格状迷宫型洞穴。TH10421井区迷宫型洞穴网络的溶蚀为非直接的点对点的流动路线,而是多方向、同时性的流动溶蚀网络,并在断裂交汇处发育规模洞穴。加里东运动中期Ⅱ幕时期地下岩溶水通过向主干断裂排泄的方式去适应南部的海平面[6]。迷宫型洞穴的岩溶水主要沿着断裂网络由 NW 向 SE 方向流动,托普 12CX 主干断裂为 TH10421 井区地下岩溶水的主要排泄区域。
-
5.3.2 岩溶洞穴演化模式
-
迷宫型洞穴除了具有多方向同时性溶蚀的特点,还具有选择性溶蚀的特点。共轭型走滑断裂在断穿深度、破碎程度、倾角、与坡降夹角等的差异造成地下溶蚀管道的非均衡发育,断裂溶蚀选择原则可总结为择大性、择近性、择陡性、择向性[36]。 TH10421井区迷宫型洞穴的非均衡溶蚀主要受择近性和择向性原则控制。择近性指岩溶水选择最短的路径流向目的地,体现在靠近主干断裂的迷宫型洞穴东部次级断裂主要以浅层洞穴管道的形式将岩溶水排泄入主干断裂,而迷宫型洞穴西部次级断裂距离主干断裂较远,岩溶水优选垂向下渗溶蚀在深层形成连续洞穴管道[37-38]。择向性指地下岩溶管道优选与地表坡降方向(或地表河流)呈锐角相交或近于平行的断裂发育,岩溶水选择平行坡降方向的破裂面运移,向基准面排泄距离最短、速度最快。 TH10421 井区 NNE 向的次级断裂走向与地表水系走向和古地势坡降平行,岩溶水溶蚀优选结果造成 NNE 向次级断裂的岩溶洞穴发育程度远高于 NW 向断裂。
-
借鉴现代迷宫型洞穴同时性、选择性等特点,将 TH10421 井区的岩溶洞穴演化划分为 3 个阶段(图10):①初始同时性裂缝溶蚀网络。加里东运动中期的构造作用促进 NNE 和 NW 向共轭性走滑断裂的发育,良里塔格组之上地表水系的地表岩溶水沿裂缝网络下渗,并形成初始的同时性溶蚀的裂缝网络,岩溶水向主干断裂排泄。②浅层选择性溶蚀网络。 2 组方向交汇处优先形成洞穴,孤立的洞穴之间主要以裂缝相通,受古地貌坡降影响,NNE 向走滑断裂溶蚀程度更高,迷宫型洞穴西部NNE向断裂形成浅层孤立洞穴与裂缝相关联的溶蚀通道,迷宫型洞穴东部NNE向断裂岩溶发育程度高,孤立洞穴逐渐连接并形成连续的浅层洞穴管道。③深层选择性溶蚀网络。随着岩溶的逐步加强,迷宫型洞穴西部 NNE向断裂岩溶由浅层孤立洞穴向纵深发育,并在止溶层(T7 6)之上形成深层连续洞穴管道,深层洞穴管道与东部浅层洞穴管道在 TH10421井附近交会,岩溶水总体由 NW 向 SE 流动,最终经由托普 12CX 主干断裂排泄。
-
图10 塔河油田TH10421井区迷宫型洞穴演化模式
-
Fig.10 Evolution of maze-type caves in Well TH10421 Block in Tahe Oilfield
-
受古地貌趋势、断裂分布、岩溶水补给、岩溶水排泄方式等因素的制约,TH10421 井区岩溶演化过程具有如下特点:先浅层再深层、优先 NNE 向断裂后NW向断裂、总体由NW向SE流动。这种独特岩溶溶蚀规律有助于推进塔河油田上奥陶统厚覆盖区相似岩溶缝洞系统的缝洞连通性、水体侵入路线和剩余油分布的认识。
-
6 结论
-
塔河油田上奥陶统厚覆盖区TH10421井区一间房组发育典型的洪水成因的迷宫型洞穴系统,其岩溶水补给主要来自河道堵塞的岩溶湖泊,径流溶蚀为顺断裂网络的同时性和选择性溶蚀,岩溶水排泄基面主要为托普 12CX 主干断裂带。TH10421 井区迷宫型洞穴发育浅层和深层 2 套洞穴管道系统,东边NNE向断裂发育浅层连续洞穴管道,浅层洞穴连通性好;西边 NNE 向断裂发育浅层分散洞穴、垂向顺断裂溶蚀深层洞穴的组合,浅层洞穴连通性较差,深层洞穴管道连通性好。TH10421井区迷宫型洞穴系统的溶蚀规律为先浅层再深层、优先NNE向断裂后 NW 向断裂、由 NW 向 SE 流动,迷宫型洞穴的演化可分为3个阶段:初始同时性裂缝溶蚀网络、浅层选择性溶蚀网络、深层选择性溶蚀网络。TH10421 井区迷宫型洞穴的注气、注水受效路径存在显著差异,迷宫型洞穴系统剩余油动用程度不均衡,迷宫型洞穴东部 NNE 向断裂浅层洞穴管道剩余油动用程度高,西部NNE向断裂浅层阁楼式剩余油动用程度低。
-
参考文献
-
[1] 鲁新便,杨敏,汪彦,等.塔里木盆地北部“层控”与“断控”型油藏特征——以塔河油田奥陶系油藏为例[J].石油实验地质,2018,40(4):461-469.LU Xinbian,YANG Min,WANG Yan,et al.Geological character‐ istics of“strata-bound”and“fault-controlled”reservoirs in the northern Tarim Basin:taking the Ordovician reservoirs in the Ta‐ he Oil Field as an example[J].Petroleum Geology & Experiment,2018,40(4):461-469.
-
[2] 吕海涛,张哨楠,马庆佑.塔里木盆地中北部断裂体系划分及形成机制探讨[J].石油实验地质,2017,39(4):444-452.LÜ Haitao,ZHANG Shaonan,MA Qingyou.Classification and formation mechanism of fault systems in the central and northern Tarim Basin[J].Petroleum Geology & Experiment,2017,39(4):444-452.
-
[3] 乔占峰,沈安江,邹伟宏,等.断裂控制的非暴露型大气水岩溶作用模式——以塔北英买2构造奥陶系碳酸盐岩储层为例[J].地质学报,2011,85(12):2 070-2 083.QIAO Zhanfeng,SHEN Anjiang,ZOU Weihong,et al.A faultcontrolled non-exposed meteoric karstification:a case study of Ordovician carbonate reservoir at structure YM2 in northern Tarim Basin,Northwestern China[J].Acta Geologica Sinica,2011,85(12):2 070-2 083.
-
[4] 祝渭平,孙东,姚清洲,等.塔里木盆地哈拉哈塘地区碳酸盐岩油气富集规律[J].特种油气藏,2021,28(2):41-48.ZHU Weiping,SUN Dong,YAO Qingzhou,et al.The law of hy‐ drocarbon accumulation in carbonate reservoirs in Halahatang ar‐ ea,Tarim Basin[J].Special Oil & Gas Reservoirs,2021,28(2):41-48.
-
[5] 周文,李秀华,金文辉,等.塔河奥陶系油藏断裂对古岩溶的控制作用[J].岩石学报,2011,27(8):2 339-2 348.ZHOU Wen,LI Xiuhua,JIN Wenhui,et al.The control action of fault to paleokarst in view of Ordovician reservoir in Tahe area [J].Acta Petrologica Sinica,2011,27(8):2 339-2 348.
-
[6] 张长建,吕艳萍,文欢,等.塔河油田西部斜坡区加里东运动中期Ⅱ幕水文地貌特征及其对洞穴发育的控制[J].新疆石油地质,2022,43(2):135-144.ZHANG Changjian,LÜ Yanping,WEN Huan,et al.Paleo-hy‐ drogeomorphic characteristics of episodeⅡof Middle Caledonian Movement and their controls on karst cave development in west‐ ern slope area of Tahe Oilfield[J].Xinjiang Petroleum Geology,2022,43(2):135-144.
-
[7] 杨德彬,杨敏,李新华,等.塔河油田碳酸盐岩小缝洞型储层特征及成因演化[J].油气地质与采收率,2021,28(1):41-46.YANG Debin,YANG Min,LI Xinhua,et al.Characteristics and genetic evolution of small-scale fracture-cavity carbonate reser‐ voirs in Tahe Oilfield[J].Petroleum Geology and Recovery Effi‐ ciency,2021,28(1):41-46.
-
[8] 吕艳萍,罗君兰,王炯,等.塔河油田典型碳酸盐岩断溶体发育模式[J].西安石油大学学报:自然科学版,2021,36(1):20-27.LÜ Yanping,LUO Junlan,WANG Jiong,et al.Development mode of typical carbonate fault-affected karst system in Tahe Oil‐ field[J].Journal of Xi’an Shiyou University:Natural Science,2021,36(1):20-27.
-
[9] 程洪,张杰,张文彪.断溶体储层类型识别、预测及发育模式探讨——以塔里木盆地塔河十区TH10421单元为例[J].石油与天然气地质,2020,41(5):996-1 003.CHENG Hong,ZHANG Jie,ZHANG Wenbiao.Discussion on identification,prediction and development pattern of faulted ⁃ karst carbonate reservoirs:a case study of TH10421 fracture⁃cav‐ ity unit in block 10 of Tahe Oilfield,Tarim Basin[J].Oil & Gas Geology,2020,41(5):996-1 003.
-
[10] 刘宝增.塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例[J].中国石油勘探,2020,25(3):83-95.LIU Baozeng.Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area,Tarim Basin-taking Shunbei No.1 and No.5 strike slip fault zones as examples[J].China Petroleum Exploration,2020,25(3):83-95.
-
[11] 云露.顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J].中国石油勘探,2021,26(3):41-52.YUN Lu.Controlling effect of NE strike-slip fault system on res‐ ervoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance,Tarim Basin[J].Chi‐ na Petroleum Exploration,2021,26(3):41-52.
-
[12] 胡文革.塔里木盆地塔河油田潜山区古岩溶缝洞类型及其改造作用[J].石油与天然气地质,2022,43(1):43-53.HU Wenge.Paleokarst fracture-vug types and their reconstruction in buried hill area,Tahe Oilfield,Tarim Basin[J].Oil & Gas Geol‐ ogy,2022,43(1):43-53.
-
[13] 张长建,吕艳萍,张振哲.塔里木盆地塔河油田西部斜坡区中下奥陶统古岩溶洞穴发育特征[J].石油实验地质,2022,44(6):1 008-1 017,1 047.ZHANG Changjian,LÜ Yanping,ZHANG Zhenzhe.Features of Middle-Lower Ordovician paleo⁃karst caves in western slope ar‐ ea,Tahe Oil Field,Tarim Basin[J].Petroleum Geology & Experi‐ ment,2022,44(6):1 008-1 017,1 047.
-
[14] 吕艳萍,吕晶,徐想东,等.塔里木盆地塔河油田中下奥陶统鹰山组内幕储层成因机理[J].石油实验地质,2021,43(6):1 031-1 037.LÜ Yanping,LÜ Jing,XU Xiangdong,et al.Genetic mechanism of inner reservoirs of Yingshan Formation of Middle-Lower Or‐ dovician in Tahe Oil Field,Tarim Basin[J].Petroleum Geology & Experiment,2021,43(6):1 031-1 037.
-
[15] 吕心瑞,孙建芳,邬兴威,等.缝洞型碳酸盐岩油藏储层结构表征方法——以塔里木盆地塔河S67单元奥陶系油藏为例[J].石油与天然气地质,2021,42(3):728-737.LÜ Xinrui,SUN Jianfang,WU Xingwei,et al.Internal architec‐ ture characterization of fractured-vuggy carbonate reservoirs:a case study on the Ordovician reservoirs,Tahe Unit S67,Tarim Basin[J].Oil & Gas Geology,2021,42(3):728-737.
-
[16] 张涛,蔡希源.塔河地区加里东中期古岩溶作用及分布模式[J].地质学报,2007,81(8):1 125-1 134.ZHANG Tao,CAI Xiyuan.Caledonian paleo-karstification and its characteristics in Tahe area,Tarim Basin[J].Acta Geologica Sinica,2007,81(8):1 125-1 134.
-
[17] 沈继方,李焰云,徐瑞春,等.清江流域岩溶研究[M].北京:地质出版社,1996:66-67.SHEN Jifang,LI Yanyun,XU Ruichun,et al.Karst study in Qin‐ gjiang River Valley[M].Beijing:Geological Publishing House,1996:66-67.
-
[18] PALMER A N.Distinction between epigenic and hypogenic maze caves[J].Geomorphology,2011,134(1/2):9-22.
-
[19] PALMER A N.Origin and morphology of limestone caves[J].Geo‐ logical Society of America Bulletin,1991,103(1):1-21.
-
[20] KLIMCHOUK A B.Hypogene speleogenesis:hydrogeological and morphogenetic perspective,NCKRI special paper 1[R].Carlsbad:National Cave and Karst Research Institute,2007:106.
-
[21] GRANGER D E,FABEL D,PALMER A N.Pliocene-pleistocene incision of the Green River,Kentucky,determined from radioac‐ tive decay of cosmogenic 26al and 10be in Mammoth Cave sedi‐ ments[J].Geophysical Society of America Bulletin,2001,113(7):825-836.
-
[22] 方芹.微断层发育特征及封闭性评价——以塔河Ⅸ区下油组油藏为例[J].大庆石油地质与开发,2020,39(5):40-50.FANG Qin.Development characteristics and its sealing evalua‐ tion for the micro-fault:a case study of Lower Oil Group in Block Ⅸ of Tahe Oilfield[J].Petroleum Geology & Oilfield De‐ velopment in Daqing,2020,39(5):40-50.
-
[23] 漆立新,云露.塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J].石油与天然气地质,2010,31(1):1-12.QI Lixin,YUN Lu.Development characteristics and main con‐ trolling factors of the Ordovician carbonate karst in Tahe Oilfield [J].Oil & Gas Geology,2010,31(1):1-12.
-
[24] 李会军,丁勇,周新桂,等.塔河油田奥陶系海西早期,加里东中期岩溶对比研究[J].地质论评,2010,56(3):413-425.LI Huijun,DING Yong,ZHOU Xingui,et al.Study on Hercynian and Middle Caledonian karstification of Ordovician in the Tahe Oilfield,Tarim Basin[J].Geological Review,2010,56(3):413-425.
-
[25] 李源,鲁新便,蔡忠贤,等.塔河油田海西早期古水文地貌特征及其对洞穴发育的控制[J].石油学报,2016,37(8):1 011-1 020.LI Yuan,LU Xinbian,CAI Zhongxian,et al.Hydrogeomorpho‐ logic characteristics and its controlling caves in Hercynian,Tahe Oilfield[J].Acta Petrolei Sinica,2016,37(8):1 011-1 020.
-
[26] 王震,文欢,邓光校,等.塔河油田碳酸盐岩断溶体刻画技术研究与应用[J].石油物探,2019,58(1):149-154.WANG Zhen,WEN Huan,DENG Guangxiao,et al.Fault-karst characterization technology in the Tahe Oilfield,China[J].Geo‐ physical Prospecting for Petroleum,2019,58(1):149-154.
-
[27] 王晓畅,张军,李军,等.基于交会图决策树的缝洞体类型常规测井识别方法——以塔河油田奥陶系为例[J].石油与天然气地质,2017,38(4):805-812.WANG Xiaochang,ZHANG Jun,LI Jun,et al.Conventional log‐ ging identification of fracture-vug complex types data based on crossplots-decision tree:a case study from the Ordovician in Ta‐ he Oilfield,Tarim Basin[J].Oil & Gas Geology,2017,38(4):805-812.
-
[28] 王向荣,李潮流,邓继新,等.塔里木盆地鹰山组致密碳酸盐岩地震岩石物理特征[J].大庆石油地质与开发,2020,39(5):117-126.WANG Xiangrong,LI Chaoliu,DENG Jixin,et al.Seismic petro‐physical properties of Yingshan-Formation tight carbonate rock in Tarim Basin[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(5):117-126.
-
[29] 邓光校,胡文革,王震.碳酸盐岩缝洞储集体分尺度量化表征 [J].新疆石油地质,2021,42(2):232-237.DENG Guangxiao,HU Wenge,WANG Zhen.Quantitative char‐ acterization of fractured-vuggy carbonate reservoirs[J].Xinjiang Petroleum Geology,2021,42(2):232-237.
-
[30] 杨敏,李小波,谭涛,等.古暗河油藏剩余油分布规律及挖潜对策研究——以塔河油田TK440井区为例[J].油气藏评价与开发,2020,10(2):43-48.YANG Min,LI Xiaobo,TAN Tao,et al.Remaining oil distribu‐ tion and potential tapping measures for palaeo-subterranean river reservoirs:a case study of TK440 well area in Tahe Oilfield[J].Reservoir Evaluation and Development,2020,10(2):43-48.
-
[31] 常宝华,李世银,曹雯,等.缝洞型碳酸盐岩油气藏关键开发指标预测方法及应用[J].特种油气藏,2021,28(2):72-77.CHANG Baohua,LI Shiyin,CAO Wen,et al.Prediction method of key development indicators of fracture-cavity carbonate reser‐ voirs and its application[J].Special Oil & Gas Reservoirs,2021,28(2):72-77.
-
[32] 李斌,吕海涛,耿峰,等.塔河油田碳酸盐岩缝洞型油藏单储系数概率分布模型[J].油气地质与采收率,2021,28(3):62-69.LI Bin,LÜ Haitao,GENG Feng,et al.A probability distribution model of reserves per unit volume of fracture-cavity reservoirs in Tahe Oilfield[J].Petroleum Geology and Recovery Efficiency,2021,28(3):62-69.
-
[33] 余智超,王志章,魏荷花,等.塔河油田缝洞型油藏不同成因岩溶储集体表征[J].油气地质与采收率,2019,26(6):53-61.YU Zhichao,WANG Zhizhang,WEI Hehua,et al.Characteriza‐ tion of fracture-cave karst reservoirs with different genesis in Ta‐ he Oilfield[J].Petroleum Geology and Recovery Efficiency,2019,26(6):53-61.
-
[34] 张娟,鲍典,杨敏,等.塔河油田西部古暗河缝洞结构特征及控制因素[J].油气地质与采收率,2018,25(4):33-39.ZHANG Juan,BAO Dian,YANG Min,et al.Analysis on frac‐ ture-cave structure characteristics and its controlling factor of pal‐ aeo-subterranean rivers in the western Tahe Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(4):33-39.
-
[35] 吴丰,代槿,姚聪,等.塔河油田奥陶系一间房组与鹰山组断溶体发育模式解剖[J].断块油气田,2022,29(1):33-39.WU Feng,DAI Jin,YAO Cong,et al.Developmental mode anal‐ ysis of the fault-karst reservoir in Yijianfang Formation and Ying‐ shan Formation of Ordovician in Tahe Oilfield[J].Fault-Block Oil and Gas Field,2022,29(1):33-39.
-
[36] 杨瑞东,盛学庸,魏晓,等.基于 Google Earth 影像分析区域性大型"X"共轭节理系统对宏观岩溶作用的控制[J].地质论评,2009,55(2):173-180.YANG Ruidong,SHENG Xueyong,WEI Xiao,et al.The Control of regional large“X”conjugate joint system on karstification from Google Earth image[J].Geological Review,2009,55(2):173-180.
-
[37] 唐海,何娟,荣元帅,等.塔河断溶体油藏典型断溶体注水驱替规律及剩余油分布特征[J].油气地质与采收率,2018,25(3):95-100.TANG Hai,HE Juan,RONG Yuanshuai,et al.Study on water drive law and characteristics of remaining oil distribution of typi‐ cal fault-karst in fault-karst reservoirs,Tahe Oilfield[J].Petro‐ leum Geology and Recovery Efficiency,2018,25(3):95-100.
-
[38] 张长建,张振哲,金燕林.塔河油田浅覆盖区中—下奥陶统承压岩溶缝洞结构特征——以T738井区为例[J].海相油气田,2023,28(2):133-143.ZHANG Changjian,ZHANG Zhenzhe,JIN Yanlin.Characteris‐ tics of confined karst fractures-caves structure of the Middle-Lower Ordovician in shallow coverage zone of Tahe Oilfield:Taking the T738 well block as an example[J].Marine Orgin Petro‐ leum Geology,2023,28(2):133-143.
-
摘要
为了明确塔河油田上奥陶统厚覆盖区 TH10421高累产井区的古岩溶洞穴成因及缝洞结构关系,利用古地貌恢复、地震属性提取、缝洞体雕刻等方法,厘清研究区地表水系分布特征、断裂特征、洞穴空间结构,首次识别出塔河油田 TH10421井区的缝洞系统为洪水成因迷宫型洞穴系统,并结合油藏动态生产特征分析迷宫型洞穴系统的缝洞体连通关系。研究结果表明: TH10421井区发育共轭型次级走滑断裂网络,网格状断裂为迷宫型洞穴提供初始溶蚀通道;加里东运动中期Ⅱ幕地表岩溶湖泊提供高流量岩溶水补给,岩溶水沿网格状断裂下渗注入一间房组形成迷宫型洞穴;岩溶水顺断裂的溶蚀表现为同时性、选择性特点,造成 TH10421井区迷宫型洞穴在不同方向断裂和不同深度上的溶蚀程度差异较大,东部浅层洞穴管道的连通性好,西部浅层洞穴管道的连通性较差,深层缝洞的连通性好。
Abstract
In order to understand the paleo-karst cave genesis and fracture-cavity structures in Well TH10421 Block,which has high cumulative production in the thick coverage area of Upper Ordovician in Tahe Oilfield,the distribution characteristics of the surface water system,fracture characteristics,and spatial structure of caves in the area are clarified through paleo-geomorphic resto‐ ration,seismic attribute extraction,and fracture-cavity body carving. The fracture-cavity system in Well TH10421 Block is defined as a maze-type cave system caused by flood for the first time. According to the reservoir’s dynamic production characteristics,the connection relationship between fracture-cavity bodies of the maze-type cave system is analyzed. The results suggest that the conju‐ gate secondary strike-slip fault network is developed in Well TH10421 Block,and gridded faults provide an initial dissolution chan‐ nel for maze-type caves. In episode Ⅱ of the middle Caledonian movement,surface karst lakes provide a high-flow karst water sup‐ ply,and the karst water infiltrates into Yijianfang Formation along the gridded faults to form maze-type caves. The dissolution of karst water along the faults has the characteristics of simultaneity and selectivity,which results in great differences in the dissolution degree of maze-type caves in Well TH10421 Block in terms of different fault directions and depths. The connectivity of the pipeline in the shallow cave in the east of maze-type caves is excellent,while that in the west of maze-type caves is poor,and the connectivi‐ty of the deep fracture-cavity is great.