en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

伍松柏(1975—),男,广西桂林人,高级工程师,硕士,从事油气地质勘探综合研究工作。E-mail:wusongbai.slyt@sinopec.com。

中图分类号:TE122.2

文献标识码:A

文章编号:1009-9603(2023)05-0012-10

DOI:10.13673/j.pgre.202206025

参考文献 1
车启鹏,孙洪斌,张凤莲,等.牛居地区下第三系砂岩储集层中自生高岭石成因分析[J].长春地质学院院报,1995,25(3):306-309.CHE Qipeng,SUN Hongbin,ZHANG Fenglian,et al.Authigen‐ ic kaolinite orign analysis of Paleogene sandstone reservoirs in Niuju area[J].Journal of Changchun University of Earth Scienc‐ es,1995,25(3):306-309.
参考文献 2
伏万军.粘土矿物成因及对砂岩储集性能的影响[J].古地理学报,2000,2(3):59-68.FU Wanjun.Influence of clay minerals on sandstone reservoir properties[J].Journal of Paleogeography,2000,2(3):59-68.
参考文献 3
ISLAM M A.Diagenesis and reservoir quality of Bhuban sand‐ stones(Neogene),Titas Gas Field,Bengal Basin,Bangladesh[J].Journal of Asian Earth Sciences,2009,35(1):89-100.
参考文献 4
WOLELA A M,GIERLOWSKI-KORDESCH E H.Diagenetic history of fluvial and lacustrine sandstones of the Hartford Basin(Triassic-Jurassic),Newark Supergroup,USA[J].Sedimentary Geology,2007,197(1/2):99-126.
参考文献 5
WOLELA A.Diagenetic evolution of the Ansian-Pliensbachian Adigrat sandstone,Blue Nile Basin,Ethiopia[J].Journal of Afri‐ can Earth Sciences,2010,56(1):29-42.
参考文献 6
曹桐生,罗龙,谭先锋,等.致密砂岩储层成因及其孔隙演化过程——以杭锦旗十里加汗地区下石盒子组为例[J].断块油气田,2021,28(5):598-603.CAO Tongsheng,LUO Long,TAN Xianfeng,et al.Genesis and pore evolution of tight sandstone reservoir:taking Lower Shihe‐ zi Formation in the Shilijiahan block of Hangjinqi area as an ex‐ ample[J].Fault-Block Oil and Gas Field,2021,28(5):598-603.
参考文献 7
孟涛.渤海湾盆地济阳坳陷渤南洼陷沙四下亚段红层有利储层成因机制[J].石油实验地质,2020,42(1):19-27.MENG Tao.Formation mechanism of favorable reservoirs in red beds in lower submember of fourth member of Shahejie Forma‐ tion,Bonan Subsag,Jiyang Depression,Bohai Bay Basin[J].Pe‐ troleum Geology & Experiment,2020,42(1):19-27.
参考文献 8
高航.东濮凹陷潜山致密砂岩储层成岩演化特征[J].断块油气田,2021,28(3):295-299,317.GAO Hang.Diagenesis and evolution characteristics of tight sandstone reservoirs of buried hill in Dongpu Depression[J].Fault-Block Oil and Gas Field,2021,28(3):295-299,317.
参考文献 9
张建培,葛和平,张涛,等.西湖凹陷古近系及新近系储层砂岩自生高岭石分布特征及形成机制[J].中国海上油气,2008,20(6):362-366.ZHANG Jianpei,GE Heping,ZHANG Tao,et al.Authigenic ka‐ olinite distribution and origin in Paleogene and Neogene reser‐ voir sandstones in Xihu Sag[J].China Offshore Oil and Gas,2008,20(6):362-366.
参考文献 10
陈鑫,钟建华,袁静,等.渤南洼陷古近系高岭石发育特征及转化机理[J].石油勘探与开发,2009,36(4):456-462.CHEN Xin,ZHONG Jianhua,YUAN Jing,et al.Development and formation of Paleogene kaolinite,Bonan Subsag[J].Petro‐ leum Exploration and Development,2009,36(4):456-462.
参考文献 11
SHAW H F,CONYBEARE D M.Patterns of clay minearal dia‐ genesis in interbedded mudrocks and sandstones:an example from the Palaeocene of the North Sea[M]//Clay Mineral Cements in Sandstones.UK:Blackwell Publishing Ltd.,2009:129-145.
参考文献 12
WILKINSON M,HASZELDINE R S,MILLIKEN K L.Crossformational flux of aluminium and potassium in Gulf Coast(USA)sediment[M]//Clay Mineral Cements in Sandstones.UK:Blackwell Publishing Ltd.,2009:147-160.
参考文献 13
MARFIl R,HUERTAS A D,ROSSI C,et al.Origin and diagenet‐ ic evolution of kaolin in reservoir sandstones and associated shales of the Jurassic and Cretaceous,Salam Field,Western Des‐ ert(Egypt)[M]//Clay Mineral Cements in Sandstones.UK:Black‐ well Publishing Ltd.,2009:317-342.
参考文献 14
邱隆伟,穆相骥,李浩,等.杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响[J].油气地质与采收率,2019,26(2):42-50.QIU Longwei,MU Xiangji,LI Hao,et al.Influence of diagene‐ sis of tight sandstone reservoir on the porosity development of Lower Shihezi Formation in Hangjinqi area,Ordos Basin[J].Pe‐ troleum Geology and Recovery Efficiency,2019,26(2):42-50.
参考文献 15
张哲豪,魏新善,弓虎军,等.鄂尔多斯盆地定边油田长7致密砂岩储层成岩作用及孔隙演化规律[J].油气地质与采收率,2020,27(2):43-52.ZHANG Zhehao,WEI Xinshan,GONG Hujun,et al.Diagenesis characteristics and evolution of porosity of Chang7 tight sand‐ stone reservoir in Dingbian Oilfield,Ordos Basin[J].Petroleum Geology and Recovery Efficiency,2020,27(2):43-52.
参考文献 16
DOS ANJOS S M C,DE ROS L F,DE SOUZA R S,et al.Depo‐ sitional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones,Potiguar Rift Basin,Brazil[J].AAPG Bulletin,2000,84(11):1 719-1 742.
参考文献 17
TAYLOR K G,GAWTHORPE R L,CURTIS C D,et al.Carbon‐ ate cementation in a sequence-stratigraphic framework:upper cretaceous sandstones,book cliffs,Utah-Colorado[J].Journal of Sedimentary Research,2000,70(2):360-372.
参考文献 18
黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J].地球科学:中国地质大学学报,2003,28(4):419-424.HUANG Sijing,WU Wenhui,LIU Jie,et al.Generation of sec‐ ondary porosity by meteoric water during time of Subaerial Ex‐ posure:an example from Yanchang Formation sandstone of Tri‐ assic of Ordos Basin[J].Earth Science:Journal of China Universi‐ ty of Geosciences,2003,28(4):419-424.
参考文献 19
黄思静,黄可可,冯文立,等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506.HUANG Sijing,HUANG Keke,FENG Wenli,et al.Mass ex‐ changes among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis-a case study on the Upper Paleozoic,Ordos Basin and Xujiahe Forma‐ tion,Western Sichuan Depression[J].Geochimica,2009,38(5):498-506.
参考文献 20
MANSURBEG H,El-GHALI M A K,MORAD S,et al.The im‐ pact of meteoric water on the diagenetic alterations in deep-wa‐ ter,marine siliciclastic turbidites[J].Journal of Geochemical Ex‐ ploration,2015,89(1):254-258.
参考文献 21
丁晓琪,韩枚梅,张哨楠,等.大气淡水在碎屑岩次生孔隙中的作用[J].地质论评,2014,60(1):145-158.DING Xiaoqi,HAN Meimei,ZHANG Shaonan,et al.Roles of meteoric water on secondary porosity of siliciclastic reservoirs [J].Geological Review,2014,60(1):145-158.
参考文献 22
SCHMIDT V,MCDONALD D A.The role of secondary porosi‐ ty in the course of sandstone diagenesis[M]//Aspects of Diagene‐ sis.Tulsa:The Society of Economic Paleontologists and Mineral‐ ogists,1979,26:175-207.
参考文献 23
罗威,倪玲梅.致密砂岩有效储层形成演化的主控因素——以库车坳陷巴什基奇克组砂岩储层为例[J].断块油气田,2020,27(1):7-12.LUO Wei,NI Lingmei.Main controlling factors of formation and evolution of effective reservoir in tight sandstone:taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an example[J].Fault-Block Oil and Gas Field,2020,27(1):7-12.
参考文献 24
SBORNE M J,SWARBRICK R E.Diagenesis in North Sea HPHT clastic reservoirs-consequences for porosity and overpres‐ sure prediction[J].Marine and Petroleum Geology,1999,16(4):337-353.
参考文献 25
朱筱敏,米立军,钟大康,等.济阳坳陷古近系成岩作用及其对储层质量的影响[J].古地理学报,2006,8(3):295-305.ZHU Xiaomin,MI Lijun,ZHONG Dakang,et al.Paleogene dia‐ genesis and its control on reservoir quality in Jiyang Depression [J].Journal of Paleogeography,2006,8(3):295-305.
参考文献 26
GIER S,WORDEN R H,JOHNS W D,et al.Diagenesis and res‐ ervoir quality of Miocene sandstones in the Vienna Basin,Aus‐ tria[J].Marine and Petroleum Geology,2008,25(8):681-695.
参考文献 27
HIGGS K E,ZWINGMANN H,REYES A G.Diagenesis,porosi‐ ty evolution,and petroleum emplacement in tight gas reservoirs,Taranaki Basin,New Zealand[J].Journal of Sedimentary Re‐ search,2007,77(12):1 003-1 025.
参考文献 28
刘曾勤,郭少斌.海陆过渡相高黏土含量微孔致密岩屑砂岩储层特征[J].石油实验地质,2020,42(2):223-232.LIU Zengqin,GUO Shaobin.Reservoir characteristics of high clay content and microporous tight litharenites in marine-conti‐ nental transitional environments[J].Petroleum Geology & Experi‐ ment,2020,42(2):223-232.
参考文献 29
远光辉,操应长,杨田,等.论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J].地学前缘,2013,20(5):207-219.YUAN Guanghui,CAO Yingchang,YANG Tian,et al.Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J].Earth Sci‐ ence Frontiers,2013,20(5):207-219.
参考文献 30
YUAN Guanghui,GLUYAS J,CAO Yingchang,et al.Diagene‐ sis and reservoir quality evolution of the Eocene sandstones in the northern Dongying Sag,Bohai Bay Basin,East China[J].Ma‐ rine and Petroleum Geology,2015,62(2):77-89.
参考文献 31
曾溅辉.东营凹陷第三系水-盐作用对储层孔隙发育的影响[J].石油学报,2001,22(4):39-43.ZENG Jianhui.Effect of fluid-rock interaction on porosity of res‐ ervoir rocks in tertiary system,Dongying Sag[J].Acta Petrolei Si‐ nica,2001,22(4):39-43.
参考文献 32
LU Peng,FU Qi,SEYFRIED JR W E,et al.Coupled alkali feld‐ spar dissolution and secondary mineral precipitation in batch sys‐ tems-2:new experiments with supercritical CO2 and implications for carbon sequestration[J].Applied Geochemistry,2013,30:75-90.
参考文献 33
LU Peng,KONISHI H,OELKERS E,et al.Coupled alkali feld‐ spar dissolution and secondary mineral precipitation in batch sys‐ tems:5.Results of K-feldspar hydrolysis experiments[J].Chinese Journal of Geochemistry,2015,34:1-12.
参考文献 34
ALEKSEYEV V A,MEDVEDEVA L S,PRISYAGINA N I,et al.Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium[J].Geochimica et Cosmochimica Acta,1997,61(6):1 125-1 142.
参考文献 35
MURAKAMI T,KOGURE T,KADOHARA H,et al.Formation of secondary minerals and its effect on anorthite dissolution[J].American Mineralogist,1998,83(11/12:Part1):1 209-1 219.
参考文献 36
PETROVIC R.Rate control in feldspar dissolution-Ⅱ.The pro‐ tective effect of precipitates[J].Geochimica et Cosmochimica Ac‐ ta,1976,40(12):1 509-1 521.
参考文献 37
梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.LIANG Yingjiao,CHE Yinchang.Thermodynamic data manual of inorganic matter[M].Shenyang:Northeastern University Press,1993.
参考文献 38
王高尚,李鹏九.热液平衡计算数据手册——HKF模型介绍及应用[M].北京:地质出版社,1992.WANG Gaoshang,LI Pengjiu.Data manual of hydrothermal equilibrium calculation:Introduction and application of HKF model[M].Beijing:Geological Publishing House,1992.
参考文献 39
DUAN Zhenhao,LI Dedong.Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250 ℃,1 to 1 000 bar with NaCl concentrations up to saturation of halite[J].Geochimica et Cosmochimica Acta,2008,72(20):5 128-5 145.
参考文献 40
TAGIROV B,SCHOTT J.Aluminum speciation in crustal fluids revisited[J].Geochimica et Cosmochimica Acta,2001,65(21):3 965-3 992.
参考文献 41
SVERJENSKY D A,SHOCK E L,HELGESON H C.Prediction of the thermodynamic properties of aqueous metal complexes to 1 000 ℃ and 5 kb[J].Geochimica et Cosmochimica Acta,1997,61(7):1 359-1 412.
目录contents

    摘要

    酸性流体环境下长石颗粒的溶蚀及改造是次生孔隙形成及演化的重要成因之一,该类成岩作用对含油气盆地深部有利储层的形成、演化及分布具有重要影响。自生高岭石作为酸性流体环境下长石颗粒转化过程中最主要的成岩产物,其成因机制和形态影响该过程中储层次生孔隙的类型。以东营凹陷沙河街组为例,以热力学为基础,采用数值模拟方法明确不同地层温度条件下不同产状自生高岭石的形成过程,利用铸体薄片、扫描电镜等手段明确不同产状自生高岭石的分布特征,并揭示不同成岩环境下其成因机制及长石转化过程。结果表明:当地层温度高于120 ℃时,储层中自生高岭石为三水铝石与长石转化的产物,此过程中形成的次生孔隙为高岭石晶间微孔,孔隙结构类型为微孔-细喉型;当地层温度低于120 ℃时,储层中自生高岭石为孔隙流体沉淀或三水铝石与含硅粒子结合的产物,此过程中形成的次生孔隙为长石溶蚀孔,孔隙结构类型为大孔-粗喉型。

    Abstract

    The dissolution and transformation of feldspar particles in acidic fluid environments are the important cause of the forma‐ tion and evolution of secondary pores in sandstones. Such diagenesis has an important influence on the formation,evolution,and dis‐ tribution of favorable reservoirs in deep oil-bearing basins. Authigenic kaolinite is the main diagenetic product in the transformation process of feldspar particles in acidic fluid environments. Its genetic mechanism and occurrence affect the types of reservoir pores formed during this process. Taking Shahejie Formation in Dongying Sag as an example,this paper used numerical simulation meth‐ od based on the thermodynamics to clarify the formation process of authigenic kaolinite under different formation temperatures. In addition,it employed means such as cast thin sections and scanning electron microscopy to reveal the genetic mechanisms and feld‐ spar transformation process in different diagenetic environments. The results show that when the formation temperature is higher than 120 ℃,the autogenic kaolinite in the reservoirs is the transformation product of gibbsite and feldspar. The secondary pores formed during this process are intercrystalline micropores of kaolinite,and the pore structure is the micropore-fine throat. When the formation temperature is lower than 120 ℃,the authigenic kaolinite in the reservoirs is the product of pore fluid precipitation or the combination of gibbsite and silica-containing particles. The secondary pores formed during this process are macropores resulting from feldspar particle dissolution,and the pore structure is the macropore-coarse throat.

  • 自生高岭石是含油气盆地砂岩储层中普遍发育的成岩产物之一[1-6]。随着地层埋深的变化,砂岩储层中自生高岭石含量与长石颗粒含量具有明显的消长关系,表明自生高岭石是酸性流体环境下长石颗粒转化过程中最主要的成岩产物[6-16]。近几十年来,诸多学者对于埋藏成岩过程中的酸性流体环境下,长石颗粒的溶蚀作用能否有效改善储层物性产生了较大的分歧[16-21]。SCHMIDT 等认为长石颗粒溶蚀产生了次生溶孔,且溶蚀产物能被有效带出储层,从而长石颗粒溶蚀作用可有效改善储层物性[22-26]。HIGGS等认为长石颗粒溶蚀导致了高岭石和硅质胶结物的沉淀,堵塞了原生孔隙而未能改善储层物性[27-28]。MANSURBEG 等认为成岩环境决定了长石颗粒的溶蚀及转化能否形成客观的次生孔隙:近地表环境为开放流体环境,在大气降水的影响下可以形成可观的次生孔隙;埋藏成岩环境为封闭-半封闭,在酸性流体作用下长石颗粒转化无法形成可观的次生孔隙[2029-31]。实际上,沉积盆地深部可见长石颗粒溶蚀、自生高岭石不发育的成岩组合导致砂岩储层明显增孔的现象[29];也可见长石颗粒溶蚀及自生高岭石沉淀共生,砂岩储层增孔不明显的现象[29-31]

  • 在埋藏阶段酸性流体环境下,长石颗粒转化过程及自生高岭石成因机制是含油气盆地深部储层预测的基础之一。为此,笔者选取东营凹陷典型井的砂岩储层样品进行铸体薄片分析及扫描电镜观察,确定自生高岭石的产状、含量及其纵向分布特征,同时利用扫描电镜能谱分析方法确定不同产状自生高岭石的化学元素组成特征。通过文献调研明确成岩过程中自生高岭石形成的水岩反应过程的化学反应,根据热力学原理开展自生高岭石形成数值模拟分析,并确定不同地层温度、压力条件下相关化学反应的平衡常数,计算不同化学反应平衡时期水溶液内各类粒子的浓度积,揭示不同地层温度、压力条件下自生高岭石的成因机制。将砂岩样品镜下观测的自生高岭石产状与热力学数值模拟结果进行对比,验证其准确性,并进一步探讨酸性流体环境下长石颗粒转化过程中自生高岭石的成因机制、产状及长石颗粒转化对砂岩储层物性的影响,以期为含油气盆地深部砂岩储层物性改造机制研究提供理论基础,并对其分布预测具有重要的应用意义。

  • 1 区域地质概况

  • 东营凹陷位于渤海湾盆地济阳坳陷东南部,总面积为5 700 km2,整体呈NEE向,为北断南超、北陡南缓的陆相箕状断陷盆地。其东临青坨子凸起,南接鲁西隆起、广饶凸起,以西为青城凸起,以北为陈家庄凸起和滨县凸起。根据东营凹陷断裂系统发育特征进一步划分为 6 个次级构造单元,分别为北部陡坡带、利津洼陷、民丰洼陷、中央隆起带、牛庄洼陷及南部缓坡带(图1)。

  • 古近纪东营凹陷的演化过程包括初始裂陷期 (孔店组—沙四段下亚段沉积时期)、深陷期(沙四段上亚段—沙三段中亚段沉积时期)、收敛期(沙三段中亚段—沙二段沉积时期)、拗陷期(沙一段沉积时期)及萎缩期(东营组沉积时期)5 个阶段。初始裂陷期,构造活动强烈,湖盆水体局限,主要发育河流-冲积扇-盐湖沉积体系;深陷期,盆地迅速沉降,湖泊水体范围扩大,主要发育近岸水下扇-湖泊沉积体系;收敛期,东营三角洲自东向西迅速推进导致湖盆萎缩,主要发育河流-三角洲-湖泊沉积体系;拗陷期,凹陷整体缓慢沉降,主要发育三角洲-湖泊沉积体系;萎缩期则主要发育河流相沉积[24]。勘探实践表明,东营凹陷发育古近系孔店组、沙四段和沙三段 3 套有效烃源岩,其在生排烃演化过程中排出的酸性流体导致长石颗粒的转化及自生高岭石的形成,进而控制了砂岩储层次生孔隙类型、形成与演化。

  • 图1 东营凹陷构造单元分布

  • Fig.1 Distribution of structural units in Dongying Sag

  • 2 自生高岭石类型及分布特征

  • 2.1 自生高岭石类型

  • 通过对研究区大量砂岩储层样品的铸体薄片及扫描电镜系统观察,认为砂岩储层主要发育产状不同、元素组成存在差异的 2类自生高岭石:第 1类自生高岭石(K1)的单体为片状假六边形,其有序且紧密地排列形成蠕虫状或书页状集合体(图2a— 2b),该类自生高岭石仅含 Al,Si,O 3 种构成元素,不含K,Fe等其他元素(表1);第2类自生高岭石(K2)的单体则为不规则弯片状且杂乱堆积,其堆积的集合体表现为颗粒状(图2c—2d),该类自生高岭石不仅含有 Al,Si,O 3种构成元素,还含有少量的 K,Fe 等其他元素(表1)。

  • 图2 东营凹陷沙河街组砂岩储层不同产状自生高岭石

  • Fig.2 Different occurrence of authigenic kaolinite in sandstone reservoirs of Shahejie Formation,Dongying Sag

  • 表1 东营凹陷沙河街组砂岩储层不同产状自生高岭石元素含量统计

  • Table1 Element content statistics of authigenic kaolinite of different occurrence in sandstone reservoirs of Shahejie Formation,Dongying Sag

  • 2.2 分布特征

  • 从研究区沙河街组砂岩储层不同产状自生高岭石分布特征(图3)可以看出,2类自生高岭石分布具有明显的差异性,集合体呈蠕虫状或书页状的自生高岭石分布范围较广,在埋深为 1 700~3 600 m 的砂岩储层中均广泛分布;而集合体呈颗粒状的自生高岭石则主要分布于埋深大于 2 800 m的砂岩储层中。由此可知,当砂岩储层埋深小于 3 000 m时,集合体呈蠕虫状或书页状的自生高岭石占主导地位;当砂岩储层埋深大于 3 000 m时,集合体呈颗粒状的自生高岭石则占主导地位。

  • 图3 东营凹陷沙河街组砂岩储层不同产状自生高岭石分布特征

  • Fig.3 Distribution characteristics of authigenic kaolinite of different occurrence in sandstone reservoirs of Shahejie Formation,Dongying Sag

  • 由于2类自生高岭石具有明显不同的形态学特征、地球化学特征及分布特征,表明不同类型自生高岭石可能存在截然不同的成因机制和形成条件。

  • 3 自生高岭石形成数值模拟

  • 3.1 基本原理

  • LU 等认为酸性流体环境下长石颗粒的转化过程为:长石颗粒首先发生完全溶解,溶解物分别以含硅粒子(H4SiO4(aq))及含铝粒子(Al(OH)3(aq)) 的形式赋存于水溶液内,进而发生自生高岭石 (Al2[Si2O5](OH)4(s))及自生石英的沉淀(表2 化学反应 1,2)[32-33];ALEKSEYEV 等认为酸性流体环境下,长石颗粒溶蚀产生水溶相含铝粒子,该粒子可以勃姆石(AlO(OH)(s))或三水铝石(Al(OH)3(s)) 的形式沉淀(表2化学反应3,4),进而沉淀的勃姆石或三水铝石与水溶相含硅粒子反应形成高岭石(表2 化学反应5,6)[34-36];PETROVIC则认为水溶相含铝粒子优先以三水铝石或勃姆石的形式发生沉淀,进而勃姆石或三水铝石与长石颗粒结合转化为高岭石(表2 化学反应 7,8)[36]。自生高岭石作为酸性流体环境下长石颗粒转化过程中最主要的成岩产物,其形成机制控制了该过程中自生高岭石的产状及分布特征,同时也控制了次生孔隙的类型及含量。长石颗粒转化过程中相关化学反应开始或结束的次序决定了自生高岭石的形成机制,可以通过不同流体环境下化学反应的平衡常数进行判断[36-38]。化学反应的平衡常数为在特定条件下(如温度、压力、溶剂性质、离子强度等),可逆化学反应达到平衡状态时生成物与反应物的浓度(方程式系数幂次方) 乘积比(表2),可通过化学反应的吉布斯自由能变进行计算[36-38]

  • 为此,本次研究首先计算长石颗粒转化过程中相关物质的吉布斯自由能,其次计算不同条件下 (温度、压力)相关化学反应的吉布斯自由能变,再次计算不同条件下(温度、压力)相关化学反应的平衡常数。基于不同化学反应的平衡常数,判断自生高岭石形成过程中相关化学反应开始或停止的次序,明确其成因机制及控制因素。最后,将热力学计算结果与砂岩储层内不同产状自生高岭石的分布特征相对比以判断模型的准确性,并预测长石颗粒转化过程对砂岩储层物性改造的贡献。

  • 不同相态物质的吉布斯自由能的控制因素及计算模型存在差异[35-37]。本次研究主要涉及固相纯物质(NaAlSi3O8(s),Al(OH)3(s)等)、溶剂(H2O(l)) 及水溶液内溶解相物质(H4SiO4(aq),Na+(aq)等)3 类。由于固相纯物质成分单一、可压缩性差,其吉布斯自由能仅受物质类型及温度控制[37],故计算模型为恒压比热模型,计算结果为不同温度下固相纯物质相对于标准条件下(25℃和0.1 MPa)稳定单质的吉布斯自由能变,称为生成吉布斯自由能[37-38],其表达式为:

  • ΔGf,p,T=Hp,T-Hpr,Tr-TSp,T-Spr,Tr+T-TrSpr,Tr+ΔGf,pr,Tr=TrT CpdT-TTrT CpTdT+T-TrSpr,Tr+ΔGf,pr,Tr
    (1)
  • 其中:

  • Cp=A1+A2T+A3T
    (2)
  • 溶剂(H2O(l))性质与固相纯物质类似,其吉布斯自由能计算模型及计算结果也与固相纯物质相同[40]。水溶液内溶解相物质与溶剂分子发生各类相互作用,导致其吉布斯自由能受物质类型、温度、压力及浓度控制,采用HKF模型对其进行计算[3941],计算结果为单摩尔某水溶相粒子相对于无限稀水溶液内H+(aq)的吉布斯自由能变,称为表观偏摩尔吉布斯自由能,其表达式为:

  • ΔG-j,p,T0=ΔG-j,pr,Tr0-S-j,pr,Tr0T-Tr-c1TlnTTr-T+Tr+a1p-pr+a2lnψ+pψ+pr-c21T-θ-1Tr-θθ-Tθ-Tθ2lnTr(T-θ)TTr-θ+1T-θa3p-pr+a4lnψ+pψ+pr+ω1ε-1-ωpr,Tr1εpr,Tr-1+ωpr,TrYT-Tr
    (3)
  • 相关化学反应生成物吉布斯自由能与反应物吉布斯自由能的差值即为化学反应的吉布斯自由能变,并据此计算化学反应的平衡常数,其表达式为:

  • 表2 酸性流体环境下长石转化过程中自生高岭石形成的化学反应方程式及平衡常数

  • Table2 Chemical reaction equations and equilibrium constants for authigenic kaolinite formation during feldspar transformation in acidic fluid environment

  • 注:[Al(OH)3(aq)]代表水溶相铝粒子的浓度。

  • ΔG-f,p,T0=生成物 ΔGf,p,T+生成物 ΔG-j,p,T0-反应物 ΔGf,p,T-反应物 ΔG-j,p,T0=-RTlnK
    (4)
  • 计算过程中固相纯物质与水溶相粒子的计算模型及标准虽然存在差异,但由于化学反应的元素守恒和电荷守恒,该差异在计算过程中自动抵消,对化学反应吉布斯自由能变的计算准确性并无影响。

  • 3.2 结果分析

  • 不同化学反应的平衡常数存在明显的差异性。相关化学反应(表2)均具有随温度的增加平衡常数下降速率减小且压力对平衡常数的影响程度明显低于温度的特征(图4)。其中,高岭石沉淀(化学反应1)随温度的增加平衡常数下降幅度最明显,下降大约 24 个数量级(图4a);压力对勃姆石沉淀(化学反应 3)的影响最明显,大约下降 0.5 个数量级(图4c);温度对石英沉淀(化学反应8)平衡常数变化速率的影响最明显,当温度高于120℃,平衡常数随温度增加的下降速率明显减小(图4h)。由此可见,温度与压力的变化对各类化学反应平衡常数的影响存在差异,故不同温压条件下各类化学反应优先进行或停止的次序存在差异,从而导致自生高岭石的形成过程存在差异。

  • 4 成因机制探讨

  • 含油气盆地内与自生高岭石形成过程相关的化学反应受控于温度、压力及地层流体的 pH 值。 pH 值主要影响长石、高岭石的绿泥石化和伊利石化,从各类自生高岭石形成的相关化学反应方程式来看,反应过程基本与 pH 值(H+ 浓度)无关(表2),故本文不做探讨。而压力对各类相关化学反应平衡常数的影响程度明显小于温度(图4),所以主要研究温度对含油气盆地内自生高岭石成因机制的控制作用。

  • 图4 东营凹陷沙河街组部分自生高岭石形成的化学反应平衡常数

  • Fig.4 Equilibrium constants of chemical reactions for partial autogenic kaolinite formation in Shahejie Formation,Dongying Sag

  • 对于含油气盆地深层,长石转化的主要产物为自生高岭石及自生石英,而自生高岭石的成因机制决定了长石转化过程中次生孔隙的类型及产状[14-19]。利用平衡常数计算自生高岭石形成过程中各类相关化学反应进行或停止所需的各种水溶相粒子浓度,进而判断相关化学反应开始或停止的优先级,最后可确定不同温度下自生高岭石的成因机制。

  • 热力学与化学反应次序的计算结果表明,当温度低于 80℃时,水溶液内勃姆石沉淀(化学反应 4) 所需的 Al(OH)3(aq)最小浓度与石英沉淀(化学反应 8)所需的 H4SiO4(aq)最小浓度之积高于高岭石沉淀所需的Al(OH)3(aq)×H4SiO4(aq)(化学反应1) 最小浓度积(图5a),即该温度下高岭石可以在地层流体内自生沉淀;当温度高于 80℃时,水溶液内勃姆石沉淀所需的Al(OH)3(aq)最小浓度与石英沉淀所需的H4SiO4(aq)最小浓度之积低于高岭石沉淀所需的 Al(OH)3(aq)×H4SiO4(aq)最小浓度积,即该温度下勃姆石优先在地层流体中自生沉淀,而不存在高岭石的自生沉淀(图5a)。当温度高于80℃时,勃姆石与水溶相 H4SiO4(aq)结合(化学反应 5)导致其高岭石化所需的H4SiO4(aq)最小浓度也高于石英沉淀(化学反应 2)所需的 H4SiO4 (aq)最小浓度(图5b),即此时勃姆石无法自发与H4SiO4(aq)结合形成高岭石。综上所述,当地层温度高于 80℃时,储层中自生高岭石主要来自于勃姆石与长石结合导致的勃姆石高岭石化;当地层温度低于 80℃时,储层中自生高岭石主要来自于高岭石自生沉淀或勃姆石高岭石化。

  • 图5 不同成因自生高岭石形成优先级

  • Fig.5 Priority of kaolinite formation under different genetic mechanisms

  • 如果地层流体内富铝粒子以三水铝石而非勃姆石的形式发生沉淀时,不同成因自生高岭石的转化温度界限为 120℃(化学反应 3,5,7)。即当地层温度低于 120℃时,储层发育的自生高岭石主要为自生沉淀产物及三水铝石与 H4SiO4(aq)反应产物,而当地层温度高于 120℃时,储层则发育三水铝石与长石结合转化成因的自生高岭石(图5a)。

  • 5 储层改造意义

  • 5.1 自生高岭石影响次生孔隙发育

  • 在埋藏成岩过程中,含油气盆地砂岩储层的硅铝质矿物(长石为主)转化为自生高岭石并形成一定含量的次生孔隙。相关自生高岭石的成因机制及形成过程控制了该过程中形成的次生孔隙类型,进而影响砂岩储层的孔隙结构。基于铸体薄片及扫描电镜观察可知,自生沉淀(化学反应 1)或三水铝石及勃姆石转化形成的自生高岭石(化学反应6, 7)单体呈片状假六边形,其定向且紧密排列形成蠕虫状或书页状集合体,充填于原生孔隙或长石溶蚀孔隙,该类自生高岭石单体间黏土矿物晶间孔隙不发育,砂岩储层孔隙主要为残余原生孔隙或长石溶蚀孔等宏观孔。勃姆石或三水铝石与长石颗粒发生反应形成的转化型自生高岭石(化学反应4,5)的单体呈明显的不规则弯片状,集合体整体表现出长石颗粒的形态,该类自生高岭石单体排列杂乱且疏松,并相互支撑形成大量高岭石晶间的微纳米级孔隙,该过程中未形成长石溶蚀孔等宏观孔。

  • 5.2 温度对储层的改造作用

  • 东营凹陷为典型的新生代陆相断陷盆地,对于沙河街组而言,现今地层温度为其地质历史时期经历的最高温度。薄片观察表明,东营凹陷沙河街组砂岩储层中高岭石自生沉淀或三水铝石及勃姆石转化形成的自生高岭石主要发育于埋深小于3 000 m 的样品中;三水铝石或勃姆石与长石反应形成的自生高岭石则主要发育于埋深大于 3 000 m的样品中(图3),即埋深 3 000 m 为 2类不同产状自生高岭石形成及发育的界限。虽然东营凹陷发育高压,但压力对自生高岭石成因机制的影响不明显。对于东营凹陷沙河街组来说,埋深 3 000 m 对应的地层温度大约为 120℃(图6)。该地层温度明显高于水溶液内勃姆石沉淀所导致的不同成因自生高岭石的形成温度,而与水溶液内三水铝石沉淀所导致的相一致(图5,图6)。也就是说,水溶液内富铝粒子的沉淀物可能为三水铝石而并非勃姆石,而实验室样品在观测前经历了长时期的干燥作用可能导致了三水铝石的勃姆石化。

  • 当砂岩储层埋深小于 3 000 m(地层温度低于 120℃)时,烃源岩生成的酸性流体进入储层导致砂岩中长石大规模溶蚀,长石内硅铝质物质以溶解态的 H4SiO4(aq)及 Al(OH)3(aq)进入地层流体内,从而导致高岭石或三水铝石发生沉淀并充填于原生孔隙或长石溶蚀孔内;沉淀的三水铝石进一步与水溶液内的硅酸发生反应形成高岭石。该过程中形成的自生高岭石紧密排列且不存在黏土矿物晶间孔隙,长石溶蚀形成的宏观孔改善了砂岩储层物性,有利储层的孔隙结构类型主要为大孔-粗喉型。

  • 当砂岩储层埋深大于 3 000 m(地层温度高于 120℃),酸性流体环境下长石溶蚀导致地层流体内Al(OH)3(aq)浓度增加,溶解态的Al(OH)3(aq)以三水铝石的形式发生沉淀,三水铝石进一步与长石发生反应导致长石整体的高岭石化。而长石的高岭石化不形成宏观孔,且降低了岩石的抗压能力,同时压实作用也导致砂岩储层孔隙度下降、喉道变窄,有利储层的孔隙结构普遍为微孔-细喉型。

  • 6 结论

  • 东营凹陷砂岩储层中主要发育 2 类产状、化学元素组成及分布特征明显差异的自生高岭石。其中集合体呈蠕虫状或书页状的自生高岭石分布范围较广,主要分布于埋深为 1 700~3 600 m 的砂岩储层中;而集合体呈颗粒状的自生高岭石主要分布于埋深大于2 800 m的砂岩储层中。

  • 不同产状自生高岭石形成的成因机制存在明显差异,主要受控于地层温度。当地层温度高于 120℃时,储层中自生高岭石主要来自于长石与三水铝石反应导致的长石整体的高岭石化;当地层温度低于 120℃时,储层中自生高岭石主要来自于高岭石自生沉淀或三水铝石与含硅粒子结合反应。

  • 不同成因自生高岭石的形成导致了酸性流体环境下次生孔隙类型的差异,进而导致了砂岩储层孔隙的非均质性。当地层温度高于 120℃时,自生高岭石单体为不规则弯片状,其堆积杂乱且具有大量的高岭石晶间微孔,形成的有利储层孔隙结构类型普遍为微孔-细喉型;当地层温度低于 120℃时,自生高岭石单体呈片状假六边形,集合体呈紧密堆积的蠕虫状或书页状,成分较纯,形成的次生孔隙为长石溶蚀孔,形成的有利储层孔隙结构类型普遍为大孔-粗喉型。

  • 图6 东营凹陷沙河街组砂岩储层温度及压力特征

  • Fig.6 Temperature and pressure characteristics of sandstone reservoirs in Dongying Sag

  • 符号解释

  • a1a2a3a4c1c2——HKF模型中与物质类型有关的本性参数,无量纲;

  • A1A2A3——物质的恒压比热常数;

  • Cp——物质的恒压比热值,KJ/(mol·K);

  • ΔGfpT——压力p和温度T条件下物质相对于稳定单质f 的生成吉布斯自由能,KJ/mol;

  • ΔGfprTr——标准条件下物质相对稳定单质f的生成吉布斯自由能,KJ/mol;

  • ΔG-jpT0——压力 p 和温度 T 条件下水溶相物质 j 的表观偏摩尔吉布斯自由能,KJ/mol;

  • ΔG-jprTr0——标准条件下水溶相物质j的表观偏摩尔吉布斯自由能,KJ/mol;

  • ΔG-——压力 p 和温度 T 条件下化学反应吉布斯自由能变,KJ/mol;

  • Hp,T——压力 p 和温度 T 条件下物质的吉布斯生成焓, KJ/mol;

  • HprTr——标准条件下物质的吉布斯生成焓,KJ/mol;

  • K——平衡常数;

  • p——压力,MPa;

  • pr ——标准压力,MPa,取值为0.1;

  • Y——仅与溶剂性质相关的参数,无量纲;

  • R——摩尔气体常数,J/(mol·K),取值为8.314;

  • S-jprTr0 ——标准条件下水溶相物质j的表观偏摩尔熵,KJ/ mol;

  • Sp,T——压力 p 和温度 T 条件下物质的吉布斯生成熵, KJ/mol;

  • SprTr——标准条件下物质的吉布斯生成熵,KJ/mol;

  • T——温度,℃;

  • Tr ——标准温度,℃,取值为25;

  • ε——溶剂的介电常数,无量纲;

  • εprTr——标准条件下溶剂的介电常数,无量纲;

  • θ——标定温度,℃,取值为-45.15;

  • ψ——标定压力,MPa,取值为260;

  • ω——HKF模型内溶剂与溶质粒子的作用参数;

  • ωprTr——标准条件下 HKF模型内溶剂与溶质粒子的作用参数。

  • 参考文献

    • [1] 车启鹏,孙洪斌,张凤莲,等.牛居地区下第三系砂岩储集层中自生高岭石成因分析[J].长春地质学院院报,1995,25(3):306-309.CHE Qipeng,SUN Hongbin,ZHANG Fenglian,et al.Authigen‐ ic kaolinite orign analysis of Paleogene sandstone reservoirs in Niuju area[J].Journal of Changchun University of Earth Scienc‐ es,1995,25(3):306-309.

    • [2] 伏万军.粘土矿物成因及对砂岩储集性能的影响[J].古地理学报,2000,2(3):59-68.FU Wanjun.Influence of clay minerals on sandstone reservoir properties[J].Journal of Paleogeography,2000,2(3):59-68.

    • [3] ISLAM M A.Diagenesis and reservoir quality of Bhuban sand‐ stones(Neogene),Titas Gas Field,Bengal Basin,Bangladesh[J].Journal of Asian Earth Sciences,2009,35(1):89-100.

    • [4] WOLELA A M,GIERLOWSKI-KORDESCH E H.Diagenetic history of fluvial and lacustrine sandstones of the Hartford Basin(Triassic-Jurassic),Newark Supergroup,USA[J].Sedimentary Geology,2007,197(1/2):99-126.

    • [5] WOLELA A.Diagenetic evolution of the Ansian-Pliensbachian Adigrat sandstone,Blue Nile Basin,Ethiopia[J].Journal of Afri‐ can Earth Sciences,2010,56(1):29-42.

    • [6] 曹桐生,罗龙,谭先锋,等.致密砂岩储层成因及其孔隙演化过程——以杭锦旗十里加汗地区下石盒子组为例[J].断块油气田,2021,28(5):598-603.CAO Tongsheng,LUO Long,TAN Xianfeng,et al.Genesis and pore evolution of tight sandstone reservoir:taking Lower Shihe‐ zi Formation in the Shilijiahan block of Hangjinqi area as an ex‐ ample[J].Fault-Block Oil and Gas Field,2021,28(5):598-603.

    • [7] 孟涛.渤海湾盆地济阳坳陷渤南洼陷沙四下亚段红层有利储层成因机制[J].石油实验地质,2020,42(1):19-27.MENG Tao.Formation mechanism of favorable reservoirs in red beds in lower submember of fourth member of Shahejie Forma‐ tion,Bonan Subsag,Jiyang Depression,Bohai Bay Basin[J].Pe‐ troleum Geology & Experiment,2020,42(1):19-27.

    • [8] 高航.东濮凹陷潜山致密砂岩储层成岩演化特征[J].断块油气田,2021,28(3):295-299,317.GAO Hang.Diagenesis and evolution characteristics of tight sandstone reservoirs of buried hill in Dongpu Depression[J].Fault-Block Oil and Gas Field,2021,28(3):295-299,317.

    • [9] 张建培,葛和平,张涛,等.西湖凹陷古近系及新近系储层砂岩自生高岭石分布特征及形成机制[J].中国海上油气,2008,20(6):362-366.ZHANG Jianpei,GE Heping,ZHANG Tao,et al.Authigenic ka‐ olinite distribution and origin in Paleogene and Neogene reser‐ voir sandstones in Xihu Sag[J].China Offshore Oil and Gas,2008,20(6):362-366.

    • [10] 陈鑫,钟建华,袁静,等.渤南洼陷古近系高岭石发育特征及转化机理[J].石油勘探与开发,2009,36(4):456-462.CHEN Xin,ZHONG Jianhua,YUAN Jing,et al.Development and formation of Paleogene kaolinite,Bonan Subsag[J].Petro‐ leum Exploration and Development,2009,36(4):456-462.

    • [11] SHAW H F,CONYBEARE D M.Patterns of clay minearal dia‐ genesis in interbedded mudrocks and sandstones:an example from the Palaeocene of the North Sea[M]//Clay Mineral Cements in Sandstones.UK:Blackwell Publishing Ltd.,2009:129-145.

    • [12] WILKINSON M,HASZELDINE R S,MILLIKEN K L.Crossformational flux of aluminium and potassium in Gulf Coast(USA)sediment[M]//Clay Mineral Cements in Sandstones.UK:Blackwell Publishing Ltd.,2009:147-160.

    • [13] MARFIl R,HUERTAS A D,ROSSI C,et al.Origin and diagenet‐ ic evolution of kaolin in reservoir sandstones and associated shales of the Jurassic and Cretaceous,Salam Field,Western Des‐ ert(Egypt)[M]//Clay Mineral Cements in Sandstones.UK:Black‐ well Publishing Ltd.,2009:317-342.

    • [14] 邱隆伟,穆相骥,李浩,等.杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响[J].油气地质与采收率,2019,26(2):42-50.QIU Longwei,MU Xiangji,LI Hao,et al.Influence of diagene‐ sis of tight sandstone reservoir on the porosity development of Lower Shihezi Formation in Hangjinqi area,Ordos Basin[J].Pe‐ troleum Geology and Recovery Efficiency,2019,26(2):42-50.

    • [15] 张哲豪,魏新善,弓虎军,等.鄂尔多斯盆地定边油田长7致密砂岩储层成岩作用及孔隙演化规律[J].油气地质与采收率,2020,27(2):43-52.ZHANG Zhehao,WEI Xinshan,GONG Hujun,et al.Diagenesis characteristics and evolution of porosity of Chang7 tight sand‐ stone reservoir in Dingbian Oilfield,Ordos Basin[J].Petroleum Geology and Recovery Efficiency,2020,27(2):43-52.

    • [16] DOS ANJOS S M C,DE ROS L F,DE SOUZA R S,et al.Depo‐ sitional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones,Potiguar Rift Basin,Brazil[J].AAPG Bulletin,2000,84(11):1 719-1 742.

    • [17] TAYLOR K G,GAWTHORPE R L,CURTIS C D,et al.Carbon‐ ate cementation in a sequence-stratigraphic framework:upper cretaceous sandstones,book cliffs,Utah-Colorado[J].Journal of Sedimentary Research,2000,70(2):360-372.

    • [18] 黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J].地球科学:中国地质大学学报,2003,28(4):419-424.HUANG Sijing,WU Wenhui,LIU Jie,et al.Generation of sec‐ ondary porosity by meteoric water during time of Subaerial Ex‐ posure:an example from Yanchang Formation sandstone of Tri‐ assic of Ordos Basin[J].Earth Science:Journal of China Universi‐ ty of Geosciences,2003,28(4):419-424.

    • [19] 黄思静,黄可可,冯文立,等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506.HUANG Sijing,HUANG Keke,FENG Wenli,et al.Mass ex‐ changes among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis-a case study on the Upper Paleozoic,Ordos Basin and Xujiahe Forma‐ tion,Western Sichuan Depression[J].Geochimica,2009,38(5):498-506.

    • [20] MANSURBEG H,El-GHALI M A K,MORAD S,et al.The im‐ pact of meteoric water on the diagenetic alterations in deep-wa‐ ter,marine siliciclastic turbidites[J].Journal of Geochemical Ex‐ ploration,2015,89(1):254-258.

    • [21] 丁晓琪,韩枚梅,张哨楠,等.大气淡水在碎屑岩次生孔隙中的作用[J].地质论评,2014,60(1):145-158.DING Xiaoqi,HAN Meimei,ZHANG Shaonan,et al.Roles of meteoric water on secondary porosity of siliciclastic reservoirs [J].Geological Review,2014,60(1):145-158.

    • [22] SCHMIDT V,MCDONALD D A.The role of secondary porosi‐ ty in the course of sandstone diagenesis[M]//Aspects of Diagene‐ sis.Tulsa:The Society of Economic Paleontologists and Mineral‐ ogists,1979,26:175-207.

    • [23] 罗威,倪玲梅.致密砂岩有效储层形成演化的主控因素——以库车坳陷巴什基奇克组砂岩储层为例[J].断块油气田,2020,27(1):7-12.LUO Wei,NI Lingmei.Main controlling factors of formation and evolution of effective reservoir in tight sandstone:taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an example[J].Fault-Block Oil and Gas Field,2020,27(1):7-12.

    • [24] SBORNE M J,SWARBRICK R E.Diagenesis in North Sea HPHT clastic reservoirs-consequences for porosity and overpres‐ sure prediction[J].Marine and Petroleum Geology,1999,16(4):337-353.

    • [25] 朱筱敏,米立军,钟大康,等.济阳坳陷古近系成岩作用及其对储层质量的影响[J].古地理学报,2006,8(3):295-305.ZHU Xiaomin,MI Lijun,ZHONG Dakang,et al.Paleogene dia‐ genesis and its control on reservoir quality in Jiyang Depression [J].Journal of Paleogeography,2006,8(3):295-305.

    • [26] GIER S,WORDEN R H,JOHNS W D,et al.Diagenesis and res‐ ervoir quality of Miocene sandstones in the Vienna Basin,Aus‐ tria[J].Marine and Petroleum Geology,2008,25(8):681-695.

    • [27] HIGGS K E,ZWINGMANN H,REYES A G.Diagenesis,porosi‐ ty evolution,and petroleum emplacement in tight gas reservoirs,Taranaki Basin,New Zealand[J].Journal of Sedimentary Re‐ search,2007,77(12):1 003-1 025.

    • [28] 刘曾勤,郭少斌.海陆过渡相高黏土含量微孔致密岩屑砂岩储层特征[J].石油实验地质,2020,42(2):223-232.LIU Zengqin,GUO Shaobin.Reservoir characteristics of high clay content and microporous tight litharenites in marine-conti‐ nental transitional environments[J].Petroleum Geology & Experi‐ ment,2020,42(2):223-232.

    • [29] 远光辉,操应长,杨田,等.论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J].地学前缘,2013,20(5):207-219.YUAN Guanghui,CAO Yingchang,YANG Tian,et al.Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J].Earth Sci‐ ence Frontiers,2013,20(5):207-219.

    • [30] YUAN Guanghui,GLUYAS J,CAO Yingchang,et al.Diagene‐ sis and reservoir quality evolution of the Eocene sandstones in the northern Dongying Sag,Bohai Bay Basin,East China[J].Ma‐ rine and Petroleum Geology,2015,62(2):77-89.

    • [31] 曾溅辉.东营凹陷第三系水-盐作用对储层孔隙发育的影响[J].石油学报,2001,22(4):39-43.ZENG Jianhui.Effect of fluid-rock interaction on porosity of res‐ ervoir rocks in tertiary system,Dongying Sag[J].Acta Petrolei Si‐ nica,2001,22(4):39-43.

    • [32] LU Peng,FU Qi,SEYFRIED JR W E,et al.Coupled alkali feld‐ spar dissolution and secondary mineral precipitation in batch sys‐ tems-2:new experiments with supercritical CO2 and implications for carbon sequestration[J].Applied Geochemistry,2013,30:75-90.

    • [33] LU Peng,KONISHI H,OELKERS E,et al.Coupled alkali feld‐ spar dissolution and secondary mineral precipitation in batch sys‐ tems:5.Results of K-feldspar hydrolysis experiments[J].Chinese Journal of Geochemistry,2015,34:1-12.

    • [34] ALEKSEYEV V A,MEDVEDEVA L S,PRISYAGINA N I,et al.Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium[J].Geochimica et Cosmochimica Acta,1997,61(6):1 125-1 142.

    • [35] MURAKAMI T,KOGURE T,KADOHARA H,et al.Formation of secondary minerals and its effect on anorthite dissolution[J].American Mineralogist,1998,83(11/12:Part1):1 209-1 219.

    • [36] PETROVIC R.Rate control in feldspar dissolution-Ⅱ.The pro‐ tective effect of precipitates[J].Geochimica et Cosmochimica Ac‐ ta,1976,40(12):1 509-1 521.

    • [37] 梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.LIANG Yingjiao,CHE Yinchang.Thermodynamic data manual of inorganic matter[M].Shenyang:Northeastern University Press,1993.

    • [38] 王高尚,李鹏九.热液平衡计算数据手册——HKF模型介绍及应用[M].北京:地质出版社,1992.WANG Gaoshang,LI Pengjiu.Data manual of hydrothermal equilibrium calculation:Introduction and application of HKF model[M].Beijing:Geological Publishing House,1992.

    • [39] DUAN Zhenhao,LI Dedong.Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250 ℃,1 to 1 000 bar with NaCl concentrations up to saturation of halite[J].Geochimica et Cosmochimica Acta,2008,72(20):5 128-5 145.

    • [40] TAGIROV B,SCHOTT J.Aluminum speciation in crustal fluids revisited[J].Geochimica et Cosmochimica Acta,2001,65(21):3 965-3 992.

    • [41] SVERJENSKY D A,SHOCK E L,HELGESON H C.Prediction of the thermodynamic properties of aqueous metal complexes to 1 000 ℃ and 5 kb[J].Geochimica et Cosmochimica Acta,1997,61(7):1 359-1 412.

  • 参考文献

    • [1] 车启鹏,孙洪斌,张凤莲,等.牛居地区下第三系砂岩储集层中自生高岭石成因分析[J].长春地质学院院报,1995,25(3):306-309.CHE Qipeng,SUN Hongbin,ZHANG Fenglian,et al.Authigen‐ ic kaolinite orign analysis of Paleogene sandstone reservoirs in Niuju area[J].Journal of Changchun University of Earth Scienc‐ es,1995,25(3):306-309.

    • [2] 伏万军.粘土矿物成因及对砂岩储集性能的影响[J].古地理学报,2000,2(3):59-68.FU Wanjun.Influence of clay minerals on sandstone reservoir properties[J].Journal of Paleogeography,2000,2(3):59-68.

    • [3] ISLAM M A.Diagenesis and reservoir quality of Bhuban sand‐ stones(Neogene),Titas Gas Field,Bengal Basin,Bangladesh[J].Journal of Asian Earth Sciences,2009,35(1):89-100.

    • [4] WOLELA A M,GIERLOWSKI-KORDESCH E H.Diagenetic history of fluvial and lacustrine sandstones of the Hartford Basin(Triassic-Jurassic),Newark Supergroup,USA[J].Sedimentary Geology,2007,197(1/2):99-126.

    • [5] WOLELA A.Diagenetic evolution of the Ansian-Pliensbachian Adigrat sandstone,Blue Nile Basin,Ethiopia[J].Journal of Afri‐ can Earth Sciences,2010,56(1):29-42.

    • [6] 曹桐生,罗龙,谭先锋,等.致密砂岩储层成因及其孔隙演化过程——以杭锦旗十里加汗地区下石盒子组为例[J].断块油气田,2021,28(5):598-603.CAO Tongsheng,LUO Long,TAN Xianfeng,et al.Genesis and pore evolution of tight sandstone reservoir:taking Lower Shihe‐ zi Formation in the Shilijiahan block of Hangjinqi area as an ex‐ ample[J].Fault-Block Oil and Gas Field,2021,28(5):598-603.

    • [7] 孟涛.渤海湾盆地济阳坳陷渤南洼陷沙四下亚段红层有利储层成因机制[J].石油实验地质,2020,42(1):19-27.MENG Tao.Formation mechanism of favorable reservoirs in red beds in lower submember of fourth member of Shahejie Forma‐ tion,Bonan Subsag,Jiyang Depression,Bohai Bay Basin[J].Pe‐ troleum Geology & Experiment,2020,42(1):19-27.

    • [8] 高航.东濮凹陷潜山致密砂岩储层成岩演化特征[J].断块油气田,2021,28(3):295-299,317.GAO Hang.Diagenesis and evolution characteristics of tight sandstone reservoirs of buried hill in Dongpu Depression[J].Fault-Block Oil and Gas Field,2021,28(3):295-299,317.

    • [9] 张建培,葛和平,张涛,等.西湖凹陷古近系及新近系储层砂岩自生高岭石分布特征及形成机制[J].中国海上油气,2008,20(6):362-366.ZHANG Jianpei,GE Heping,ZHANG Tao,et al.Authigenic ka‐ olinite distribution and origin in Paleogene and Neogene reser‐ voir sandstones in Xihu Sag[J].China Offshore Oil and Gas,2008,20(6):362-366.

    • [10] 陈鑫,钟建华,袁静,等.渤南洼陷古近系高岭石发育特征及转化机理[J].石油勘探与开发,2009,36(4):456-462.CHEN Xin,ZHONG Jianhua,YUAN Jing,et al.Development and formation of Paleogene kaolinite,Bonan Subsag[J].Petro‐ leum Exploration and Development,2009,36(4):456-462.

    • [11] SHAW H F,CONYBEARE D M.Patterns of clay minearal dia‐ genesis in interbedded mudrocks and sandstones:an example from the Palaeocene of the North Sea[M]//Clay Mineral Cements in Sandstones.UK:Blackwell Publishing Ltd.,2009:129-145.

    • [12] WILKINSON M,HASZELDINE R S,MILLIKEN K L.Crossformational flux of aluminium and potassium in Gulf Coast(USA)sediment[M]//Clay Mineral Cements in Sandstones.UK:Blackwell Publishing Ltd.,2009:147-160.

    • [13] MARFIl R,HUERTAS A D,ROSSI C,et al.Origin and diagenet‐ ic evolution of kaolin in reservoir sandstones and associated shales of the Jurassic and Cretaceous,Salam Field,Western Des‐ ert(Egypt)[M]//Clay Mineral Cements in Sandstones.UK:Black‐ well Publishing Ltd.,2009:317-342.

    • [14] 邱隆伟,穆相骥,李浩,等.杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响[J].油气地质与采收率,2019,26(2):42-50.QIU Longwei,MU Xiangji,LI Hao,et al.Influence of diagene‐ sis of tight sandstone reservoir on the porosity development of Lower Shihezi Formation in Hangjinqi area,Ordos Basin[J].Pe‐ troleum Geology and Recovery Efficiency,2019,26(2):42-50.

    • [15] 张哲豪,魏新善,弓虎军,等.鄂尔多斯盆地定边油田长7致密砂岩储层成岩作用及孔隙演化规律[J].油气地质与采收率,2020,27(2):43-52.ZHANG Zhehao,WEI Xinshan,GONG Hujun,et al.Diagenesis characteristics and evolution of porosity of Chang7 tight sand‐ stone reservoir in Dingbian Oilfield,Ordos Basin[J].Petroleum Geology and Recovery Efficiency,2020,27(2):43-52.

    • [16] DOS ANJOS S M C,DE ROS L F,DE SOUZA R S,et al.Depo‐ sitional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones,Potiguar Rift Basin,Brazil[J].AAPG Bulletin,2000,84(11):1 719-1 742.

    • [17] TAYLOR K G,GAWTHORPE R L,CURTIS C D,et al.Carbon‐ ate cementation in a sequence-stratigraphic framework:upper cretaceous sandstones,book cliffs,Utah-Colorado[J].Journal of Sedimentary Research,2000,70(2):360-372.

    • [18] 黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J].地球科学:中国地质大学学报,2003,28(4):419-424.HUANG Sijing,WU Wenhui,LIU Jie,et al.Generation of sec‐ ondary porosity by meteoric water during time of Subaerial Ex‐ posure:an example from Yanchang Formation sandstone of Tri‐ assic of Ordos Basin[J].Earth Science:Journal of China Universi‐ ty of Geosciences,2003,28(4):419-424.

    • [19] 黄思静,黄可可,冯文立,等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506.HUANG Sijing,HUANG Keke,FENG Wenli,et al.Mass ex‐ changes among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis-a case study on the Upper Paleozoic,Ordos Basin and Xujiahe Forma‐ tion,Western Sichuan Depression[J].Geochimica,2009,38(5):498-506.

    • [20] MANSURBEG H,El-GHALI M A K,MORAD S,et al.The im‐ pact of meteoric water on the diagenetic alterations in deep-wa‐ ter,marine siliciclastic turbidites[J].Journal of Geochemical Ex‐ ploration,2015,89(1):254-258.

    • [21] 丁晓琪,韩枚梅,张哨楠,等.大气淡水在碎屑岩次生孔隙中的作用[J].地质论评,2014,60(1):145-158.DING Xiaoqi,HAN Meimei,ZHANG Shaonan,et al.Roles of meteoric water on secondary porosity of siliciclastic reservoirs [J].Geological Review,2014,60(1):145-158.

    • [22] SCHMIDT V,MCDONALD D A.The role of secondary porosi‐ ty in the course of sandstone diagenesis[M]//Aspects of Diagene‐ sis.Tulsa:The Society of Economic Paleontologists and Mineral‐ ogists,1979,26:175-207.

    • [23] 罗威,倪玲梅.致密砂岩有效储层形成演化的主控因素——以库车坳陷巴什基奇克组砂岩储层为例[J].断块油气田,2020,27(1):7-12.LUO Wei,NI Lingmei.Main controlling factors of formation and evolution of effective reservoir in tight sandstone:taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an example[J].Fault-Block Oil and Gas Field,2020,27(1):7-12.

    • [24] SBORNE M J,SWARBRICK R E.Diagenesis in North Sea HPHT clastic reservoirs-consequences for porosity and overpres‐ sure prediction[J].Marine and Petroleum Geology,1999,16(4):337-353.

    • [25] 朱筱敏,米立军,钟大康,等.济阳坳陷古近系成岩作用及其对储层质量的影响[J].古地理学报,2006,8(3):295-305.ZHU Xiaomin,MI Lijun,ZHONG Dakang,et al.Paleogene dia‐ genesis and its control on reservoir quality in Jiyang Depression [J].Journal of Paleogeography,2006,8(3):295-305.

    • [26] GIER S,WORDEN R H,JOHNS W D,et al.Diagenesis and res‐ ervoir quality of Miocene sandstones in the Vienna Basin,Aus‐ tria[J].Marine and Petroleum Geology,2008,25(8):681-695.

    • [27] HIGGS K E,ZWINGMANN H,REYES A G.Diagenesis,porosi‐ ty evolution,and petroleum emplacement in tight gas reservoirs,Taranaki Basin,New Zealand[J].Journal of Sedimentary Re‐ search,2007,77(12):1 003-1 025.

    • [28] 刘曾勤,郭少斌.海陆过渡相高黏土含量微孔致密岩屑砂岩储层特征[J].石油实验地质,2020,42(2):223-232.LIU Zengqin,GUO Shaobin.Reservoir characteristics of high clay content and microporous tight litharenites in marine-conti‐ nental transitional environments[J].Petroleum Geology & Experi‐ ment,2020,42(2):223-232.

    • [29] 远光辉,操应长,杨田,等.论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J].地学前缘,2013,20(5):207-219.YUAN Guanghui,CAO Yingchang,YANG Tian,et al.Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J].Earth Sci‐ ence Frontiers,2013,20(5):207-219.

    • [30] YUAN Guanghui,GLUYAS J,CAO Yingchang,et al.Diagene‐ sis and reservoir quality evolution of the Eocene sandstones in the northern Dongying Sag,Bohai Bay Basin,East China[J].Ma‐ rine and Petroleum Geology,2015,62(2):77-89.

    • [31] 曾溅辉.东营凹陷第三系水-盐作用对储层孔隙发育的影响[J].石油学报,2001,22(4):39-43.ZENG Jianhui.Effect of fluid-rock interaction on porosity of res‐ ervoir rocks in tertiary system,Dongying Sag[J].Acta Petrolei Si‐ nica,2001,22(4):39-43.

    • [32] LU Peng,FU Qi,SEYFRIED JR W E,et al.Coupled alkali feld‐ spar dissolution and secondary mineral precipitation in batch sys‐ tems-2:new experiments with supercritical CO2 and implications for carbon sequestration[J].Applied Geochemistry,2013,30:75-90.

    • [33] LU Peng,KONISHI H,OELKERS E,et al.Coupled alkali feld‐ spar dissolution and secondary mineral precipitation in batch sys‐ tems:5.Results of K-feldspar hydrolysis experiments[J].Chinese Journal of Geochemistry,2015,34:1-12.

    • [34] ALEKSEYEV V A,MEDVEDEVA L S,PRISYAGINA N I,et al.Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium[J].Geochimica et Cosmochimica Acta,1997,61(6):1 125-1 142.

    • [35] MURAKAMI T,KOGURE T,KADOHARA H,et al.Formation of secondary minerals and its effect on anorthite dissolution[J].American Mineralogist,1998,83(11/12:Part1):1 209-1 219.

    • [36] PETROVIC R.Rate control in feldspar dissolution-Ⅱ.The pro‐ tective effect of precipitates[J].Geochimica et Cosmochimica Ac‐ ta,1976,40(12):1 509-1 521.

    • [37] 梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.LIANG Yingjiao,CHE Yinchang.Thermodynamic data manual of inorganic matter[M].Shenyang:Northeastern University Press,1993.

    • [38] 王高尚,李鹏九.热液平衡计算数据手册——HKF模型介绍及应用[M].北京:地质出版社,1992.WANG Gaoshang,LI Pengjiu.Data manual of hydrothermal equilibrium calculation:Introduction and application of HKF model[M].Beijing:Geological Publishing House,1992.

    • [39] DUAN Zhenhao,LI Dedong.Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250 ℃,1 to 1 000 bar with NaCl concentrations up to saturation of halite[J].Geochimica et Cosmochimica Acta,2008,72(20):5 128-5 145.

    • [40] TAGIROV B,SCHOTT J.Aluminum speciation in crustal fluids revisited[J].Geochimica et Cosmochimica Acta,2001,65(21):3 965-3 992.

    • [41] SVERJENSKY D A,SHOCK E L,HELGESON H C.Prediction of the thermodynamic properties of aqueous metal complexes to 1 000 ℃ and 5 kb[J].Geochimica et Cosmochimica Acta,1997,61(7):1 359-1 412.