-
济阳坳陷页岩油储量丰富,开发潜力巨大,但需要大规模压裂改造才能实现高效开发与动用[1-2]。近年来,胜利油田不断探索页岩油储层高效开发工艺,形成了一套页岩油藏强化体积改造缝网压裂技术[3]。该技术有效实施的一个重要环节在于准确把握页岩储层的岩体力学特征。目前针对小尺寸岩心的室内力学测试是获取其力学参数的主要方法,但现场测试结果显示,含纹层陆相页岩的纹层和层理发育,非均质性强[4]。页岩的强非均质性可能导致其力学性质的尺寸效应,这对压裂设计中所涉及的数值模拟输入的力学参数、裂缝空间形态及破裂压力分析造成显著影响。
-
页岩力学参数的尺寸效应可以用于确定页岩储层岩体的力学参数,压裂特征(包括裂缝扩展规模和破裂压力)的尺寸效应可以为页岩储层压裂及设计优化提供指导。目前,针对低渗透陆相页岩储层缺乏有效的储层岩体力学参数确定方法,这限制了该类储层的压前评估及设计优化。页岩力学参数是压裂设计及优化过程中采用的关键参数之一,也是评价岩石可压性的重要参数[5-6]。大量研究表明,岩石非均质性越强,其强度与变形的尺寸效应越显著[7-10]。为探究页岩强度与变形的尺寸效应,李帅等采用实验方法分析了页岩强度与变形的尺寸效应及其内在机理,提出一种新的适用于页岩的强度尺寸效应模型,并初步得到室内岩样在表征页岩矿场岩体时的建议测试尺度[11]。杨圣奇等采用数值模拟方法分析了不同围压下岩石强度与变形参数的尺寸效应,指出围压对单元尺寸效应具有显著影响[12]。邓树新等提出了一种考虑围压对岩石强度尺寸效应影响的统计模型,并指出围压会弱化岩石的尺寸效应[13]。陈瑜等研究了高径比对岩石的尺寸效应影响[14]。范翔宇等研究了页岩层理和尺寸效应对其力学性质的影响[15]。孟庆彬等通过岩石力学实验分析了尺寸效应和应变速率对岩石力学特性的影响规律[16]。这些研究成果从不同角度分析了岩石强度与变形的尺寸效应及其内在机理[17-20],但鲜见针对含纹层泥质灰岩相页岩力学性质尺寸效应的相关研究。
-
此外,深入分析尺寸效应对水力压裂裂缝扩展形态及破裂压力的影响规律,开展压裂设计和方案编制时,在力学参数的选取环节存在如下问题:①室内岩心测试和压裂设计所选用的岩心尺度差异大,真实物理岩心力学参数测试的常用尺寸是直径为 25 mm、高度为50 mm,而常规的GOHFER等压裂设计软件选用的单元尺度多为500~1 000 m。由于力学参数的尺寸效应,直接选取小尺度岩心的力学参数进行工程尺度数值模拟恐有不妥。②纹层和层理等结构的存在增强了储层的非均质性,加剧了岩心岩石力学参数的尺寸效应。
-
由此可见,岩石强度与变形的尺寸效应以及压裂裂缝形态和破裂压力的尺寸效应对压裂设计优化至关重要。利用三维有限元数值模拟方法,研究含纹层陆相页岩岩心力学性质的尺寸效应规律,建立室内实验获得的小尺度岩心力学参数与现场储层岩体力学参数的对应关系。在此基础上,分析水力压裂裂缝形态及破裂压力的尺寸效应,以期为工程尺度水力压裂数值模拟力学参数的精细确定以及压裂效果分析提供理论参考。
-
1 力学参数的尺寸效应
-
1.1 力学参数标定
-
1.1.1 实验器材
-
对胜利油田页岩岩心进行实验研究,分析其变形破坏特征,得到单轴和三轴压缩条件下的基本力学参数以及全应力-应变曲线。采用仪器为 Rock‐ man岩石力学三轴实验仪(图1),包括常规轴向加载系统、流变轴向加载系统和围压加载系统,采用计算机伺服变形控制和负荷控制,以确保准确控制实验的全过程,能够完成复杂路径下的单轴、三轴、剪切和流变实验,轴压不高于 1 200 kN,围压不高于 100 MPa。
-
图1 Rockman岩石力学三轴实验仪
-
Fig.1 Rockman triaxial tester for rock mechanics
-
1.1.2 实验流程
-
具体实验流程包括:①试样制备。加工成直径为 2.5 cm 的小岩心,两端面在磨平机上磨平。②试样安装。将岩心放入压力室,用热塑管密封,安装压头和轴向-环向应变测量装置。③试样加载。试样安装完毕后,液压机加载直到试样破坏,从而测定岩心的纵横向应变、峰值力,计算岩石静态弹性力学参数。
-
1.1.3 实验结果
-
根据页岩岩心室内单轴和三轴测试结果,首先对陆相页岩灰质矿物和泥质矿物的微观力学参数进行标定。为标定页岩中灰质矿物和泥质矿物的微观力学参数,采用 RFPA3D 有限元数值模拟方法建立陆相页岩岩心模型(图2),该模型可模拟分析多孔介质流-固耦合破裂过程。页岩数值岩心的形状和尺寸与物理岩心一致,均为直径为 25 mm、高度为 50 mm 的圆柱体,将模型划分为 75×30×30×3.14= 211 950 个有限元网格。在圆柱体上方施加位移荷载为 2×10-6 m/s 模拟单轴压缩过程。岩心微观力学参数标定过程一般采用应力-应变关系拟合方法,将数值模型计算得到的应力-应变关系与物理实验结果进行对比,选取二者最为接近时的微观力学参数作为数值模拟输入参数。
-
图2 陆相页岩岩心模型
-
Fig.2 Core model of continental shale reservoirs
-
将泥质矿物和灰质矿物的单轴和三轴压缩数值岩心测试结果(应力-应变曲线和破裂模式)与物理岩心测试结果进行对比(图3),结果表明,数值岩心和物理岩心的破裂模式及应力-应变曲线基本一致,由此标定出灰质和泥质矿物的微观力学参数(表1),可为页岩力学性质的尺寸效应研究奠定基础。
-
图3 泥质-灰质矿物微观力学参数标定
-
Fig.3 Calibration of micro-mechanical parameters of argillaceous-limy minerals
-
1.2 尺寸效应分析
-
1.2.1 不含纹层的泥质灰岩相
-
在标定陆相页岩岩心泥质和灰质矿物微观力学参数的基础上,采用有限元数值模拟方法建立不同尺寸陆相页岩岩心数值模型。根据实验室岩石力学试件尺度和压裂设计时所选用的单元尺度级别,确定岩心尺寸为25~2 000 mm。以高径比为2的圆柱体试件(图4)为研究对象开展单轴和三轴压缩数值模拟实验,分析不同尺寸页岩试样抗压强度和弹性模量的尺寸效应。针对不含纹层的泥质灰岩岩心展开尺寸效应研究,取泥质矿物含量和灰质矿物含量均为 50% 且随机分布于圆柱岩心中。在 ANSYS 中建立页岩数值岩心,试件直径分别取 25,50,100, 200,500,1 000和2 000 mm。根据尺寸不同分别建立7 个算例,然后导入到 RFPA3D 中进行单轴和三轴压缩数值模拟实验,围压分别取 0,10 和 30 MPa。RF‐ PA3D中不同尺寸页岩岩心有限元数值模型参见图4。
-
由图5 可知,页岩抗压强度随着岩心直径增大而减小,可见其抗压强度尺寸效应显著。应力-应变线在峰前弹性变形阶段的斜率反映了页岩弹性模量的大小。页岩弹性模量随着岩心尺寸增大而减小,可见其弹性模量的尺寸效应也很显著。
-
由图6 可知:当岩心尺寸小于 500 mm 时,其单轴抗压强度和弹性模量的尺寸效应最明显;当岩心直径大于500 mm时;页岩抗压强度和弹性模量的尺寸效应显著减弱。实验室岩石力学试件尺度和压裂设计时所选用的单元尺度级别以及现场施工尺度下的岩石强度的尺寸效应是存在的,这主要是因为含纹层陆相页岩是矿物颗粒的集合体,具有明显的非均质性,岩心内部微裂隙和孔隙等缺陷大量存在,力学参数离散性大,纹层发育,更增大其复杂性。随着单元尺寸增大,其内部所包含矿物组分的含量和天然微裂隙的条数均增大且空间分布复杂性增强,由于在荷载下天然缺陷处首先出现损伤破坏,因而试件尺寸越大,所包含天然缺陷的数量及可能性越大,其抗压强度和弹性模量越小。
-
图4 不同尺寸页岩岩心有限元数值模型
-
Fig.4 Finite-element numerical model of shale cores with different sizes
-
1.2.2 含纹层的泥质灰岩相
-
纹层结构增强了储层的非均质性,加剧了岩心岩石力学参数的尺寸效应(图7)。
-
针对含纹层页岩岩心展开尺寸效应研究,取泥质矿物含量和灰质矿物含量均为50%且交互分布于圆柱岩心中的试件。其直径分别取 25,50,100, 200,500,1 000 和 2 000 mm。根据不同尺寸在 RF‐ PA3D 中建立 7 个算例进行单轴和三轴压缩数值模拟实验(图8),围压分别取0,10和30 MPa。
-
与图5 规律一致,含纹层的页岩抗压强度和弹性模量随着岩心直径增大而减小,可见其抗压强度和弹性模量尺寸效应显著(图9)。
-
分析图6 和图10 可知,纹层加剧了页岩力学参数的尺寸效应。页岩纹层发育,局部微裂隙广泛分布,非均质性极强。岩石非均质性越强,其强度与变形的尺寸效应越显著。不同围压下含纹层和不含纹层的岩心抗压强度和弹性模量与尺寸均呈负指数关系。在开展现场尺度的水力压裂数值模拟时,建议利用其尺寸效应根据室内测试得到的岩石力学参数推算储层岩体的力学参数,从而开展更精细的压裂模拟和施工参数优化。
-
图5 三轴压缩条件下不同尺寸页岩岩心的应力-应变曲线
-
Fig.5 Stress-strain curves of shale cores with different sizes under triaxial compression
-
图6 泥质灰岩相页岩力学参数的尺寸效应
-
Fig.6 Size effect of mechanical parameters of argillaceous limestone-facies shale
-
图7 胜利油田樊页平1井含纹层泥质灰岩相页岩岩心
-
Fig.7 Laminated argillaceous limestone-facies shale cores from Well FYP1 in Shengli Oilfield
-
2 压裂裂缝形态及破裂压力的尺寸效应分析
-
页岩油开发既要求裂缝改造体积又要求裂缝高导流能力,其中页岩起裂规律和缝网形成条件一直是研究的重点。其中樊页平1井是胜利油田自主技术勘探开发的陆相页岩油水平井(图11),其压裂设计:以物性和力学计算结果为依据,物性和力学性质相近的层段作为一段;以裂缝扩展模拟结果纵、横向控制储量最大化为依据优化分段数,段内利用应力干扰增缝,段间避免应力干扰。
-
为了研究该井压裂裂缝扩展形态和破裂压力的尺寸效应,针对该井第 11 段开展数值模拟。在 RF‐ PA3D中建立不同单元尺寸的三维地质力学模型,研究单元尺寸对破裂压力的影响规律。储层模型的长、宽、高分别为 330,180,90 m;模型分为 3 层,上、下隔层厚度均为30 m,中间油层厚度为30 m。单元尺寸分别取 1.5,3,5 和 7 m。根据现场天然结构面的地质统计报告,页岩储层中层理和天然裂缝等结构面发育。因此在油层中预制层理和天然裂缝(图12)。在模型边界分别施加74(Z方向),69(X方向) 和63 MPa(Y方向)的围压用以模拟垂直地应力、最大水平主应力和最小水平主应力。模型中心预制 6 簇射孔(簇间距为 8 m)并以恒定流量进行加载,模拟水平井压裂过程。对于不同尺寸的有限元网格,应采用如图10 所示的含纹层页岩单轴抗压强度和弹性模量的尺寸效应负指数关系计算对应的岩体力学参数,以此作为数值模型的输入参数。由图10可知,页岩岩心尺寸超过 1 500 mm 后,其抗压强度和弹性模量几乎不随尺寸增大而改变,因此水力压裂数值模拟采用单元尺寸为 1.5 m 所对应的页岩岩体力学参数(表2)。
-
图8 不同尺寸含纹层页岩岩心有限元数值模型
-
Fig.8 Finite-element numerical model of laminated shale cores with different sizes
-
图9 三轴压缩下不同尺寸含纹层页岩岩心的应力-应变曲线
-
Fig.9 Stress-strain curves of laminated shale cores with different sizes under triaxial compression
-
图10 含纹层页岩力学参数的尺寸效应
-
Fig.10 Size effect of mechanical parameters of laminated shales
-
图11 樊页平1井导眼井脆性剖面和应力剖面
-
Fig.11 Brittleness profile and stress profile of pilot hole of Well FYP1
-
图12 含纹层页岩储层水力压裂三维地质力学模型
-
Fig.12 Three-dimensional geomechanical model of hydraulic fracturing in laminated shale reservoir
-
由图13可知,各模型中的水力裂缝总体上沿最大水平主应力方向延伸,并形成体积裂缝。由于簇间距较小,各射孔簇水力裂缝在起裂扩展过程中存在不同程度的干扰现象。受应力阴影效应影响,中间射孔簇裂缝扩展长度受限。不同单元尺寸模型中水力裂缝扩展模式存在明显差异。单元尺寸较小时(1.5 m),压裂模拟能够更准确捕捉水力裂缝和天然裂缝之间的交互作用(图13)。随着单元尺寸增大,数值模拟难以精细刻画水力裂缝遇天然裂缝时的扩展模式,且不同射孔簇之间的裂缝缝间干扰增强,可能会造成裂缝形态的巨大误差。由图14 可知,不同单元尺寸开展数值模拟可能造成储层改造体积的巨大差异,选取较大尺寸单元网格可能会弱化储层改造体积。
-
图13 不同单元尺寸的页岩储层水力裂缝形态及储层改造体积
-
Fig.13 Hydraulic fracture morphology and SRV of shale reservoirs with different unit sizes
-
由图15 可知,二者的几何形态相差不大,且储层改造体积也很相近,说明采用1.5 m单元尺寸能够有效重现现场原位水力裂缝的几何形态和压裂规模。本次采用单元尺寸为 1.5 m 的数值模拟进行水平井压裂模拟,既能够保证计算效率又能满足计算精度。
-
另外,不同单元尺寸数值模型中水力压裂破裂压力也存在明显差异。由图16可知,破裂压力随单元尺寸的增大而减小。当单元尺寸为1.5 m时,计算得到的破裂压力(73.6 MPa)更接近于真实地层水力压裂时的破裂压力(75.1 MPa)。因此,选择合适的单元尺寸对于水力压裂数值模拟和施工参数优化具有重要意义。建议在满足计算效率的条件下采用不同单元尺寸的单元网格开展数值模拟计算。
-
图14 不同单元尺寸的页岩储层水力压裂改造体积
-
Fig.14 SRV of shale reservoirs with different unit sizes under hydraulic fracturing
-
图15 数值模拟和微震监测对比水力裂缝形态及改造体积
-
Fig.15 Comparison of hydraulic fracture morphology and SRV between numerical simulation and microseismic monitoring
-
图16 不同单元尺寸数值模拟的破裂压力分析
-
Fig.16 Breakdown pressure analysis for different unit sizes
-
3 结论
-
含纹层陆相页岩岩心力学参数存在显著的尺寸效应,可能是页岩中纹层发育,岩心内部微裂隙和孔隙等缺陷导致。当岩心尺寸小于500 mm时,其单轴抗压强度和弹性模量的尺寸效应显著,不同围压下岩心抗压强度和弹性模量与尺寸之间呈负指数关系。数值模拟分析表明,破裂压力和改造体积整体上均随单元尺寸的增大而减小,当单元尺寸为1.5 m 时,数值计算得到的破裂压力和改造体积都更接近于实际监测数据,1.5 m可以作为博兴洼陷含纹层页岩力学参数的特征尺寸。在开展原位尺度的水力压裂设计模拟时,建议利用尺寸效应关系式,根据室内测试得到的岩石力学参数计算储层岩体的力学参数,有望获得更准确、更合理的设计参数。
-
参考文献
-
[1] SU Yuliang,ZHANG Qi,WANG Wendong.Performance analy‐ sis of a composite dual-porosity model in multi-scale fractured shale reservoir [J].Journal of Natural Gas Science and Engineer‐ ing,2015,26:1 107-1 118.
-
[2] 王志战,杜焕福,李香美,等.陆相页岩油录井重点发展领域与技术体系构建[J].石油钻探技术,2021,49(4):155-162.WANG Zhizhan,DU Huanfu,LI Xiangmei,et al.Key develop ‐ ment fields and construction of technical system for logging of tinental shale oil[J].Petroleum Drilling Techniques,2021,49(4):155-162.
-
[3] 王增林,鲁明晶,张潦源,等.东营凹陷陆相页岩油强化缝网改造生产制度优化研究[J].石油钻探技术,2021,49(4):71-77.WANG Zenglin,LU Mingjing,ZHANG Liaoyuan,et al.Produc‐ tion system optimization for enhanced fracture network stimula‐ tion in continental shale oil reservoirs in the Dongying Sag[J].Pe‐ troleum Drilling Techniques,2021,49(4):71-77.
-
[4] 侯中帅,陈世悦.东营凹陷沙四段上亚段—沙三段下亚段泥页岩成岩演化及其对储层发育的影响[J].油气地质与采收率,2019,26(1):119-128.HOU Zhongshuai,CHEN Shiyue.Diagenesis evolution charac‐ teristics of shale in Upper Es4 to Lower Es3 Members in Dongy‐ ing Sag and its influence on the formation of reservoir[J].Petro‐ leum Geology and Recovery Efficiency,2019,26(1):119-128.
-
[5] 夏遵义,马海洋,房堃.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J].石油实验地质,2019,41(1):134-141.XIA Zunyi,MA Haiyang,FANG Kun.Rock mechanical proper‐ ties and fracability of continental shale in Zhanhua Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2019,41(1):134-141.
-
[6] LI Weixin,REZAKHANI R,JIN Congrui,et al.A multiscale framework for the simulation of the anisotropic mechanical be‐ havior of shale[J].International Journal for Numerical and Ana‐ lytical Methods in Geomechanics,2017,41(14):1 494-1 522.
-
[7] 晏长根,伍法权,祁生文,等.随机节理岩体变形与强度参数及其尺寸效应的数值模拟研究[J].岩土工程学报,2009,31(6):879-885.YAN Changgen,WU Faquan,QI Shengwen,et al.Deformation and strength parameters and size effect of random jointed rock by numerical simulation[J].Chinese Joural of Geotechnical Engi‐ neering,2009,31(6):879-885.
-
[8] JIN Zhefei,LI Weixin,JIN Congrui,et al.Anisotropic elastic,strength,and fracture properties of Marcellus shale[J].Interna‐ tional Journal of Rock Mechanics and Mining Sciences,2018,109:124-137.
-
[9] WANG Hongjian,ZHAO Fei,HUANG Zhiquan,et al.Experi‐ mental study of mode-I fracture toughness for layered shale based on two ISRM-suggested methods[J].Rock Mechanics and Rock Engineering,2017,50(7):1 933-1 939.
-
[10] 张明,卢裕杰,介玉新,等.不同加载条件下岩石强度尺寸效应的数值模拟 [J].水力发电学报,2011,30(4):147-154.ZHANG Ming,LU Yujie,JIE Yuxin,et al.Numerical simula‐ tion of strength size effect of rocks under different loadings[J].Journal of Hydroelectric Engineering,2011,30(4):147-154.
-
[11] 李帅,陈军斌,王汉青,等.鄂尔多斯盆地长7段页岩强度与变形尺寸效应规律实验研究[J].煤炭学报,2020,45(12):4 121-4 131.LI Shuai,CHEN Junbin,WANG Hanqing,et al.Experimental study on the scale effect of strength and deformation of Chang 7 shale in Ordos Basin[J].Journal of China Coal Society,2020,45(12):4 121-4 131.
-
[12] 杨圣奇,徐卫亚.不同围压下岩石材料强度尺寸效应的数值模拟[J].河海大学学报:自然科学版,2004,32(5):578-582.YANG Shengqi,XU Weiya.Numerical simulation of strengthsize effect of rock materials under different confining pressures [J].Journal of Hohai University:Natural Sciences,2004,32(5):578-582.
-
[13] 邓树新,郑永来,郑顺,等.考虑围压对岩石强度尺寸效应影响的统计模型[J].水文地质工程地质,2015,42(1):60-64.DENG Shuxin,ZHENG Yonglai,ZHENG Shun,et al.A statis‐ tical model considering the effect of confining pressure on the size effect of rock strength[J].Hydrogeology & Engineering Ge‐ ology,2015,42(1):60-64.
-
[14] 陈瑜,黄永恒,曹平,等.不同高径比时软岩强度与变形尺寸效应试验研究 [J].中南大学学报:自然科学版,2010,41(3):1 073-1 078.CHEN Yu,HUANG Yongheng,CAO Ping,et al.Size efect ex ‐ erimental study of strength and deformation in different heightto-diameter ratio soft rocks[J].Journal of Central South Universi‐ ty:Science and Technology,2010,41(3):1 073-1 078.
-
[15] 范翔宇,郭东亚,张千贵,等.考虑层理、加载速率与尺寸效应的页岩裂纹扩展机理试验[J].科学技术与工程,2018,18(9):63-71.FAN Xiangyu,GUO Dongya,ZHANG Qiangui,et al.Experi‐ mental study on the crack propagation mechanism of shale con‐ sidering the effect of the bedding,loading rate and sample size [J].Science Technology and Engineering,2018,18(9):63-71.
-
[16] 孟庆彬,韩立军,浦海,等.尺寸效应和应变速率对岩石力学特性影响的试验研究[J].中国矿业大学学报,2016,45(2):233-243.MENG Qingbin,HAN Lijun,PU Hai,et al.Effect of the size and strain rate on the mechanical behavior of rock specimens[J].Journal of China University of Mining & Technology,2016,45(2):233-243.
-
[17] LI Weixin,JIN Zhefei,CUSATIS G.Size effect analysis for the characterization of Marcellus shale quasi-brittle fracture proper‐ ties [J].Rock Mechanics and Rock Engineering,2019,52(1):1-18.
-
[18] LI Weixin,JIN Congrui,CUSATIS G.Integrated experimental and computational characterization of shale at multiple length scales[M]//JIN Congrui,CUSATIS G.New frontiers in oil and gas exploration.Switzerland:Springer Cham,2016:389-434.
-
[19] LI Lianchong,TANG Chun’an,LI Gangzhu,et al.Numerical simulation of 3D hydraulic fracturing based on an improved flowstress-damage model and a parallel FEM technique [J].Rock Me‐ chanics and Rock Engineering,2012,45(5):801-818.
-
[20] 李连崇,梁正召,李根,等.水力压裂裂缝穿层及扭转扩展的三维模拟分析[J].岩石力学与工程学报,2010,29(S1):3 208-3 215.LI Lianchong,LIANG Zhengzhao,LI Gen,et al.Three-dimen‐ sional numerical analysis of traversing and twisted fractures in hydraulic fracturing[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(S1):3 208-3 215.
-
摘要
济阳坳陷陆相页岩中的含纹层泥质灰岩相页岩具有较好的储集物性,但发育的纹层使储层力学性质具有强非均质性,导致其力学参数的尺寸效应明显。以胜利油田博兴洼陷含纹层泥质灰岩相页岩岩心为例,采用三维有限元数值模拟方法,系统研究岩心力学性质及压裂裂缝的尺寸效应。结果表明:当岩心尺寸小于 500 mm时,其单轴抗压强度和弹性模量的尺寸效应显著,不同围压下岩心抗压强度和弹性模量与单元尺寸呈负指数关系,且水力压裂破裂压力随单元尺寸的增大而减小。在博兴洼陷,当单元尺寸为1.5 m时,数值计算得到的破裂压力和改造体积更接近于真实地层,建议在满足计算效率的条件下采用单元尺寸小于1.5 m的单元网格开展模拟设计。
Abstract
The laminated argillaceous limestone facies shale in the continental shale reservoirs of Jiyang Depression has good physi‐ cal properties of reservoirs,but the mechanical properties of reservoirs have strong heterogeneity due to the dense laminae,which leads to the significant size effect of its mechanical parameters. The cores of the laminated argillaceous limestone-facies shale in Boxing Sag of Shengli Oilfield were taken as an example for systematic research on the mechanical properties of cores and the size effect of hydraulic fractures by three-dimensional finite-element numerical simulation. The results show that when the core size is less than 500 mm,the uniaxial compressive strength and modulus of elasticity have a significant size effect,and they have a nega‐ tive exponential relationship with the core size under different confining pressures. The breakdown pressure of hydraulic fracturing decrease with the increase in the unit size. In Boxing Sag,when the unit size is 1.5 m,the breakdown pressure and stimulated reser‐ voir volume(SRV)obtained by numerical calculation are closer to those of real formations. It is suggested that the unit grid with a unit size of less than 1.5 m should be used for simulation design under satisfied computational efficiency.
Keywords
continental shale ; mechanical parameters ; size effect ; hydraulic fracturing