-
泥质岩是地壳表层分布最广的岩石,约占沉积岩总量的三分之二[1-2]。近年来,随着页岩气、页岩油的勘探开发以及CO2地质封存、气田采出水回注、核废料地质处置等地下工程的实施推进,泥质岩中的页岩受到中外能源环保领域学者的高度关注。
-
页岩孔隙度多为 2%~10%,孔喉直径主要为 5~100 nm,渗透率多为 10-3~10-7 mD(10-18~10-22 m2)[3-5]。页岩完整度高、厚度大、地质环境相对稳定、吸附能力强,常作为油气藏和CO2地质封存的盖层以及核废料地质处置的天然屏障,并决定了油气藏储量规模、碳封存与核废料地质处置的长期安全性[1,6-8]。近年来,赋存于页岩中的油气逐渐转变为当前举足轻重的化石能源[4,9-11]。“十二五”以来,围绕 “稳油增气”战略,中国逐步加大了对页岩油气资源勘探开发的科技攻关,以期缓解中国常规油气产量不足以及煤化石燃料占比大引发的环境污染等问题[12-13]。“十三五”时期,中国页岩气新增探明地质储量达1.46×1012 m3[14]。
-
页岩在页岩油气开发、气田采出水回注以及 CO2地质封存等领域的应用需要系统研究不同条件下的渗透率特征,一方面可以为页岩油气开发、地层异常压力分布、盆地地下水循环等提供定量依据,另一方面为碳循环、溶质迁移及其他与地下水文相关的问题提供参考[15]。鉴于气体滑脱效应与流体-页岩相互作用会显著影响流体在页岩纳米孔隙中的运动,页岩渗透率的测定方法、影响因素等相关研究引起了世界各国学者的广泛兴趣。笔者回顾了页岩渗透率的测定方法,重点阐述了流体类型、矿物组成、孔隙压力、有效应力、实验温度、各向异性以及 CO2-水-页岩相互作用对页岩渗透率影响的研究进展,指出了今后页岩渗透率的研究重点,以期为石油、地质等领域研究学者提供借鉴与参考。
-
1 渗透率测定方法
-
页岩孔喉直径多为纳米级,其渗透率测定相比高渗透介质更加困难[3,16-17]。目前,实验室测定页岩渗透率采用气体、去离子水或盐溶液、油三类流体在稳态或非稳态条件下测得。稳态法通过测量被测试流体流动达到稳定条件时的压差和流量,采用达西定律来计算渗透率;非稳态法基于样品两端压力随时间衰减规律和相应数学模型来获取渗透率,主要包括脉冲衰减法、振荡压力法和 GRI 法[4,17-20]。这几种方法的原理及适用的渗透率测试范围如表1 所示。其中,稳态法与脉冲衰减法是室内测定页岩渗透率的常用方法,国内表征页岩渗透率一般采用氦气脉冲衰减法,2 种方法实验装置示意图分别见参考文献[5]和[21],优缺点对比参见表2。稳态法需要测量稳态流量,所需时间长,但装置简单,结果准确度高;相比之下,脉冲衰减法不需要测量流量,所需时间短,但装置较复杂。
-
此外,WANG等提出了一种基于页岩甲烷吸附平衡过程中的压力、温度及时间等数据来计算干燥及含水条件下粉末状页岩渗透率的方法[22]。HAN‐ NON 采用解析渗流模型作为脉冲衰减法的替代方法(包括柱状样品轴向流、径向流以及粉末样品径向流)来计算页岩等超低渗透介质的渗透率[23]。蒙特卡罗分析法论证解析模型求解渗透率的准确性和可行性表明,解析模型法与脉冲衰减法得到的渗透率值相当。压汞法、核磁共振法等间接方法也常用于页岩渗透率的表征,前者利用压汞毛管压力数据,基于Purcell模型、Swanson等经验模型对页岩渗透率进行计算;后者通过测量核磁共振 T2谱、可动/ 不可动流体孔隙度等参数,基于 SDR 模型、Coates模型和 Coates-Sbvi 模型来计算渗透率,具有无损、简单快捷等优点[18,24-25]。
-
2 渗透率影响因素
-
渗透率是表征流体在多孔介质连通孔隙中流动能力的重要参数,也是反映多孔介质孔喉大小、流体-岩石相互作用强度的指示参数[15,26]。渗透率标准单位的定义要求多孔介质中只含一种流体,此情形下测得渗透率称为特殊渗透率,但通常简称为渗透率;当单相测试流体不与介质发生物理化学反应时,测得的渗透率又称为绝对渗透率,当存在多相流体渗流时,渗透率细分为有效渗透率和相对渗透率[27]。如Kozeny-Carman渗透率模型[28-29] 所示,渗透率只与介质的孔隙度、孔隙半径、曲折度有关,孔隙半径越大、孔隙度越高、孔隙连通性越好,则渗透率越大。但对于页岩这种超低渗透介质,气体滑脱效应、流体-页岩相互作用以及与两者密切相关的孔隙压力、有效应力和温度对流体流动的影响不可忽略,页岩渗透率规律愈发复杂多变。其表达式为:
-
2.1 流体类型
-
通常页岩孔隙直径与气体分子平均自由程相当[3,30],此特征决定了页岩渗透率与气体类型有关。结果表明,非吸附气测得的渗透率大于吸附气测得的渗透率,大小顺序依次为:KHe>KAr > > > [19-20]。在相同实验条件下,氦气测得的页岩渗透率通常为甲烷测得的渗透率的1~2倍[3]。气体类型对页岩渗透率的影响主要归为 2 个原因:一是分子直径[3,19],不同气体分子直径不同,氦气分子直径显著小于其他类型气体,能通过其他气体不能穿过的微小孔道,此外,分子直径也会影响气体的滑脱效应,在给定压力和孔喉大小条件下,分子直径越小,滑脱效应越强;二是气体分子在页岩表面的吸附,吸附一方面减小有效渗流半径,另一方面吸附导致的膨胀会压缩孔隙空间,使得页岩孔隙结构发生变化,继而导致渗透率改变[20,31-32]。近年来,页岩油的开发促进了油测渗透率的相关研究,马炳杰等通过对比分析济阳坳陷纹层状页岩油与空气 2 种渗透率,表明页岩的油测渗透率约为气测渗透率的 0.14%~1.76%[33](表3)。
-
页岩表面 Zeta 电势主要为-48.7~-25.2 mV[30],用水作为测试流体时,强烈的水-页岩相互作用会使黏土矿物膨胀、矿物表面形成结合水膜以及产生电黏性效应等。黏土矿物膨胀会压缩孔隙空间,结合水膜的存在会减小孔喉有效渗流半径,电黏性效应的产生会减小净流速,三者的联合效应致使同一页岩样品气相渗透率通常比水相渗透率高约 1~3 个数量级[3,21,34-36]。
-
溶液的浓度及离子价态也会影响页岩渗透率。 KWON 等利用去离子水、浓度均为 1 mol/L 的 KCl, NaCl 和 CaCl2溶液 4 种流体测定页岩样品的渗透率。结果表明,KCl和NaCl溶液得到的渗透率与去离子水测定的近似,但 CaCl2溶液测定的渗透率比其他流体的大 3~5 倍[37];HILDENBRAND 等采用自来水和质量浓度为100 g/L的NaCl溶液测定泥岩的渗透率相近[38]。YANG等选用柴达木盆地东部石炭系3块页岩样品,利用去离子水和浓度为1 mol/L 的 NaCl 溶液测定其渗透率,其值相近,均为 10-7~10-6 mD,甚至相同压力梯度下,NaCl溶液测定的渗透率会稍低[26]。理论上,盐的加入会压缩矿物表面双电层,削弱电黏性效应,盐溶液渗透率理应大于纯水渗透率,但在实际情形中,双电层的压缩会造成颗粒失稳脱落而堵塞喉道,也会改变测试条件下的流体-岩石-应力耦合状态,从而影响渗透率[21]。
-
当页岩中同时存在水、气两相流体时,水的存在将大幅减小页岩的实测气体渗透率[5,19,35]。GAO 等测试了不同含水率下的页岩氦气渗透率,结果表明,氦气渗透率随含水率增加呈指数下降[5]。非饱和页岩气体渗透率与其黏土矿物含量有关。相同含水率下,黏土矿物含量高的样品渗透率降幅将显著大于黏土矿物含量低的样品[17,39]。页岩气体渗透率随含水率升高而减小的原因包括 3 个方面:一是水膜的存在减小了孔喉有效渗流半径;二是黏土矿物(如蒙脱石)遇水膨胀挤占了孔隙空间;三是部分孔喉被毛细管水完全堵塞,削弱了孔隙间的连通性[3,17,40]。
-
2.2 矿物组成
-
页岩矿物组成可分为脆性矿物(方解石、石英、长石等)与黏土矿物(蒙脱石、伊利石、高岭石、绿泥石等)2大类,两者在力学性质、润湿性、物理化学性质等方面具有较大差异[17,41],其相对含量会影响孔隙结构发育和流体-页岩相互作用强度,从而影响特定流体的渗透率。通常,微米尺度孔隙与脆性矿物等较大颗粒矿物集合体密切相关;而纳米尺度孔隙与黏土矿物尤其是蒙脱石密不可分[2]。此外,黏土矿物遇水会发生膨胀、分散、运移,极易堵塞页岩等致密介质的孔喉,使得渗流通道发生变化继而影响岩石渗透率。因此,对渗透率影响最大的是黏土矿物类型及其含量[42],黏土矿物含量增加将降低其渗透率[2,43-45]。同一类岩石因黏土矿物含量差异导致渗透率变化高达8个数量级[2]。在特定孔隙度下,黏土矿物含量低(27%和33%)的泥岩渗透率是富含黏土矿物(49%~66%)的泥岩渗透率的40~250倍[46]。
-
基于前期学者对共计 376 组泥页岩渗透率(经原位孔隙流体、盐溶液及去离子水测得)与黏土矿物含量(12%~97%)、孔隙度(0.04~0.78)关系的统计分析,YANG等提出了垂直层面渗透率与孔隙比、黏土矿物含量的经验公式[47],其表达式为:
-
由(2)式可知,渗透率随黏土矿物含量增加而减小。
-
KWON 等以浓度为 1 mol/L 的 NaCl 溶液为测试流体,开展黏土矿物含量对Wilcox地层富含伊利石页岩渗透率影响的实验研究,结果表明低黏土矿物含量(40%)的页岩样品测得的渗透率是高黏土矿物含量(65%)页岩样品的 6倍[48]。孔隙结构类比分析证实,该现象可归因于高黏土矿物含量样品比低黏土矿物含量样品具有更多的小孔隙及更少的大孔隙。WANG等以四川威远龙马溪组页岩为例,系统研究了矿物组成对页岩氮气渗透率的影响,其结果表明,页岩渗透率随着总有机碳含量(TOC)的增加而增加;当黏土矿物含量小于 30% 时,由于有机孔发育,孔隙连通性好,页岩渗透率与黏土矿物含量呈正相关,而当黏土矿物含量大于 30% 时,黏土矿物增加会堵塞孔喉,增加页岩的可压缩性和塑性,降低页岩抗机械压实能力,故而黏土矿物含量的增加将导致页岩渗透率快速下降;石英和方解石对页岩孔隙影响复杂,其含量变化与页岩渗透率无明显相关性[49]。
-
2.3 孔隙压力
-
孔隙压力通过影响气体滑脱效应强弱和水膜厚度,从而影响实验条件下测得的页岩渗透率。大量实验结果表明,页岩表观气体渗透率随孔隙压力增加而减小,且渗透率曲线的斜率随压力增加而逐渐减小[50]。YANG等开展了恒定环压(15 MPa)不同孔隙压力下的的页岩氦气渗透率实验,其结果显示当平均孔隙压力从0.2 MPa约增至1.7 MPa时,对应氦气渗透率从8.03×10-4 mD降至3.97×10-4 mD,降幅约为 50%[21]。GAO 等开展页岩甲烷渗透率实验结果表明,当平均孔隙压力从 0.08 MPa 增至约为 2 MPa(环压为入口压力的 1.5 倍),甲烷渗透率从 18.12×10-4 mD 降至 1.10×10-4 mD,降幅达 94%[51]。气体渗透率随孔隙压力增大而减小可用 Klinken‐ berg公式来描述[3,31,51],其表达式为:
-
气体在页岩中的滑脱程度随孔隙压力而变[52]。努森数是划分多孔介质中气体渗流机制的常用参数,为气体分子平均自由程与孔喉直径的比值[53-54],其表达式为:
-
由(4)式可知,努森数随压力的增加而减小,因压力和孔径不同,努森数为10-6~103,气体渗流机制从扩散流依次转变为过渡流、滑脱流和达西流[51,53-54]。平均孔隙压力增加,努森数减小,气体滑脱效应减弱乃至消失,渗流趋近于达西流,故而测得的渗透率减小。
-
孔隙压力对页岩水测渗透率或油测渗透率的影响与对气体渗透率完全不同。YANG等以柴达木盆地石炭系 3 块页岩样品为例,开展了恒定环压 (15 MPa)及不同孔隙压力条件下的渗透率实验,结果表明:页岩去离子水渗透率随孔隙压力增大而增大,当压力梯度从1 MPa/cm增至4 MPa/cm时,渗透率从5×10-6 mD增至2×10-5mD[21],其表达式为:
-
高孔隙压力会破坏附着于页岩表面的结合水膜,使有效渗流半径增大,导致去离子水渗透率随孔隙压力的增大而增大[21]。马炳杰等开展的页岩油流动能力影响因素实验表明,随驱替压力梯度增加,页岩渗透率增大,页岩油由低驱替压力梯度下的非线性流动转为线性流动[33]。
-
2.4 有效应力
-
在覆压条件下测试渗透率,覆压与孔隙压力的差值称为有效应力[5,48,55]。同一孔隙压力下,页岩渗透率随有效应力的增加(即围压的增加)先快速下降后缓慢下降,呈指数变化,其表达式为[3,5,19,35-56]:
-
页岩渗透率对有效应力的响应主要源于以下3 种机理的耦合:①微裂纹或层理缝闭合。②孔隙被压缩。③孔隙间的黏结破坏而导致岩石连通性损失[57-59]。
-
KATSUBE 等结合脉冲衰减法,使用质量浓度为 30 g/L 的 NaCl 溶液,测试 2 块页岩样品的渗透率,结果表明当有效应力从 2.5 MPa 增至 40 MPa 时,样品 1 的渗透率从 8.5×10-6 mD 降至 7×10-7 mD,样品 2的渗透率从 1.6×10-5 mD 降至 9.0×10-7 mD[60]。 GHANIZADEH等研究了平行层理方向页岩氦气和甲烷渗透率,两者均随有效应力的增加而减小(表3),降幅可达 40%[3]。有效应力对页岩渗透率的影响程度与样品含水饱和度及初始渗透率有关,研究表明,随页岩样品含水饱和度增加和初始渗透率降低,有效应力对渗透率的影响愈显著[39]。
-
2.5 实验温度
-
对于常规储层岩石,由于孔隙直径多为微米级,其气体渗透率通常与测试时的温度无关,然而对于孔隙直径为纳米级的页岩而言,温度对渗透率测试结果有显著影响[31]。温度会影响气体分子平均自由程和矿物表面水溶液双电层厚度[53,61],从而间接影响页岩渗透率的测试值。SINHA 等基于稳态法研究了温度对页岩氦气渗透率的影响,结果表明较高温度下(110℃)测得的气体绝对渗透率小于在室温下(22.2℃)测得的渗透率[31]。刘小川开展了温度对页岩渗流特性的影响研究,发现甲烷渗透率随温度升高而减小[62]。基于热力条件对页岩渗透特性影响的实验研究,吴迪等发现在相同体积应力和孔隙压力下页岩甲烷渗透率随温度的升高而逐渐降低,当温度从室温增至 50℃,样品渗透率降低幅度达 62.1%[63]。基于三轴高温渗透率测试装置,王益维等测得了页岩从室温到550℃条件下的氦气渗透率,结果表明,随着温度的升高页岩渗透率变化分为下降段、上升段以及稳定段,当温度达到有机质热解温度后,其渗透率比初始值高 1~2 个数量级[58]。温度对页岩渗透率的影响主要归因于热膨胀和热应力以及有机质热解对岩石孔隙结构的改变[58,62]。温度对页岩不同流体渗透率的作用机制较复杂,仍有待深入研究。
-
2.6 各向异性
-
由于矿物颗粒排列及矿物组成的各向异性,页岩渗透率与实验时测试流体渗流方向有关,根据岩石性质、实验条件、流体类型的不同,页岩平行层理方向渗透率比垂直层理方向高 1~4 个数量级[3,28,45,64]。YANG 等基于脉冲衰减法,使用质量浓度为 30 g/L 的 NaCl 溶液测得了 4 块泥岩分别在平行、垂直层理方向的渗透率,研究发现前者与后者之比为 1.7~11.8[28]。GHANIZADEH 等使用氦气研究了干燥页岩于平行和垂直层理方向的渗透率,结果表明前者比后者高出一个数量级[3](表3)。王鑫朋等以川东龙马溪组页岩为例,采用脉冲衰减法探究了气体渗透率的各向异性,研究发现沿层理面取样的页岩渗透率约为垂直层理面取样的页岩渗透率的3倍[56]。
-
各向异性对页岩渗透率的影响程度与页岩矿物组成、有效应力及温度有关。富含黏土矿物页岩样品的渗透率各向异性差异比富含石英页岩样品的渗透率各向异性更显著[3]。KWON 等研究表明,有效应力较低时(3 MPa),经浓度为1 mol/L NaCl溶液测得的页岩垂直层理方向的渗透率约为平行层理方向的十分之一;而当有效应力达 10~12 MPa 时,各向异性的影响几乎可以忽略[48]。王磊等开展了水蒸气温度对油页岩渗透率及各向异性特征的影响研究,发现渗透率各向异性系数在热解温度为 314℃时达最大值,而当温度从 382℃增至 555℃,渗透率各向异性系数较小,呈缓慢增长趋势[64]。
-
2.7 CO2-水-页岩化学溶蚀与沉淀作用
-
近年来,围绕页岩、气开发采出水回注地下水环境保护以及 CO2地质封存安全性评估等问题,众多学者研究了水-页岩、CO2-水-页岩相互作用对页岩渗透率的影响。当页岩与水、CO2接触时,方解石、白云石和长石等矿物在酸性环境下的溶解反应与高岭石、片钠铝石等矿物的沉淀反应会改变页岩的孔隙结构,从而使渗透率发生变化,其反应表达式为:
-
LU 等分别利用 4 块 Marcellus 页岩样品和 4 块 Eagle Ford页岩样品与不同浓度的NaCl溶液开展了静态反应实验,在 21 d 的地球化学反应后,采用压汞法测其孔隙度和渗透率。分析结果表明,Marcel‐ lus页岩反应前渗透率为1.3×10-5 mD,反应后4块样品渗透率为 2.0×10-5~7.2×10-5 mD,增幅达 54%~450%;Eagle Ford 页岩反应前渗透率为 6.7 × 10-6 mD,反应后,其中 1 块样品渗透率减小至 6.6×10-6 mD,其余 3块样品渗透率为 7.3×10-6~1.3×10-5 mD,增幅为 9%~94%。NaCl 溶液浓度越高,矿物溶解越强而沉淀减弱,孔隙度与渗透率有不同程度增加[65]。PEARCE 等开展了压力为 20 MPa、温度为 75℃条件下 Roseneath 页岩、Murteree 页岩与地层水为期 1 周的静态反应实验,分析表明铁氧化物的沉淀会堵塞孔喉或裂缝,并有可能降低渗透率[66]。
-
CO2-水-页岩相互作用会显著改变页岩渗透率[67]。一方面,矿物不同程度的溶蚀会形成大量溶蚀孔,导致页岩孔隙度和渗透率显著增加。ZOU等开展了不同条件下的CO2-咸水-页岩静态反应实验,结果表明矿物溶蚀导致的页岩渗透率增幅能达一个数量级[68]。另一方面,CO2-水-页岩相互作用因矿物溶解在岩石基质中形成的悬浮自由颗粒或因沉淀产生的悬浮物,随着流体的运动而堵塞岩石基质孔喉,导致渗透率下降,最终影响CO2的注入能力和封存潜力[69]。此外,CO2地质封存过程中注入的超临界 CO2能萃取页岩等盖层岩石中的有机质,可能使页岩孔隙度和渗透率发生些许变化[70-71]。
-
3 结论与展望
-
稳态法与脉冲衰减法是当前室内测定页岩渗透率的常用方法,相较于稳态法,脉冲衰减法具有用时短,测量参数少等优点,是目前中国主流的测定方法。鉴于页岩低孔低渗透、非均质性强等特征,实验条件下测得的渗透率受流体类型、样品矿物组成、孔隙压力、有效应力、实验温度、渗流方向以及流体-页岩化学溶蚀与沉淀作用等多个因素影响,在表述页岩渗透率时,应指明测试流体、渗流方向和实验条件。不同条件下的流体-页岩相互作用差异及孔隙有效渗流半径变化是页岩渗透率改变的根本原因。
-
碳达峰、碳中和目标下,页岩作为天然气这一清洁能源增储上产的重点勘探开发储层、作为 CO2 地质封存的重要盖层,其在高温高压、高盐酸性等复杂条件下的渗透率特征仍有待深入系统研究。围绕页岩油气高效开发、CO2长期安全稳定封存等重大科学技术问题,复杂温压酸盐环境中CO2-水-页岩相互作用对页岩渗透率影响、CO2注入-运移-封存全周期页岩渗透率演化、页岩储层超临界 CO2压裂过程中裂隙及裂隙网络渗透率、非纯 CO2地质封存页岩盖层渗透率演化等方向的实验与数值模拟研究是今后页岩渗透率重点研究领域,以完善页岩渗流理论体系,助力解决深部资源开发与地质环境保护问题。
-
符号解释
-
b——气体滑脱系数,MPa;
-
CF——黏土矿物含量,无量纲;
-
d——岩石孔喉直径,m;
-
e——孔隙比,无量纲;
-
G——压力梯度,MPa/cm;
-
GT——启动压力梯度,MPa/cm;
-
k0——岩石初始渗透率,mD;
-
K,,,,KHe,KAr —— 岩石、氮气、甲烷、二氧化碳、氦气和氩气的渗透率,mD;
-
KB——玻尔兹曼常数,J/K;
-
Kg——气体渗透率,mD;
-
K∞——绝对渗透率,mD;
-
Kn——努森数,无量纲;
-
——平均孔隙压力,MPa;
-
p——孔隙压力,MPa;
-
Pe——有效应力,MPa;
-
r——孔隙半径,m;
-
T——温度,K;
-
α,β,γ——公式拟合常数,无量纲;
-
δ——气体分子碰撞直径,m;
-
λ——分子平均自由程,m;
-
τ——岩石孔隙曲折度,无量纲;
-
ϕ——孔隙度,无量纲。
-
参考文献
-
[1] NEUZIL C E.Can shale safely host U.S.nuclear waste?[J].Eos Transactions American Geophysical Union,2013,94(30):261-268.
-
[2] BOURG I C,AJO-FRANKLIN J B.Clay,water,and salt:Con‐ trols on the permeability of fine-grained sedimentary rocks[J].Accounts of Chemical Research,2017,50(9):2 067-2 074.
-
[3] GHANIZADEH A,GASPARIK M,AMANN-HILDENBRAND A,et al.Experimental study of fluid transport processes in the matrix system of the European organic-rich shales:Ⅰ.Scandina‐ vian Alum Shale[J].Marine and Petroleum Geology,2014,51:79-99.
-
[4] 杨术刚.页岩中水、氯化钠溶液和液体二氧化碳渗流对比研究 [D].北京:中国地质大学(北京),2021.YANG Shugang.Comparative investigation on flow characteris‐ tics of water,NaCl solution and liquid CO2 in shale[D].Beijing:China University of Geosciences(Beijing),2021.
-
[5] GAO J,LI Z X.Water saturation-driven evolution of helium per‐ meability in Carboniferous shale from Qaidam Basin,China:An experimental study[J].Marine and Petroleum Geology,2018,96:371-390.
-
[6] 付晓飞,吴桐,吕延防,等.油气藏盖层封闭性研究现状及未来发展趋势[J].石油与天然气地质,2018,39(3):454-471.FU Xiaofei,WU Tong,LÜ Yanfang,et al.Research status and development trend of the reservoir caprock sealing properties[J].Oil & Gas Geology,2018,39(3):454-471.
-
[7] SONG J,ZHANG D X.Comprehensive review of caprock-seal‐ ing mechanisms for geologic carbon sequestration[J].Environ‐ mental Science & Technology,2013,47(1):9-22.
-
[8] IGLAUER S.CO2-water-rock wettability:Variability,influencing factors,and implications for CO2 geostorage[J].Accounts of Chemical Research,2017,50(5):1 134-1 142.
-
[9] 杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.YANG Feng,NING Zhengfu,HU Changpeng,et al.Character‐ ization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.
-
[10] MIDDLETON R S,CAREY J W,CURRIER R P,et al.Shale gas and non-aqueous fracturing fluids:Opportunities and chal‐ lenges for supercritical CO2[J].Applied Energy,2015,147:500-509.
-
[11] YUAN Y J,REZAEE R,VERRALL M,et al.Pore characteriza‐ tion and clay bound water assessment in shale with a combina‐ tion of NMR and low-pressure nitrogen gas adsorption[J].Interna‐ tional Journal of Coal Geology,2018,194:11-21.
-
[12] 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(二)[J].石油勘探与开发,2016,43(2):166-178.ZOU Caineng,DONG Dazhong,WANG Yuman,et al.Shale gas in China:characteristics,challenges and prospects(II)[J].Petro‐ leum Exploration and Development,2016,43(2):166-178.
-
[13] 马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发,2018,45(4):561-574.MA Yongsheng,CAI Xunyu,ZHAO Peirong.China’s shale gas exploration and development:Understanding and practice[J].Pe‐ troleum Exploration and Development,2018,45(4):561-574.
-
[14] 国家能源局石油天然气司,国务院发展研究中心资源与环境政策研究所,自然资源部油气资源战略研究中心.中国天然气发展报告[R].北京:石油工业出版社,2021:3-4,19.Oil and Gas Department,National Energy Administration,Insti‐ tute for Resources and Environmental Policies,Development Re‐search Center of the State Council,Center for Oil and Gas re‐ source strategies,Ministry of Natural Resources.China natural gas development report[R].Beijing:Petroleum Industry Press,2021:3-4,19.
-
[15] YOUNG A,LOW P F,MCLATCHIE A S.Permeability studies of argillaceous rocks[J].Journal of Geophysical Research,1964,69(20):4 237-4 245.
-
[16] 杨元亮.页岩油藏表观液体渗透率的分形表征方法[J].油气地质与采收率,2020,27(6):106-113.YANG Yuanliang.Fractal characterization of apparent liquid per‐ meability in shale reservoirs[J].Petroleum Geology and Recov‐ ery Efficiency,2020,27(6):106-113.
-
[17] LYU Q,SHI J D,RANJITH P G.Effects of testing method,li‐ thology and fluid-rock interactions on shale permeability:A re‐ view of laboratory measurements[J].Journal of Natural Gas Sci‐ ence and Engineering,2020,78:103302.
-
[18] 于荣泽,卞亚南,张晓伟,等.页岩储层非稳态渗透率测试方法综述[J].科学技术与工程,2012,12(27):7 019-7 027,7035.YU Rongze,BIAN Yanan,ZHANG Xiaowei,et al.The review of non-steady permeability test in shale gas reservoir[J].Science Technology and Engineering,2012,12(27):7 019-7 027,7035.
-
[19] GENSTERBLUM Y,GHANIZADEH A,CUSS R J,et al.Gas transport and storage capacity in shale gas reservoirs-A review.Part A:Transport processes[J].Journal of Unconventional Oil and Gas Resources,2015,12:87-122.
-
[20] SANDER R,PAN Z J,CONNELL L D.Laboratory measurement of low permeability unconventional gas reservoir rocks:A re‐ view of experimental methods[J].Journal of Natural Gas Science and Engineering,2017,37:248-279.
-
[21] YANG S G,YU Q C.Experimental investigation on the movabili‐ ty of water in shale nanopores:A case study of Carboniferous shale from the Qaidam Basin,China[J].Water Resources Re‐ search,2020,56:e2019wr026973.
-
[22] WANG M L,YU Q C.A method to determine the permeability of shales by using the dynamic process data of methane adsorp‐ tion[J].Engineering Geology,2019,253:111-122.
-
[23] HANNON M J.Alternative approaches for transient-flow labora‐ tory-scale permeametry[J].Transport in Porous Media,2016,114(3):719-746.
-
[24] XU L,LI Q,MYERS M,et al.Application of nuclear magnetic resonance technology to carbon capture,utilization and storage:A review[J].Journal of Rock Mechanics and Geotechnical Engi‐ neering,2019,11(4):892-908.
-
[25] 王红岩,周尚文,刘德勋,等.页岩气地质评价关键实验技术的进展与展望[J].天然气工业,2020,40(6):1-17.WANG Hongyan,ZHOU Shangwen,LIU Dexun,et al.Progress and prospect of key experimental technologies for shale gas geo‐ logical evaluation[J].Natural Gas Industry,2020,40(6):1-17.
-
[26] YANG S G,YU Q C.The role of fluid-rock interactions in per‐ meability behavior of shale with different pore fluids[J].Interna‐ tional Journal of Rock Mechanics and Mining Sciences,2022,150:105023.
-
[27] 曲岩涛,戴志坚,李桂梅,等.岩心分析方法:SY/T 5336—2006 [S].北京:石油工业出版社,2007.QU Yantao,DAI Zhijian,LI Guimei,et al.Practices for core analysis:SY/T 5336-2006[S].Beijing:Petroleum Industry Press,2007.
-
[28] YANG Y L,APLIN A C.Permeability and petrophysical proper‐ ties of 30 natural mudstones[J].Journal of Geophysical Research,2007,112:B03206.
-
[29] WANG J,LIU H Q,WANG L,et al.Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects[J].International Journal of Coal Geology,2015,152(3):50-62.
-
[30] MIRCHI V,SARAJI S,GOUAL L,et al.Dynamic interfacial tension and wettability of shale in the presence of surfactants at reservoir conditions[J].Fuel,2015,148:127-138.
-
[31] SINHA S,BRAUN E M,DETERMAN M D,et al.Steady-state permeability measurements on intact shale samples at reservoir conditions:Effect of stress,temperature,pressure,and type of gas[C].SPE 164263,2013.
-
[32] WU W,ZOBACK,M D,KOHLI A H.The impacts of effective stress and CO2 sorption on the matrix permeability of shale reser‐ voir rocks[J].Fuel,2017,203:179-186.
-
[33] 马炳杰,范菲,孙志刚,等.济阳坳陷纹层状页岩油流动能力影响因素实验[J].大庆石油地质与开发,2022,41(5):153-159.MA Bingjie,FAN Fei,SUN Zhigang,et al.Experimental study on influencing factors of shale oil flow capacity in laminar shale in Jiyang Depression[J].Petroleum Geology & Oilfield Develop‐ ment in Daqing,2022,41(5):153-159.
-
[34] BUSCH A,AMANN-HILDENBRAND A.Predicting capillarity of mudrocks[J].Marine and Petroleum Geology,2013,45:208-223.
-
[35] VAN NOORT R,YARUSHINA V.Water,CO2 and argon permea‐ bilities of intact and fractured shale cores under stress[J].Rock Mechanics and Rock Engineering,2019,52(2):299-319.
-
[36] BLOOMFIELD J P,WILLIAMS A T.An empirical liquid perme‐ ability-gas permeability correlation for use in aquifer properties studies[J].Quarterly Journal of Engineering Geology & Hydroge‐ ology,1995,28(S2):S143-S150.
-
[37] KWON O,HERBERT B E,KRONENBERG A K.Permeability of illite-bearing shale:2.Influence of fluid chemistry on flow and functionally connected pores[J].Journal of Geophysical Re‐ search,2004,109(B10):B10206.
-
[38] HILDENBRAND A,SCHLOMER S,KROOSS B M.Gas break‐ through experiments on pelitic rocks:comparative study with N2,CO2 and CH4[J].Geofluids,2004,4(1):61-80.
-
[39] GAO J,YU Q C.Effect of water saturation on pressure-depen‐ dent permeability of Carboniferous shale of the Qaidam Basin,China[J].Transport in Porous Media,2018,123(3):147-172.
-
[40] 程秋洋,游利军,康毅力,等.氧化溶蚀作用对页岩水相自吸的影响[J].油气地质与采收率,2020,27(4):94-103.CHENG Qiuyang,YOU Lijun,KANG Yili,et al.Effect of oxida‐ tive dissolution on water spontaneous imbibition in shale gas res‐ervoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(4):94-103.
-
[41] 李明波,吴志伟,张金武.威远页岩储层特征对测试产量的影响[J].中国石油勘探,2019,24(4):539-546.LI Mingbo,WU Zhiwei,ZHANG Jinwu.Influences of shale res‐ ervoir characteristics on production test in Weiyuan block[J].Chi‐ na Petroleum Exploration,2019,24(4):539-546.
-
[42] 赵海峰,梁海杰,王羽生.脆性页岩缝网扩展流固热化耦合机制实验研究[J].油气地质与采收率,2021,28(4):140-146.ZHAO Haifeng,LIANG Haijie,WANG Yusheng.Experimental investigation on fluid-solid-thermo-chemical coupling mecha‐ nism of fracture network propagation in brittle shale[J].Petro‐ leum Geology and Recovery Efficiency,2021,28(4):140-146.
-
[43] 马林,蒋夏妮,龚劲松.优质页岩气储层测井特征分析[J].油气藏评价与开发,2022,12(3):445-454.MA Lin,JIANG Xiani,GONG Jinsong.Analysis of logging characteristics of high quality shale gas reservoirs[J].Reservoir Evaluation and Development,2022,12(3):445-454.
-
[44] TAKAHASHI M,MIZOGUCHI K,KITAMURA K,et al.Effects of clay content on the frictional strength and fluid transport prop‐ erty of faults[J].Journal of Geophysical Research:Solid Earth,2007,112(B8):B08206.
-
[45] ARMITAGE P J,FAULKNER D R,WORDEN R H,et al.Exper‐ imental measurement of,and controls on,permeability and per‐ meability anisotropy of caprocks from the CO2 storage project at the Krechba Field,Algeria[J].Journal of Geophysical Research,2011,116:B12208.
-
[46] DEWHURST D N,APLIN A C,SARDA J P.Influence of clay fraction on pore-scale properties and hydraulic conductivity of experimentally compacted mudstones[J].Journal of Geophysical Research,1999,104(B12):29 261-29 274.
-
[47] YANG Y L,APLIN A C.A permeability-porosity relationship for mudstones[J].Marine and Petroleum Geology,2010,27(8):1 692-1 697.
-
[48] KWON O,KRONENBERG A K,GANGI A F,et al.Permeabili‐ ty of illite-bearing shale:1.Anisotropy and effects of clay con‐ tent and loading[J].Journal of Geophysical Research:Solid Earth,2004,109(B10):B10205.
-
[49] WANG Q T,WANG T L,LIU W P,et al.Relationships among composition,porosity and permeability of Longmaxi Shale reser‐ voir in the Weiyuan Block,Sichuan Basin,China[J].Marine & Pe‐ troleum Geology,2019,102:33-47.
-
[50] 张艳玉,李冬冬,孙晓飞,等.实际状态下的页岩气表观渗透率计算新模型[J].天然气工业,2017,37(11):53-60.ZHANG Yanyu,LI Dongdong,SUN Xiaofei,et al.A new model for calculating the apparent permeability of shale gas in the real state[J].Natural Gas Industry,2017,37(11):53-60.
-
[51] GAO J,YU Q C,LU X.Apparent permeability and gas flow be‐ havior in Carboniferous shale from the Qaidam Basin,China:An experimental study[J].Transport in Porous Media,2017,116:585-611.
-
[52] 袁迎中,严文德,戚志林,等.基于页岩气多重运移机制的二项式视渗透率公式[J].特种油气藏,2021,28(3):76-80.YUAN Yingzhong,YAN Wende,QI Zhilin,et al.Binomial ap‐ parent permeability formula based on multiple migration mecha‐ nism of shale gas[J].Special Oil & Gas Reservoirs,2021,28(3):76-80.
-
[53] JAVADPOUR F,FISHER D,UNSWORTH M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
-
[54] HELLER R,VERMYLEN J,ZOBACK M.Experimental investi‐ gation of matrix permeability of gas shales[J].AAPG Bulletin,2014,98(5):975-995.
-
[55] KWON O,KRONENBERG A K,GANGI A F,et al.Permeabili‐ ty of Wilcox shale and its effective pressure law[J].Journal of Geophysical Research,2001,106(B9):19 339-19 353.
-
[56] 王鑫朋,关富佳,刘海鹏,等.川东龙马溪组页岩渗透率各向异性及应力敏感性实验研究[J].科学技术与工程,2019,19(26):174-177.WANG Xinpeng,GUAN Fujia,LIU Haipeng,et al.Experimen‐ tal study on permeability anisotropy and stress sensibility of shale of Longmaxi in East Sichuan[J].Science Technology and Engineering,2019,19(26):174-177.
-
[57] DAVUDOV D,MOGHANLOO R G.Impact of pore compress‐ ibility and connectivity loss on shale permeability[J].Internation‐ al Journal of Coal Geology,2018,187:98-113.
-
[58] 王益维,汪友平,孟祥龙,等.低成熟度页岩油加热改质热解动力学及地层渗透性[J].石油与天然气地质,2019,40(3):678-684.WANG Yiwei,WANG Youping,MENG Xianglong,et al.Organ‐ ic matter pyrolysis kinetics and formation permeability variation during upgrading process of low-maturity shale oil[J].Oil & Gas Geology,2019,40(3):678-684.
-
[59] 陆朝晖,贾云中,汤积仁,等.深层页岩剪切滑移裂缝渗透率变化规律[J].天然气工业,2021,41(1):146-153.LU Zhaohui,JIA Yunzhong,TANG Jiren,et al.Evolution laws of fracture permeability of deep shale in the process of shear slip [J].Natural Gas Industry,2021,41(1):146-153.
-
[60] KATSUBE T J,MUDFORD B S,Best M E.Petrophysical char‐ acteristics of shales from the Scotian shelf[J].Geophysics,1991,56(10):1 681-1 689.
-
[61] TOKUNAGA T K.Physicochemical controls on adsorbed water film thickness in unsaturated geological media[J].Water Resourc‐ es Research,2011,47(8):W08514.
-
[62] 刘小川.温度对页岩渗流特性的影响研究[D].重庆:重庆大学,2014.LIU Xiaochuan.Influence of temperature on the seepage charac‐ teristics of shale[D].Chongqing:Chongqing University,2014.
-
[63] 吴迪,王挺,刘雪莹,等.页岩渗透特性受热力条件影响的实验研究[J].实验力学,2020,35(3):539-546.WU Di,WANG Ting,LIU Xueying,et al.Experimental study on the influence of thermal conditions on shale permeability charac‐ teristics[J].Journal of Experimental Mechanics,2020,35(3):539-546.
-
[64] 王磊,杨栋,康志勤.高温水蒸汽作用后油页岩渗透特性及各向异性演化的试验研究[J].岩石力学与工程学报,2021,40(11):2 286-2 295.WANG Lei,YANG Dong,KANG Zhiqin.Experimental study on permeability characteristics and anisotropy evolution of oil shale after high-temperature water vapor treatment[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2 286-2 295.
-
[65] LU J M,MICKLER P J,NICOT J P,et al.Geochemical interac‐ tions of shale and brine in autoclave experiments-Understanding mineral reactions during hydraulic fracturing of Marcellus and Eagle Ford Shales[J].AAPG Bulletin,2017,101(10):1 567-1 597.
-
[66] PEARCE J K,TURNER L,PANDEY D.Experimental and pre‐ dicted geochemical shale-water reactions:Roseneath and Murter‐ ee shales of the Cooper Basin[J].International Journal of Coal Geology,2018,187:30-44.
-
[67] LIU F Y,LU P,GRIFFITH C,et al.CO2-brine-caprock interac‐ tion:Reactivity experiments on Eau Claire shale and a review of relevant literature[J].International Journal of Greenhouse Gas Control,2012,7(2):153-167.
-
[68] ZOU Y S,LI S H,MA X F,et al.Effects of CO2-brine-rock inter‐ action on porosity/permeability and mechanical properties dur‐ ing supercritical-CO2 fracturing in shale reservoirs[J].Journal of Natural Gas Science and Engineering,2018,49:157-168.
-
[69] TANG Y,HU S L,HE Y W,et al.Experiment on CO2-brine-rock interaction during CO2 injection and storage in gas reservoirs with aquifer[J].Chemical Engineering Journal,2021,413:127567.
-
[70] 贾连超,刘鹏飞,袁丹,等.注 CO2提高页岩吸附气采收率实验:以鄂尔多斯盆地延长组长7页岩气为例[J].大庆石油地质与开发,2021,40(2):153-159.JIA Lianchao,LIU Pengfei,YUAN Dan,et al.Experiment of en‐ hancing the recovery of the shale adsorbed gas by CO2 injection:Taking Yanchang-Formation Chang-7 shale gas in Ordos Basin as an example[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):153-159.
-
[71] 王强,李志明,钱门辉,等.超临界二氧化碳萃取泥页岩中可动油实验研究[J].石油实验地质,2020,42(4):646-652.WANG Qiang,LI Zhiming,QIAN Menhui,et al.Movable oil ex‐ traction from shale with supercritical carbon dioxide[J].Petro‐ leum Geology & Experiment,2020,42(4):646-652.
-
摘要
页岩渗透率及其分布关系页岩油气开发、常规油气藏储量评估、地下储气库及CO2地质封存盖层封闭性、核废料地质处置与气田采出水回注安全性等能源环境领域重点课题,其渗透率特征研究具有广泛的理论与工程实践意义。为此,系统阐述了页岩渗透率测定方法与影响因素研究进展,结果表明,页岩渗透率为微达西至纳达西,通常采用稳态法和脉冲衰减法测得,影响页岩渗透率的因素包括但不限于流体类型及饱和度、矿物组成、孔隙压力、有效应力、实验温度、各向异性以及流体-页岩化学溶蚀与沉淀作用,不同条件下的流体-页岩相互作用差异及孔隙有效渗流半径变化是渗透率改变的根本原因。
Abstract
Shale permeability and its distribution are vital to key projects in the energy and environment fields,such as shale oil and gas development,reserves estimate of conventional oil and gas reservoirs,sealing ability of caprock in underground gas storage and CO2 geological storage,geological disposal of nuclear waste,and reinjection safety of produced water from gas fields. The research on the characteristics of shale permeability is of extensive theoretical and engineering practical significance. Therefore,this study systematically summarized the research progress in the measurement methods and influencing factors of shale permeability. The analysis indicates that the shale permeability ranges from micro-darcy to nano-darcy,which is commonly measured by the steadystate method and pulse-decay method. The factors affecting shale permeability include but are not limited to the fluid type and satura‐ tion,mineral compositions,pore pressure,effective stress,experimental temperature,anisotropy,and fluid-rock chemical dissolution and precipitation interactions. The difference in fluid-rock interaction and the change in effective flow radii of pores under different conditions are the fundamental reasons for the permeability variation.
Keywords
shale ; permeability ; measurement methods ; influencing factors ; fluid-rock interactions